Tag Archive for modular

monster

Monsters and Moonshine : a booklet

I’ve LaTeXed $48=2 \times 24$ posts into a 114 page booklet Monsters and Moonshine for you to download. The $24$ ‘Monsters’ posts are (mostly) about finite simple (sporadic) groups : we start with the Scottish solids (hoax?), move on to the 14-15 game groupoid and a new Conway $M_{13}$-sliding game which uses the sporadic Mathieu group $M_{12}$. This Mathieu group… Read more →

imgres

the Reddit (after)effect

Sunday january 2nd around 18hr NeB-stats went crazy. Referrals clarified that the post ‘What is the knot associated to a prime?’ was picked up at Reddit/math and remained nr.1 for about a day. Now, the dust has settled, so let’s learn from the experience. A Reddit-mention is to a blog what doping is to a sporter. You get an immediate… Read more →

wittclaim

Who discovered the Leech lattice?

The Leech lattice was, according to wikipedia, ‘originally discovered by Ernst Witt in 1940, but he did not publish his discovery’ and it ‘was later re-discovered in 1965 by John Leech’. However, there is very little evidence to support this claim. The facts What is certain is that John Leech discovered in 1965 an amazingly dense 24-dimensional lattice $ {\Lambda}… Read more →

imgres-5

Langlands versus Connes

This is a belated response to a Math-Overflow exchange between Thomas Riepe and Chandan Singh Dalawat asking for a possible connection between Connes’ noncommutative geometry approach to the Riemann hypothesis and the Langlands program. Here’s the punchline : a large chunk of the Connes-Marcolli book Noncommutative Geometry, Quantum Fields and Motives can be read as an exploration of the noncommutative… Read more →

wedding

Seriously now, where was the Bourbaki wedding?

A few days before Halloween, Norbert Dufourcq (who died december 17th 1990…), sent me a comment, containing lots of useful information, hinting I did get it wrong about the church of the Bourbali wedding in the previous post. Norbert Dufourcq, an organist and student of Andre Machall, the organist-in-charge at the Saint-Germain-des-Prés church in 1939, the place where I speculated… Read more →

Bourbaki1951

Bourbakism & the queen bee syndrome

Probably the smartest move I’ve made after entering math-school was to fall in love with a feminist. Yeah well, perhaps I’ll expand a bit on this sentence another time. For now, suffice it to say that I did pick up a few words in the process, among them : the queen bee syndrome : women who have attained senior positions… Read more →

duncanpicture

E(8) from moonshine groups

Are the valencies of the 171 moonshine groups are compatible, that is, can one construct a (disconnected) graph on the 171 vertices such that in every vertex (determined by a moonshine group G) the vertex-valency coincides with the valency of the corresponding group? Duncan describes a subset of 9 moonshine groups for which the valencies are compatible. These 9 groups… Read more →

imgres

looking for the moonshine picture

We have seen that Conway’s big picture helps us to determine all arithmetic subgroups of $PSL_2(\mathbb{R}) $ commensurable with the modular group $PSL_2(\mathbb{Z}) $, including all groups of monstrous moonshine. As there are exactly 171 such moonshine groups, they are determined by a finite subgraph of Conway’s picture and we call the minimal such subgraph the moonshine picture. Clearly, we… Read more →

conway

Conway’s big picture

Conway and Norton showed that there are exactly 171 moonshine functions and associated two arithmetic subgroups to them. We want a tool to describe these and here’s where Conway’s big picture comes in very handy. All moonshine groups are arithmetic groups, that is, they are commensurable with the modular group. Conway’s idea is to view several of these groups as… Read more →

JohnMcKay

the monster graph and McKay’s observation

While the verdict on a neolithic Scottish icosahedron is still open, let us recall Kostant’s group-theoretic construction of the icosahedron from its rotation-symmetry group $A_5 $. The alternating group $A_5 $ has two conjugacy classes of order 5 elements, both consisting of exactly 12 elements. Fix one of these conjugacy classes, say $C $ and construct a graph with vertices… Read more →

mumford

Mumford’s treasure map

In the series “Brave new geometries” we give an introduction to ‘strange’ but exciting new ideas. We start with Grothendieck’s scheme-revolution, go on with Soule’s geometry over the field with one element, Mazur’s arithmetic topology, Grothendieck’s anabelian geometry, Connes’ noncommutative geometry etc. Read more →