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series 1

MONSTERS

1.1 The Scottish solids

John McKay pointed me to a few interesting links on ’Platonic’ solids and monstrous moon-
shine. If you thought that the ancient Greek discovered the five Platonic solids, think again!

They may have been the first to give a correct proof of the classification but the regular
solids were already known in 2000BC as some neolithic stone artifacts discovered in Scot-
land show.

These Scottish solids can be visited at the Ashmolean Museum in Oxford. McKay also
points to the paper Polyhedra in physics, chemistry and geometry by Michael Atiyah and
Paul Sutcliffe.

He also found my posts on a talk I gave on monstrous moonshine for 2nd year students
earlier this year and mentionted a few errors and updates. As these posts are on my old
weblog I’ll repost and update them here soon.

For now you can already hear and see a talk given by John McKay himself
196884=1+196883, a monstrous tale at the Fields Institute.

1.2 The Scottish solids hoax

A truly good math-story gets spread rather than scrutinized. And a good story it was : more
than a milenium before Plato, the Neolithic Scottish Math Society classified the five regular
solids : tetrahedron, cube, octahedron, dodecahedron and icosahedron. And, we had solid
evidence to support this claim : the NSMS mass-produced stone replicas of their finds and
about 400 of them were excavated, most of them in Aberdeenshire.

Six years ago, Michael Atiyah and Paul Sutcliffe arXived their paper Polyhedra in physics,
chemistry and geometry, in which they wrote :

”Although they are termed Platonic solids there is convincing evidence that they were
known to the Neolithic people of Scotland at least a thousand years before Plato, as demon-

http://www.georgehart.com/virtual-polyhedra/neolithic.html
http://www.ashmol.ox.ac.uk/
http://www.arxiv.org/abs/math-ph/0303071
http://cicma.mathstat.concordia.ca/faculty/cummins/moonshine.html
http://www.fields.utoronto.ca/audio/03-04/crm-fields/mckay/index.html
http://www.fields.utoronto.ca/
http://en.wikipedia.org/wiki/Platonic_solid
http://en.wikipedia.org/wiki/Platonic_solid
http://en.wikipedia.org/wiki/Michael_Atiyah
http://www.maths.dur.ac.uk/php/members.php?pattern=dma0pms&parent_page=people
http://arxiv.org/abs/math-ph/0303071
http://arxiv.org/abs/math-ph/0303071
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strated by the stone models pictured in g. 1 which date from this period and are kept in the
Ashmolean Museum in Oxford. ”

Fig. 1 is the picture below, which has been copied in numerous blog-posts (including my
own, see the previous section) and virtually every talk on regular polyhedra.

From left to right, stone-ball models of the cube, tetrahedron, dodecahedron, icosahedron
and octahedron, in which ’knobs’ correspond to ’faces’ of the regular polyhedron, as best
seen in the central dodecahedral ball.

But then ... where’s the icosahedron? The fourth ball sure looks like one but only because
someone added ribbons, connecting the centers of the different knobs. If this ribbon-figure
is an icosahedron, the ball itself should be another dodecahedron and the ribbons illustrate
the fact that icosa- and dodeca-hedron are dual polyhedra. Similarly for the last ball, if
the ribbon-figure is an octahedron, the ball itself should be another cube, having exactly
6 knobs. Who did adorn these artifacts with ribbons, thereby multiplying the number of
’found’ regular solids by two (the tetrahedron is self-dual)?

The picture appears on page 98 of the book Sacred Geometry (first published in 1979) by
Robert Lawlor. He attributes the NSMS-idea to the book Time Stands Still: New Light on
Megalithic Science (also published in 1979) by Keith Critchlow. Lawlor writes

”The five regular polyhedra or Platonic solids were known and worked with well before
Plato’s time. Keith Critchlow in his book Time Stands Still presents convincing evidence
that they were known to the Neolithic peoples of Britain at least 1000 years before Plato.
This is founded on the existence of a number of sphericalfstones kept in the Ashmolean
Museum at Oxford. Of a size one can carry in the hand, these stones were carved into the
precise geometric spherical versions of the cube, tetrahedron, octahedron, icosahedron and
dodecahedron, as well as some additional compound and semi-regular solids, such as the
cube-octahedron and the icosidodecahedron.”

Critchlow says, ’What we have are objects clearly indicative of a degree of mathematical
ability so far denied to Neolithic man by any archaeologist or mathematical historian’. He
speculates on the possible relationship of these objects to the building of the great astro-
nomical stone circles of the same epoch in Britain: ’The study of the heavens is, after all,
a spherical activity, needing an understanding of spherical coordinates. If the Neolithic
inhabitants of Scotland had constructed Maes Howe before the pyramids were built by the
ancient Egyptians, why could they not be studying the laws of three-dimensional coordi-
nates? Is it not more than a coincidence that Plato as well as Ptolemy, Kepler and Al-Kindi
attributed cosmic significance to these figures?’ ”

As Lawlor and Critchlow lean towards mysticism, their claims should not be taken for
granted. So, let’s have a look at these famous stones kept in the Ashmolean Museum. The
Ashmolean has a page dedicated to their Stone Balls, including the following picture (the
Critchlow/Lawlor picture below, for comparison)

http://en.wikipedia.org/wiki/Icosahedron
http://en.wikipedia.org/wiki/Dual_polyhedron
http://en.wikipedia.org/wiki/Octahedron
http://www.scribd.com/doc/13155707/robert-lawlor-sacred-geometry-philosophy-and-practice-1982
http://en.wikipedia.org/wiki/Robert_Lawlor
http://www.oxfam.org.uk/shop/productdetails.aspx?catalog=HighStDonated&product=261059
http://www.oxfam.org.uk/shop/productdetails.aspx?catalog=HighStDonated&product=261059
http://en.wikipedia.org/wiki/Keith_Critchlow
http://www.ashmolean.org/
http://www.ashmolean.org/ash/britarch/highlights/stone-balls.html
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The Ashmolean stone balls are from left to right the artifacts with catalogue numbers :

• Stone ball with 7 knobs from Marnoch, Banff (AN1927.2728)

• Stone ball with 6 knobs and isosceles triangles between, from Fyvie, Aberdeenshire
(AN1927.2731)

• Stone ball with 6 knobs and isosceles triangles between, from near Aberdeen
(AN1927.2730)

• Stone ball with 4 knobs from Auchterless, Aberdeenshire (AN1927.2729)

• Stone ball with 14 knobs from Aberdeen (AN1927.2727)

Ashmolean’s AN 1927.2729 may very well be the tetrahedron and AN 1927.2727 may be
used to forge the ’icosahedron’ (though it has 14 rather than 12 knobs), but the other stones
sure look different. In particular, none of the Ashmolean stones has exactly 12 knobs in
order to be a dodecahedron.

Perhaps the Ashmolean has a larger collection of Scottish balls and today’s selection is
different from the one in 1979? Well, if you have the patience to check all 9 pages of the
Scottish Ball Catalogue by Dorothy Marshall (the reference-text when it comes to these
balls) you will see that the Ashmolean has exactly those 5 balls and no others!

The sad lesson to be learned is : whether the Critchlow/Lawlor balls are falsifications or
fabrications, they most certainly are NOT the Ashmolean stone balls as they claim!

Clearly this does not mean that no neolithic scott could have discovered some regular poly-
hedra by accident. They made an enormous amount of these stone balls, with knobs ranging
from 3 up to no less than 135! All I claim is that this ball-carving thing was more an artistic
endeavor, rather than a mathematical one.

There are a number of musea having a much larger collection of these stone balls. The
Hunterian Museum has a collection of 29 and some nice online pages on them, including
3D animation. But then again, none of their balls can be a dodecahedron or icosahedron
(according to the stone-ball-catalogue).

In fact, more than half of the 400+ preserved artifacts have 6 knobs. The catalogue tells
that there are only 8 possible candidates for a Scottish dodecahedron (below their catalogue
numbers, indicating for the knowledgeable which museum owns them and where they were
found)

• NMA AS 103 : Aberdeenshire

http://ads.ahds.ac.uk/catalogue/adsdata/PSAS_2002/pdf/vol_108/108_040_072.pdf
http://www.hunterian.gla.ac.uk/collections/museum/museum_index.shtml
http://www.hunterian.gla.ac.uk/collections/museum/online_exhibitions/stones/objects/objects.shtml
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• AS 109 : Aberdeenshire

• AS 116 : Aberdeenshire (prob)

• AUM 159/9 : Lambhill Farm, Fyvie, Aberdeenshire

• Dundee : Dyce, Aberdeenshire

• GAGM 55.96 : Aberdeenshire

• Montrose = Cast NMA AS 26 : Freelands, Glasterlaw, Angus

• Peterhead : Aberdeenshire

The case for a Scottish icosahedron looks even worse. Only two balls have exactly 20
knobs

• NMA AS 110 : Aberdeenshire

• GAGM 92 106.1. : Countesswells, Aberdeenshire

Here NMA stands for the National Museum of Antiquities of Scotland in Edinburg (today,
it is called ’National Museums Scotland’) and GAGM for the Glasgow Art Gallery and
Museum. If you happen to be in either of these cities shortly, please have a look and let me
know if one of them really is an icosahedron!

UPDATE:

Victoria White, Curator of Archaeology at the Kelvingrove Art Gallery and Museum, con-
firms that the Countesswells carved stone ball (1892.106.l) has indeed 20 knobs. She gave
this additional information :

”The artefact came to Glasgow Museums in the late nineteenth century as part of the John
Rae collection. John Rae was an avid collector of prehistoric antiquities from the Ab-
erdeenshire area of Scotland. Unfortunately, the ball was not accompanied with any ad-
ditional information regarding its archaeological context when it was donated to Glasgow
Museums. The carved stone ball is currently on display in the ’Raiders of the Lost Art’
exhibition.”

Dr. Alison Sheridan, Head of Early Prehistory, Archaeology Department, National Muse-
ums Scotland makes the valid point that new balls have been discovered after the publica-
tion of the catalogue, but adds :

”Although several balls have turned up since Dorothy Marshall wrote her synthesis, none
has 20 knobs, so you can rely on Dorothys list.”

She has strong reservations against a mathematical interpretation of the balls :

”Please also note that the mathematical interpretation of these Late Neolithic objects fails
to take into account their archaeological background, and fails to explain why so many
do not have the requisite number of knobs! Its a classic case of people sticking on an
interpretation in a state of ignorance. A great shame when so much is known about Late
Neolithic archaeology.”

http://www.planetware.com/edinburgh/national-museum-of-antiquities-of-scotland-sco-loth-nmas.htm
http://clyde-valley.com/Glasgow/kelvingr.htm
http://clyde-valley.com/Glasgow/kelvingr.htm
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1.3 Conway’s M13 game

Recently, I’ve been playing with the idea of writing a book for the general public. The
book’s concept is simple : I would consider the mathematical puzzles creating an hype
over the last three centuries : the 14-15 puzzle for the 19th century, Rubik’s cube for the
20th century and, of course, Sudoku for the present century.

For each puzzle, I would describe its origin, the mathematics involved and how it can
be used to solve the puzzle and, finally, what the differing quality of these puzzles tells us
about mathematics’ changing standing in society over the period. The final part of the book
would then be more optimistic. What kind of puzzles should we promote for mathematical
thinking to have a fighting chance to survive in the near future?

Fig. 1.1: John Conway

One of the puzzles I would propose is M13, a slid-
ing game first proposed by John Horton Conway in
1989 at the fourteenth New York Graph Theory Day.
The analysis of the game was taken up by Jeremy
Martin in his 1996 honors thesis in mathematics The
Mathieu group M(12) and Conway’s M(13)-game
under the supervision of Noam Elkies.

Two years ago, the three of them joined forces and
arXived the paper The Mathieu group M(12) and its
pseudogroup extension M(13). The game is simi-
lar to the 15-puzzle replacing the role played by the
simple alternating group A15 there with that of the
sporadic simple Mathieu group M12.

The game board ofM13 is the finite projective plane
P2(F3) over the field with three elements F3. Recall that the number of points in projective
n-space over a finite field of q-elements Pn(Fq) is given by

qn + qn−1 + · · ·+ q + 1

Therefore, there are 13=9+3+1 points on the board and as there is a bijection between
points and lines in the projective plane, there are also 13 lines on the board, each containing
exactly 4=3+1 points and so each point lies on exactly 4 lines. Moreover, two distinct points
p and q determine a unique line pq and two distinct lines l and m have a unique intersection
point l ∩m = p.

Clearly it will be hard selling a projective plane
board to the general public, so let us depict all this
information in a more amenable form such as the
figure on the left.

The 13 points are indicated by the small discs
around the circle whereas the 13 lines are depicted
as small strokes on the circle. All edges (both
’along’ as well ’inside’ the circle) connect a point
p and a line l subject to the relation that p lies on the
line l in the projective plane P2(F3).

The fact that two distinct points determine a unique
line corresponds to the fact that for any two small-
discs there is a unique small-stroke connecting both
small-discs with an edge (note that one or both of
these edges may lie on the circle). Similarly, for any
two small-strokes the is a unique small-disc con-

http://bd.thrijswijk.nl/15puzzle/15puzzen.htm
http://en.wikipedia.org/wiki/Rubik's_Cube
http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/John_Horton_Conway
http://www.math.ku.edu/~jmartin/
http://www.math.ku.edu/~jmartin/
http://www.math.ku.edu/~jmartin/papers/undergrad-thesis.pdf
http://www.math.ku.edu/~jmartin/papers/undergrad-thesis.pdf
http://en.wikipedia.org/wiki/Noam_Elkies
http://arxiv.org/abs/math/0508630
http://arxiv.org/abs/math/0508630
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nected via edges to the two small-strokes, corresponding to the fact that two lines have
a unique point in common.

A typical position in Conway’s puzzle M13 consists in placing numbered counters, labeled
1 through 12, on 12 of the 13 points leaving one point empty, called the ”hole”. A basic
move consists of the following operation : choose a labeled point, say, p. Then, there is a
unique line l (a small-stroke) containing p and the hole and there are two more points say
q and r on this line l. The basic move replaces the counters between q and r and moves the
counter of p to the hole and the hole to point p. For example, consider the position on the
left

and suppose we want to move the counter 11 to the hole. Hole and 11 determine the unique
line represented by the small-stroke immediately to the left of 11. This line contains the
further points with counters 8 and 9. Hence, applying the basic move we get the situation
on the right hand side. The aim of Conway’s game M13 is to get the hole at the top point
and all counters in order 1,2,...,12 when moving clockwise along the circle. One can play
this puzzle online using the excellent java-applet by Sebastian Egner.

Another time we will make the connection with the Mathieu groupoidM13 and the sporadic
simple Mathieu group M12.

Reference : John H. Conway, Noam D. Elkies, and Jeremy L. Martin ”The Mathieu group
M(12) and its pseudogroup extension M(13)”

1.4 The 15-puzzle groupoid (1/2)

Before we go deeper into Conway’s M(13) puzzle 1.3, let us consider a more commonly
known sliding puzzle: the 15-puzzle.

A heated discussion went on a couple of years ago at sci-physics-research, starting with
this message. Lubos Motl argued that group-theory is sufficient to analyze the problem and
that there is no reason to resort to groupoids (’The human(oids) who like groupoids...’ and
other goodies, in pre-blog but vintage Motl-speak) whereas ’Jason’ defended his viewpoint
that a groupoid is the natural symmetry for this puzzle.

I’m mostly with Lubos on this. All relevant calculations are done in the symmetric group
S16 and (easy) grouptheoretic results such as the distinction between even and odd permu-
tations or the generation of the alternating groups really crack the puzzle. At the same time,
if one wants to present this example in class, one has to be pretty careful to avoid confusion

http://www.sebastian-egner.net/m13/
http://www.sebastian-egner.net/
http://en.wikipedia.org/wiki/Fifteen_puzzle
http://www.lns.cornell.edu/spr/2003-09/msg0053729.html
http://motls.blogspot.com/
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between permutations encoding positions and those corresponding to slide-moves. In mak-
ing such a careful analysis, one is bound to come up with a structure which isn’t a group,
but is precisely what some people prefer to call a groupoid (if not a 2-group...).

Fig. 1.2: Heinrich Brandt

Groupoids are no recent invention but date back to
1926 when Heinrich Brandt defined what we now
know as the ’Brandt groupoid’ in his study of non-
commutative number theory. He was studying cen-
tral simple algebras (the noncommutative counter-
part of number fields) in which there usually is not
a unique ’ring of integers’ (in noncommutative par-
lance, a maximal order) and fractional ideals have
a left- and a right- maximal order associated to it,
leading naturally to left- and right- unit elements
and the notion of a groupoid.

The algebraic notion of a groupoid is a set G with a
partial multiplication and an everywhere defined in-
verse satisfying associativity a ∗ (b ∗ c) = (a ∗ b) ∗ c
whenever the terms are defined. Further, when-
ever a ∗ b is defined one has a−1 ∗ a ∗ b = b and
a∗b∗b−1 = a and finally all a−1 ∗a and a∗a−1 are
defined (but may be different elements). The cate-
gorical definition of a groupoid is even simpler : it
is a category in which every morphism is an isomor-
phism. Both notions are equivalent.

Recall that the 15-puzzle is a 4x4 slide-puzzle with
initial configuration with the hole at the right bottom
square (see left) and one can slide the hole one place
at a time in vertical or horizontal direction. For ex-

ample, if one slides the hole along the path 12-11-7-6-2 one ends up with the situation on
the right

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

(initial position)

1 3 4
5 2 6 8
9 10 7 11
13 14 15 12

(position after 12-11-7-6-2)

The mathematical aim is to determine the allowed positions, that is those which can be
reached from the initial position by making legal slide moves. The puzzle aim is to return
to the initial position starting from an allowed position. We will determine the number of
allowed positions and why they are the elements of a groupoid.

We don’t want to draw arrays all the time so we need a way to encode a position. Giving
the hole label 16 we can record a position by writing down the permutation on 16 letters
describing by which label in the given position, the label of the initial position is replaced.
For example, the situation on the right arises by leaving 1 to position 1, 2 is replaced
by 16, 3,4 and 5 are left in their position but 6 is replaced by 2 and so on. So, we can
encode this position by the permutation σ = (2, 16, 12, 11, 7, 6) and conversely, given such
a permutation we can fill in the entire position encoded by it. We will denote the array or
position corresponding to a partition τ ∈ S16 by the boxed symbol τ .

Next, we turn to slide-moves. A basic move interchanges the hole (label 16) with a square
labeled i (if i is a horizontal or vertical neighbor of the hole in the position) so can be
represented by the transposition (16, i). We can iterate this procedure, a legal move from
a position τ will be a succession of basic-moves written from right to left as is usual in
composing permutations

http://en.wikipedia.org/wiki/Heinrich_Brandt
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(16, ik) · · · (16, i2)(16, i1)

where legality implies that at each step the label im+1 must be a vertical or hori-
zontal neighbor of the hole in the position reached from τ after applying the move
(16, im)(16, im−1) · · · (16, i2)(16, i1). Hence, we’d better have a method to compute the
position we obtain from a given position by applying a legal sequence of slide-moves. The
rule is : multiply the slide-move-permutation with the position-permutation in the group
S16 to get the code for the obtained position. In symbols

(16, ik) · · · (16, i2)(16, i1) τ = (16, ik) · · · (16, i2)(16, i1)τ

For example, the initial position corresponds to the identity permutation, that is, is () and
applying to it the legal seuence of slides moved along the path 12-11-7-6-2 as before we
get the position with code

(16, 2)(16, 6)(16, 7)(16, 11)(16, 12) () = (16, 2)(16, 6)(16, 7)(16, 11)(16, 12) =

(16, 12, 11, 7, 6, 2)

which is indeed the code of the position obtained above on the right. Right, the basic
ingredient to have full understanding of this puzzle are hence the combination of an allowed
position together with a legal move-sequence starting from it. Therefore, we will take as
our elements all possible combinations σ τ with σ, τ ∈ S12 where τ is the code of a
reachable position and σ = (16, il) · · · (16, i1) is a legal move from that position.

On this set of elements we only have a partially defined composition rule, for we can only
make sense of the composition of moves

σ1 τ1 ∗ σ2 τ2 = σ1σ2 τ2

provided τ1 is the code of the position reached from τ2 after applying the move-sequence
σ2, that is, the multiplication above is defined if and only if

τ1 = σ2τ2 in S16

All conditions of the algebraic notion of a groupoid are satisfied. For example, every
element has an inverse

(σ τ )−1 = σ−1 ω where ω = στ in S16

and it is easy to check that all conditions are indeed satisfied. In the categorical definition,
the groupoid is the category having as the objects the reachable positions, and morphisms
τ1 → τ2 are of the form σ1 τ1 such that σ1τ1 = τ2 (hence, all morphisms are iso-

morphisms and there is just one morphism between two objects, namely corresponding to
σ1 = τ2τ

−1
1 ∈ S16. For example, each object τ also has an identity morphism () τ and

again all categorical requirements are met.

This groupoid we will call the the 15-puzzle groupoid and in the next section we will
determine that it has exactly 1

216! objects.

1.5 The 15-puzzle groupoid (2/2)

In the last section we have seen that the legal positions of the classical 15-puzzle are the
objects of a category in which every morphism is an isomorphism (a groupoid ). Today, we
will show that there are exactly 10461394944000 objects (legal positions) in this groupoid.
The crucial fact is that positions with the hole in a fixed place can be identified with the
elements of the alternating group A15, a fact first proved by William Edward Story in 1879
in a note published in the American Journal of Mathematics.

http://en.wikipedia.org/wiki/Fifteen_puzzle
http://en.wikipedia.org/wiki/Groupoid
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Story.html
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Recall that the positions reachable from the initial position can be encoded as τ where
τ is the permutation on 16 elements (the 15 numbered squares and 16 for the hole) such
that τ(i) tells what number in the position lies on square i of the initial position. The set
of all reachable positions are the objects of our category. A morphism τ → σ is a legal
sequence of slide-moves starting from position τ and ending at position σ . That is,

σ = (16, ik)(16, ik−1) · · · (16, i2)(16, i1) τ

where for every number m between 1 and k we have that the number im+1 is an horizontal
or vertical neighbor of the hole in position (16, im) · · · (16, i1)τ . When we identify such
a morphism with the corresponding element (16, ik) · · · (16, i2)(16, i1) ∈ S16 we see that
it must be the unique element στ−1 hence there is just one morphism between two objects
and they are all invertible, so our category is indeed a groupoid. Can we say something
about the length k of such a sequence of slide moves? Well, consider the OXO-drawing on
our 4x4 square

O X O X
X O X O
O X O X
X O X O

One legal slide-move brings an O-hole to an X-hole and an X-hole to an O-hole, so if the
holes in σ and τ are of the same type (both O-holes or both X-holes) then the length k of
a legal sequence must be even and therefore the permutation στ−1 = (16, ik) · · · (16, i1)
belongs to the simple alternating group A16.

In particular, if we take τ = () the original position we see that if a reachable position σ
has the hole in the bottom right corner (and hence σ fixes 16 so is an element of S15) then

σ ∈ A16 ∩ S15 = A15

and in particular, Loyd’s 14-15 puzzle has no solution (as it corresponds to the transposition
σ = (14, 15) /∈ A15. This argument first appeared in print in W.W. Johnson ”Note on
the ”15” puzzle” Amer. J. Math. 2 (1879) 397-399. We can compose legal sequences
leading to positions having their hole at the bottom right in the groupoid showing that such
positions can be identified with a subgroup ofA15. Note that we do NOT claim that we can
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multiply any two sequences of even length (16, ik) · · · (16, i1) with (16, jl) · · · (16, j1)
(which would give us the whole of A16) but only composable morphisms in the groupoid!

W.E. Story then went on to show that this subgroup is the full alternating group A15 which
comes down to finding enough reachable positions, with the hole at the bottom right, to
generate the group. We will sketch a more recent argument due to Aaron Archer (Math.
Monthly 106 (1999) 793-799). He starts out with another encoding of reachable positions,
disregarding the exact placement of the hole. He records the 15-numbers in order along a
snakelike path disregarding the hole.

→ → → ↓
↓ ← ← ←
→ → → ↓
← ← ← ←

so the position

1 2 3 4
5 6 7 8

15 12 14
13 9 11 10

is encoded as [1, 2, 3, 4, 8, 7, 6, 5, 15, 12, 14, 10, 11, 9, 13] . The point being that we can
slide the hole along the snakelike path to get a uniquely determined position having the
same code but with the hole at another position. For example, sliding the hole along the
path upwards to the third square of the upper row we get the position

1 2 3
6 7 8 4
5 15 12 14
13 9 11 10

having the same code.

This gives a natural one-to-one correspondence between reachable positions having their
hole at spot i with those having the hole on spot j, so in order to determine the number of
objects in our groupoid, it suffices to count the number of reachable positions with the hole
at a specified spot. They are just all the codes and as they form a subgroup of A15 it is
enough to calculate the permutations induced on a code by just one slide-move. If the slide
move is along the snakelike path, it will not alter the code, so we only have to compute 9
remaining slide modes S(1,8), S(2,7), S(3,6), S(7,10), S(6,11), S(5,12), S(9,16), S(10,15)
and S(11,14) where the numbers correspond to the order in which we encounter the square
along the snakelike path. For example S(1,8) is the slide move changing the hole at position
(1,1) to position (2,1). This move has the following effect on a position

a1 a2 a3
a7 a6 a5 a4
a8 a9 a10 a11
a15 a14 a13 a12

moving to

a7 a1 a2 a3
a6 a5 a4

a8 a9 a10 a11
a15 a14 a13 a12

whence it has the effect of changing the code

[a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15] to the code

[a7, a1, a2, a3, a4, a5, a6, a8, a9, a10, a11, a12, a13, a14, a15]

and therefore it corresponds to the permutation S(1, 8) = (1, 7, 6, 5, 4, 3, 2) . Similarly,
one calculates that the other slide moves determine the following permutations

S(2, 7) = (2, 6, 5, 4, 3), S(3, 6) = (3, 5, 4), S(5, 12) = (5, 11, 10, 9, 8, 7, 6)

S(6, 11) = (6, 10, 9, 8, 7), S(7, 10) = (7, 9, 8), S(9, 16) = (9, 15, 14, 13, 12, 11, 10)

S(10, 15) = (10, 14, 13, 12, 11), S(11, 14) = (11, 13, 12)

(Ive replaced the permutations in Archer’s paper by their inverses because I want to have
left actions rather than right ones). The only thing left to do is to fire up GAP and verify
that these permutations do indeed generate the full alternating group A15. Summarizing,
there are precisely 1

215! reachable positions having their hole in a specified place and as

http://www.gap-system.org/
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there are 16 possible places for the hole, we get that the total number of reachable positions
(or if you prefer, the number of objects in our groupoid) is equal to

16× 1
215! = 1

216! = 10461394944000

and the whole point of the careful group versus groupoid analysis is that one should not
make the mistake in interpreting this number as the number of elements of the alternat-
ing group A16. For those who don’t like categories but prefer the algebraic notion of a
groupoid, their groupoid has

(10461394944000)2 = 109440784174348763136000000

elements as there is exactly one morphism between two objects.

References :

1. Aaron F. Archer, ”A Modern Treatment of the 15 Puzzle” Mathematical Monthly
106 (1999) 793-799

2. W.E. Story, ”Note on the ”15” puzzle”, Amer. J. Math. 2 (1879) 399-404

1.6 Conway’s M13-groupoid (1/2)

Conway’s puzzle M13 1.3 is a variation on
the 15-puzzle played with the 13 points in
the projective plane P2(F3). The desired
position is given on the left where all the
counters are placed at at the points having
that label (the point corresponding to the
hole in the drawing has label 0). A typ-
ical move consists in choosing a line in
the plane going through the point where
the hole is, choose one of the three re-
maining points on this line and interchange
the counter on it for the hole while at the
same time interchanging the counters on
the other two points. In the drawing on the
left, lines correspond to the little-strokes on
the circle and edges describe which points
lie on which lines. For example, if we want
to move counter 5 to the hole we notice that
both of them lie on the line represented by

the stroke just to the right of the hole and this line contains also the two points with counters
1 and 11, so we have to replace these two counters too in making a move. Today we will
describe the groupoid corresponding to this slide-puzzle so if you want to read on, it is best
to play a bit with Sebastian Egner’s M(13) Java Applet to see the puzzle in action (and to
use it to verify the claims made below). Clicking on a counter performs the move taking
the counter to the hole.

For the 15-puzzle I’ve gone to great lengths of detail in the last two sections explaining
how a groupoid naturally crops up having as its objects the reachable positions and as its
morphisms the legal slide-sequences. Here, I’ll economize on details.

We can encode a position by a permutation in S13 by recording the counters (the hole
having counter 0) as we move along the circle clockwise starting at the point of label 0
(the top-point). Basic moves transpose two pairs of counters so are given by a product

http://www.sebastian-egner.net/m13/
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of two transpositions. For example, the move described above from the initial position is
(0, 5)(1, 11). Again it is clear how to make a groupoid from the reachable positions and
the legal move-sequences and how all actual calculations can be done inside the group S13.
Two small remarks. (1) The situation is more symmetric than in the 15-puzzle. Here we
have precisely 12 possible basic moves from any given position corresponding to the 12
non-hole counters which can be thrown into the hole. (2) Related to this, we have another
way to encode move-sequences here. For each basic move we can jot down the label of the
point whose counter we will throw to the hole (note : label, not counter!). The point of this
being that we can now describe all reachable positions having the hole at the top point (the
label 0 point) as those obtained from a move sequence of the form [0−i1−i2−. . .−ik−0]
for all choices of ij between 0 and 12. However, not all these sequences give different
positions and we want to determine how many distinct such positions we have. They will
again form a subgroup of S12 and the aim will be to show that this subgroup is the sporadic
simple Mathieu group M12. We will check now that M12 is contained in this group. Next
time we will prove the other inclusion.

Clearly, there are several different ways to label the 13 points and lines in the projective
plane and unfortunately the choice of the Conway-Elkies-Martin paper is different from
that of the Java Applet. For example, in the Applet-labeling 1,3,4,8 are on a line, whereas
the paper-labeling assumes the following point/line labels

l0 = {0, 1, 2, 3}, l1 = {0, 4, 5, 6}, l2 = {0, 9, 10, 11}, l3 = {0, 7, 8, 12}, l4 = {1, 4, 8, 9}

l5 = {1, 6, 7, 11}, l6 = {1, 5, 10, 12}, l7 = {3, 5, 8, 11}, l8 = {3, 4, 7, 10}

l9 = {2, 4, 11, 12}, l10 = {2, 6, 8, 10}, l11 = {2, 5, 7, 9}, l12 = {3, 6, 9, 12}

We need to find a dictionary between the
two labeling-systems. Again there are sev-
eral options, but here is the first one I
found. Relabeling the points of the Applet
as on the left (also indicated is the label-
ing of the lines) we get the labeling of the
paper. Hence, to all CEM-paper-sequences
we have to apply the dictionary

0(0), 1(1), 2(11), 3(5), 4(12), 5(10), 6(4)

7(8), 8(6), 9(2), 10(7), 11(3), 12(9)

and use the bracketed labels to perform the
sequence in the Java Applet. For example,
if Conway-Elkies-Martin compute the ef-
fect of the move-sequence

0− 11− 7− 9− 8− 3− 0

(read from left to right) then we first have
to translate this via the dictionary to the

move-sequence [0-3-8-2-6-5-0]. Then, we perform this sequence in the Java-applet (note
again : a basic move is indicated by the label of the point to click on NOT the counter) and
record the final position.

Below we depict the final positions for the three move-sequences [0-3-8-2-6-5-0], [0-9-
1-2-0-5-6-12-0] and [0-1-8-0-5-4-0-1-8-0] which are our translations of the three basic
move-sequences on page 9 of the CEM-paper (from left to right).

http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/M12/
http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/M12/
http://arxiv.org/abs/math/0508630


series 1. Monsters 16

This gives us three reachable positions having their hole at the top. They correspond to the
following permutations in the symmetric group S12 (from left to right)

α = (1, 10, 8, 7, 2, 6, 5, 3, 11, 12, 4), β = (1, 9)(2, 11)(3, 7)(4, 10)(5, 12)(6, 8)

γ = (2, 6)(3, 11)(5, 8)(10, 12)

Using GAP (or the arithmetic progression loop description of M12 as given in Chp.11
section 18 of Conway-Sloane modulo relabeling ) we find that the group generated by
these three elements is simple and of order 95040 and is isomorphic to the sporadic Mathieu
group M12.

This corresponds to the messy part of the 15-puzzle in which we had to find enough reach-
able positions to generate A15. The more conceptual part (the OXO-labeling showing that
all positions must belong to A15) also has a counterpart here. But, before we can tell that
story we have to get into linear codes and in particular the properties of the tetra-code...

Reference : John H. Conway, Noam D. Elkies and Jeremy L. Martin ”The Mathieu Group
M12 and its pseudogroup extension M13”

1.7 Mathieu’s blackjack (1/3)

Mathieu’s blackjack is a two-person combinatorial game played with 12 cards of values
0,1,2,...,11. For example take from any deck the numbered cards together with the jack
(value 11) and the queen (value 0) (btw. if you find this PI by all means replace the queen
by a zero-valued king). Shuffle the cards and divide them into two piles of 6 cards (all of
them face up on the table) : the main-pile and the other-pile. The rules of the game are

• players alternate moves

• a move consists of exchanging a card of the main-pile with a lower-valued card from
the other-pile

• the player whose move makes the sum of all cards in the main-pile under 21 looses
the game

For example, the starting main-pile might consist of the six cards

http://www.gap-system.org/
http://www.amazon.co.uk/Sphere-Packings-Lattices-Groups-Wissenschaften/dp/0387985859/
http://backreaction.blogspot.com/2007/07/potentially-insane.html
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This pile has total value 3+4+7+8+9+11=42. A move replaces one of these cards with a
lowev valued one not in the pile. So for example, replacing 8 with 5 or 1 or 2 or the queen
are all valid moves. A winning move from this situation is for example replacing 8 by the
queen (value 0) decreasing the value from 42 to 34

But there are otthers, such as replacing 11 by 5, 9 by 1 or 4 by 2. To win this game you
need to know the secrets of the tetracode and the MINIMOG.

The tetracode is a one-error correcting code consisting of the following nine words of length
four over F3 = 0,+,−

0 000 0 + ++ 0 −−|
+ 0 +− + +−0 + − 0+
− 0−+ − + 0− − −+0

The first element (which is slightly offset from the rest) is the slope s of the words, and the
other three digits cyclically increase by s (in the field F3). Because the Hamming-distance
is 3 (the minimal number of different digits between two codewords), the tetracode can
correct one error, meaning that if at most one of the four digits gets distorted by the channel
one can detect and correct this. For example, if you would receive the word + + +−
(which is not a codeword) and if you would know that at most one digits went wrong, you
can deduce that the word + 0 + − was sent. Thus, one can solve the 4-problem for the
tetracode : correct a tetra-codeword given all 4 of its digits, one of which may be mistaken.

Another easy puzzle is the 2-problem for the tetra-code : complete a tetra-codeword from
any 2 of its digits. For example, given the incomplete word ? ?0+ you can decide that the
slope should be + and hence that the complete word must be + − 0+.

We will use the MINIMOG here as a way to record the blackjack-position. It is a 4 × 3
array where the 12 boxes correspond to the card-values by the following scheme

6 3 0 9
5 2 7 10
4 1 8 11

and given a blackjack-position we place a star in the corresponding box, so the above start-
position (resp. after the first move) corresponds to

∗ ∗
∗

∗ ∗ ∗
− 0 0 +

respectively

∗ ∗ ∗
∗

∗ ∗
− 0 − +

In the final row we have added elements of F3 indicating wher ethe stars are placed in that
column (if there is just one star, we write the row-number of the star (ordered 0,+,- from
top to bottom), if there are two stars we record the row-number of the empty spot. If we
would have three or no stars in a column we would record a wild-card character : ?

http://cs.dgtu.donetsk.ua/~anoprien/Publ/1997/imacs97.htm
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Fig. 1.3: Jacob Steiner

Observe that the final row of the start position is
− 00+ which is NOT a tetracodeword, whereas that
of the winning position− 0−+ IS a tetra-codeword!
This is the essence of the Conway-Ryba winning
strategy for Mathieu’s blackjack. There are pre-
cisely 132 winning positions forming the Steiner-
system S(5,6,12).

By an S(5,6,12) we mean a collection of 6-element
subsets (our card-piles) from a 12-element set (the
deck minus the king) having the amazing property
that for EVERY 5-tuple from the 12-set there is
a UNIQUE 6-element set containing this 5-tuple.

Hence, there are exactly
(

12
5

)
/6 = 132 elements

in a Steiner S(5,6,12) system. The winning posi-
tions are exactly those MINIMOGs having 6 stars
such that the final row is a tetra-codeword (or can
be extended to a tetra-codeword replacing the wild-
cards ? by suitable digits) and such that the distribu-
tion of the stars over the columns is NOT (3,2,1,0)

in any order.

Provided the given blackjack-position is not in this Steiner-system (and there is only a
1/7 chance that it is), the strategy is clear : remove one of the stars to get a 5-tuple and
determine the unique 6-set of the Steiner-system containing this 5-tuple. If the required
extra star corresponds to a value less than the removed star you have a legal and winning
move (if not, repeat this for another star). Finding these winning positions means solving
2- and 4-problems for the tetracode. In the next section we will say more about this Steiner
system and indicate the relation with the Mathieu group M12.

References :

1. J.H. Conway and N.J.A. Sloane, ’The Golay codes and the Mathieu groups’, chp. 10
of ”Sphere Packings, Lattices and Groups”

2. David Joyner and Ann Casey-Luers, ’Kittens, S(5,6,12) and Mathematical blackjack
in SAGE’

1.8 Mathieu’s blackjack (2/3)

Take twelve cards and give them values 0,1,2,...,11 (for example, take the jack to have value
11 and the queen to have value 0). The hexads are 6-tuples of cards having the following
properties.

When we star their values by the scheme on the left below and write a 0 below a column
if it has just one star at the first row or two stars on rows two and three (a + if the unique
star is at the first row or two stars in the other columns, and a - if the unique star in on the
second row or two stars in rows one and two) or a ? if the column has 3 or 0 stars, we get
a tetra-codeword (as in the previous section) where we are allowed to replace a ? by any
digit. Moreover, we want that the stars are NOT distributed over the four columns such
that all of the possible outcomes 0,1,2,3 appear once. For example, the card-pile [queen,
3, 4, 7, 9, jack] is an hexad as is indicated on the right below and has column-distributions
(1,1,2,2).

http://www-history.mcs.st-andrews.ac.uk/Biographies/Steiner.html
http://www.amazon.co.uk/Sphere-Packings-Lattices-Groups-Wissenschaften/dp/0387985859
http://sage.math.washington.edu/home/wdj/expository/hexads_sage.pdf
http://sage.math.washington.edu/home/wdj/expository/hexads_sage.pdf
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6 3 0 9
5 2 7 10
4 1 8 11

∗ ∗ ∗
∗

∗ ∗
− 0 − +

The hexads form a Steiner-system S(5,6,12), meaning that every 5-pile of cards is part of a
unique hexad. The permutations on these twelve cards, having the property that they send
every hexad to another hexad, form the sporadic simple group M12, the Mathieu group of
order 95040.

For now, we assume these facts and deduce from them the Conway-Ryba winning strategy
for Mathieu’s blackjack : the hexads are exactly the winning positions and from a non-
hexad pile of total value at least 21 there is always a legal (that is, total value decreasing)
move to an hexad by replacing one card in the pile by a card from the complement.

It seems that the first proof of this strategy consisted in calculating the Grundy values of
all 905 legal positions in Mathieu’s blackjack. Later Joseph Kahane and Alex Ryba gave a
more conceptual proof, that we will try to understand.

Take a non-hexad 6-pile such that the total value of its cards is at least 21, then removing
any one of the six cards gives a 5-pile and is by the Steiner-property contained in a unique
hexad. Hence we get 6 different hexads replacing one card from the non-hexad pile by a
card not contained in it. We claim that at least one of these operations is a legal move,
meaning that the total value of the cards decreases. Let us call a counterexample a misfit
and record some of its properties until we can prove its non-existence.

A misfit is a non-hexad with total value at least 21 such that all 6 hexads, obtained from it
by replacing one card by a card from its complement, have greater total value

A misfit must contain the queen-card. If not, we could get an hexad replacing one misfit-
card (value ¿ 0) by the queen (value zero) so this would be a legal move. Further, the misfit
cannot contain the jack-card for otherwise replacing it by a lower-valued card to obtain an
hexad is a legal move.

A misfit contains at least three cards from [queen,1,2,3,4]. If not, three of these cards are
the replacements of misfit-cards to get an hexad, but then at least one of the replaced cards
has a greater value than the replacement, giving a legal move to an hexad.

A misfit contains more than three cards from [queen=0, 1,2,3,4]. Assume there are pre-
cisely three {c1, c2, c3} from this set, then the complement of the misfit in the hexad
[queen,1,2,3,4,jack] consists of three elements {d1, d2, d3} (a misfit cannot contain the
jack). The two leftmost columns of the value-scheme (left above) form the hexad
1,2,3,4,5,6 and because the Mathieu group acts 5-transitively there is an element of
M12 taking {0, 1, 2, 3, 4, 11} → {1, 2, 3, 4, 5, 6} and we may even assume that it takes
{c1, c2, c3} → {4, 5, 6}. But then, in the new value-scheme (determined by that M12-
element) the two leftmost columns of the misfit look like

∗ . ? ?
∗ . ? ?
∗ . ? ?
? ?

and the column-distribution of the misfit must be either (3,0,2,1) or (3,0,1,2) (it cannot be
(3,0,3,0) or (3,0,0,3) otherwise the (image of the) misfit would be an hexad). Let i,j be the
two misfit-values in the 2-starred column. Replacing either of them to get an hexad must
have the replacement lying in the second column (in order to get a valid column distribution

http://yucs.org/~gnivasch/cgames/spraguegrundy/index.html
http://www.combinatorics.org/Volume_8/PDF/v8i2r11.pdf
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(3,1,1,1)). Now, the second column consists of two small values (from [0,1,2,3,4]) and the
large jack-value (11). So, at least one of [i,j] is replaced by a smaller valued card to get an
hexad, which cannot happen by the misfit-property.

Now, if the misfit shares four cards with queen,1,2,3,4 then it cannot contain the 10-
card. Otherwise, the replacement to get an hexad of the 10-card must be the 11-card (by
the misfit-property) but then there would be another hexads containing five cards from
[queen,0,1,2,3,jack] which cannot happen by the Steiner-property. Right, let’s summarize
what we know so far about our misfit. Its value-scheme looks like

6 III ∗ 9
5 II 7 .
IV I 8 .

and it must contain three of the four Romans. At this point Kahane and Ryba claim
that the two remaining cards (apart from the queen and the three romans) must be
such that there is exactly one from [5,6] and exactly one from [7,8,9]. They argue
this follows from duality where the dual pile of a card-pile {x1, x2, . . . , x6} is the pile
{11 − x1, 11 − x2, . . . , 11 − x6}. This duality acts on the hexads as the permutation
(0, 11)(1, 10)(2, 9)(3, 8)(4, 7)(5, 6) ∈ M12. Still, it is unclear to me how they deduce
from it the above claim (lines 13-15 of page 4 of their paper). I’d better have some coffee
and work around this in the next section.

If you want to play around a bit with hexads and the blackjack game, you’d better first
download SAGE (if you haven’t done so already) and then get David Joyner’s hexad.sage
file and put it in a folder under your sage installation (David suggests ’spam’ himself...).

You can load the routines into sage by typing from the sage-prompt attach
’spam/hexad.sage’. Now, you can find the hexad from a 5-pile via the command
find-hexad([a1,a2,a3,a4,a5],minimog-shuffle) and you can get the winning move for a
blackjack-position via blackjack-move([a1,a2,a3,a4,a5,a6],minimog-shuffle)’ (replace -
by underscore). More details are in the Joyner-Casey(Luers) paper referenced in the previ-
ous section.

Reference : Joseph Kahane and Alexander J. Ryba, ’The hexad game’

1.9 Mathieu’s blackjack (3/3)

We are trying to disprove the existence of misfits, that is, of non-hexad positions having a
total value of at least 21 such that every move to a hexad would increase the total value. So
far, we succeeded in showing that such a misfit must have the pattern

6 III ∗ 9
5 II 7 .
IV I 8 .

That is, a misfit must contain the 0-card (queen) and cannot contain the 10 or 11(jack) and
must contain 3 of the four Romans. Now we will see that a misfit also contains precisely
one of [5,6] (and consequently also exactly one card from [7,8,9]). To start, it is clear that
it cannot contain BOTH 5 and 6 (then its total value can be at most 20). So we have to
disprove that a misfit can miss [5,6] entirely (and so the two remaining cards (apart from
the zero and the three Romans) must all belong to [7,8,9]).

http://modular.math.washington.edu/sage/
http://sage.math.washington.edu/home/wdj/expository/hexad.sage
http://www.combinatorics.org/Volume_8/PDF/v8i2r11.pdf
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Lets assume the misfit misses 5 and 6 and does not contain 9. Then, it must contain 4
(otherwise, its column-distribution would be (0,3,3,0) and it would be a hexad). There are
just three such positions possible

. ∗ ∗ .

. ∗ ∗ .
∗ . ∗ .
− − ? ?

. ∗ ∗ .

. . ∗ .
∗ ∗ ∗ .
− + ? ?

. . ∗ .

. ∗ ∗ .
∗ ∗ ∗ .
− 0 ? ?

Neither of these can be misfits though. In the first one, there is an 8-¿5 move to a hexad
of smaller total value (in the second a 7-¿5 move and in the third a 7-¿6 move). Right, so
the 9 card must belong to a misfit. Assume it does not contain the 4-card, then part of the
misfit looks like (with either a 7- or an 8-card added)

. ∗ ∗ ∗

. ∗ ? .

. ∗ ? .
contained in the unique hexad

∗ ∗ ∗ ∗
. ∗ .
. ∗ .

Either way the moves 7-¿6 or 8-¿6 decrease the total value, so it cannot be a misfit. There-
fore, a misfit must contain both the 4- and 9-card. So it is of the form on the left below

. ? ∗ ∗

. ? ? .
∗ ? ? .

. . ∗ .

. ∗ ∗ ∗
∗ ∗ . .
− 0 − +

. . ∗ ∗

. ∗ ∗ .
∗ ∗ . .

If this is a genuine misfit only the move 9-¿10 to a hexad is possible (the move 9-¿11
is not possible as all BUT ONE of [0,1,2,3,4] is contained in the misfit). Now, the only
hexad containing 0,4,10 and 2 from [1,2,3] is in the middle, giving us what the misfit must
look like before the move, on the right. Finally, this cannot be a misfit as the move 7-¿5
decreases the total value.

That is, we have proved the claim that a misfit must contain one of [5,6] and one of [7,8,9].
Right, now we can deliver the elegant finishing line of the Kahane-Ryba proof. A misfit
must contain 0 and three among [1,2,3,4] (let us call the missing card s), one of 5 + ε with
0 ≤ ε ≤ 1 and one of 7 + δ with 0 ≤ δ ≤ 2. Then, the total value of the misfit is

(0 + 1 + 2 + 3 + 4− s) + (5 + ε) + (7 + δ) = 21 + (1 + δ + ε− s)

So, if this value is strictly greater than 21 (and we will see in a moment is has to be if it is
at least 21) then we deduce that s < 1 + δ + ε ≤ 4. Therefore 1 + δ + ε belongs to the
misfit. But then the move 1 + δε→ s moves the misfit to a 6-tuple with total value 21 and
hence (as we see in a moment) must be a hexad and hence this is a decreasing move! So,
finally, there are no misfits!

Hence, from every non-hexad pile of total value at least 21 we have a legal move to a hexad.
Because the other player cannot move from an hexad to another hexad we are done with
our strategy provided we can show (a) that the total value of any hexad is at least 21 and
(b) that ALL 6-piles of total value 21 are hexads. As there are only 132 hexads it is easy
enough to have their sum-distribution. Here it is
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That is, (a) is proved by inspection and we see that there are 11 hexads of sum 21 (the
light hexads in Conway-speak) and there are only 11 ways to get 21 as a sum of 6 distinct
numbers from [0,1,..,11] so (b) follows. Btw. the obvious symmetry of the sum-distribution
is another consequence of the duality t-¿11-t discussed briefly at the end of the previous
section.

Clearly, I’d rather have conceptual proofs for all these facts and briefly tried my hand.
Luckily I did spot the following phrase on page 326 of Conway-Sloane (discussing the
above distribution) :

”It will not be easy to explain all the above observations. They are certainly connected with
hyperbolic geometry and with the ’hole’ structure of the Leech lattice.”

So, I’d better leave it at this...

References :

Joseph Kahane and Alexander J. Ryba, The hexad game”

John H. Conway and N. J.A. Sloane, ”Sphere packings, Lattices and Groups” chp. 11 ’The
Golay codes and the Mathieu groups’

1.10 Conway’s M13 groupoid (2/2)

Conway’s puzzle M13 involves the 13 points and
13 lines of P2(F3). On all but one point numbered
counters are placed holding the numbers 1,...,12 and
a move involves interchanging one counter and the
’hole’ (the unique point having no counter) and in-
terchanging the counters on the two other points
of the line determined by the first two points. In
the picture on the left, the lines are represented by
dashes around the circle in between two counters
and the points lying on this line are those that con-
nect to the dash either via a direct line or directly via
the circle. In 1.6 we saw that the group of all reach-
able positions in Conway’s M13 puzzle 1.3 having
the hole at the top positions contains the sporadic
simple Mathieu group M12 as a subgroup.

To see the reverse inclusion we have to recall the
definition of the ternary Golay code named in honor of the Swiss engineer Marcel Golay
who discovered in 1949 the binary Golay code that we will encounter later on.

http://www.combinatorics.org/Volume_8/PDF/v8i2r11.pdf
http://en.wikipedia.org/wiki/Ternary_Golay_code
http://en.wikipedia.org/wiki/Marcel_J._E._Golay
http://en.wikipedia.org/wiki/Binary_Golay_code
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The ternary Golay code C12 is a six-dimenional subspace in F⊕123 and is spanned by its
codewords of weight six (the Hamming distance of C12 whence it is a two-error correcting
code). There are 264 = 2 × 132 weight six codewords and they can be obtained from the
132 hexads, we encountered before as the winning positions of Mathieu’s blackjack, by
replacing the stars by signs + or - using the following rules. By a tet (from tetra-codeword)
we mean a 3x4 array having 4 +-signs indicating the row-positions of a tetra-codeword.
For example

+
+ +

+
+ 0 + −

is the tet corresponding to the bottom-tetra-codeword.

A col is an array having +-signs along one of the four columns. The signed hexads will now
be the hexads that can be written as F3 vectors as (depending on the column-distributions
of the stars in the hexad indicated between brackets)

col−col (3202) ±(col+ tet) (313) tet− tet (230) ±(col+col− tet) (2212)

For example, the hexad on the right has column-distribution 230 so its signed versions
are of the form tet-tet. The two tetracodewords must have the same digit (-) at place four
(so that they cancel and leave an empty column). It is then easy to determine these two
tetracodewords giving the signed hexad (together with its negative, obtained by replacing
the order of the two codewords)

∗ ∗
∗ ∗
∗ ∗

− + 0 −

signed as

+

+ + +
0 − − −

−

+
+ +

+
+ 0 + −

=

+ −
− −

+ +
− + 0 −

and similarly for the other cases. As Conway and Sloane remark ’This is one of many cases
when the process is easier performed than described’.

We have an order two operation mapping a signed hexad to its negative and as these code-
words span the Golay code, this determines an order two automorphism of C12. Further,
forgetting about signs, we get the Steiner-system S(5, 6, 12) of hexads for which the au-
tomorphism group is M12 hence the automorphism group op the ternary Golay code is
2.M12, the unique nonsplit central extension of M12.

Right, but what is the connection between the Golay code and Conway’sM13-puzzle which
is played with points and lines in the projective plane P2(F3)? There are 13 points P
so let us consider a 13-dimensional vectorspace X = F⊕133 with basis xp : p ∈ P .
That is a vector in X is of the form ~v =

∑
p vpxp and consider the ’usual’ scalar product

~v.~w =
∑
p vpwp on X. Next, we bring in the lines in P2(F3).

For each of the 13 lines l consider the vector~l =
∑
p∈l xp with support the four points lying

on l and let C be the subspace (code) of X spanned by the thirteen vectors~l. Vectors~c, ~d ∈ C
satisfy the remarkable identity ~c.~d = (

∑
p cp)(

∑
p dp). Indeed, both sides are bilinear in

~c, ~d so it suffices to check teh identity for two line-vectors ~l, ~m. The right hand side is then
4.4 = 16 = 1 mod 3 which equals the left hand side as two lines either intersect in one
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point or are equal (and hence have 4 points in common). The identity applied to ~c = ~d gives
us (note that the squares in F3 are 0,1) information about the weight (that is, the number of
non-zero digits) of codewords in C

wt(~c) mod(3) =
∑
p c

2
p = (

∑
p cp)

2 ∈ {0, 1}

Let C′ be the collection of ~c ∈ C of weight zero (modulo 3) then one can verify that C′ is
the orthogonal complement of C with respect to the scalar product and that the dimension
of C is seven whereas that of C′ is six. Now, let for a point p be Gp the restriction of

Cp = {c ∈ C | cp = −
∑
q∈P cq}

to the coordinates of P−{p}, then Gp is clearly a six dimensional code in a 12-dimensional
space. A bit more work shows that Gp is a self-dual code with minimal weight greater or
equal to six, whence it must be the ternary Golay code! Now we are nearly done. Next time
we will introduce a reversi-version of M13 and use the above facts to deduce that the basic
group of the Mathieu-groupoid indeed is the sporadic simple group M12.

References :

Robert L. Griess, ”Twelve sporadic groups” chp. 7 ’The ternary Golay code and 2.M12’

John H. Conway and N. J.A. Sloane, ”Sphere packings, lattices and groups” chp 11 ’The
Golay codes and the Mathieu groups’

John H. Conway, Noam D. Elkies and Jeremy L. Martin, ’The Mathieu group M12 and its
pseudogroup extension M13’ arXiv:math.GR/0508630

1.11 Olivier Messiaen and Mathieu 12

Remember from the Bourbaki-code booklet that we identified Olivier Messiaen as the
’Monsieur Modulo’ playing the musical organ at the Bourbaki wedding. This was based on
the fact that his modes transposition limite are really about epimorphisms between modulo
rings Z/12Z - Z/3Z and Z/12Z - Z/4Z.

However, Messiaen had more serious mathematical tricks up his sleeve. In two of his
compositions he did discover (or at least used) one of the smaller sporadic groups, the
Mathieu group M12 of order 95040 on which we have based the series of Conway’s M13-
game.

Messiaen’s ’Ile de fey 2’ composition for piano (part of Quatre tudes de rythme (”Four
studies in rhythm”), piano (194950)) is based on two concurrent permutations. The first is
shown below, with the underlying motive rotational permutation shown.

http://en.wikipedia.org/wiki/Reversi
http://www.amazon.co.uk/Twelve-Sporadic-Springer-Monographs-Mathematics/dp/3540627782/
http://www.amazon.co.uk/Sphere-Packings-Lattices-Groups-Wissenschaften/dp/0387985859/
http://arxiv.org/abs/math.GR/0508630
http://en.wikipedia.org/wiki/Olivier_Messiaen
http://en.wikipedia.org/wiki/Sporadic_group
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This gives the permutation (1, 7, 10, 2, 6, 4, 5, 9, 11, 12)(3, 8). A second concurrent permu-
tation is based on the permutation (1, 6, 9, 2, 7, 3, 5, 4, 8, 10, 11) and both of them generate
the Mathieu group M12. This can be seen by realizing the two permutations as the rota-
tional permutations

and identifying them with the Mongean shuffles generating M12. See for example, Dave
Benson’s book ”Music: A Mathematical Offering”, freely available online.

Clearly, Messiaen doesn’t use all of its 95040 permutations in his piece! Here’s how it
sounds. The piece starts 2 minutes into the clip.

The second piece is ”Les Yeux dans les Roues” (The Eyes in the Wheels), sixth piece from
the ”Livre d’Orgue” (1950/51).

According to Hauptwerk, the piece consists of a melody/theme in the pedal, accompanied
by two fast-paced homorhythmic lines in the manuals. The pedal presents a sons-dures

http://en.wikipedia.org/wiki/Shuffling#Mongean_shuffle
http://www.maths.abdn.ac.uk/~bensondj/html/music.pdf
http://www.youtube.com/v/6UrpeXcrG2c&hl=en_US&fs=1&
http://www.youtube.com/v/6UrpeXcrG2c&hl=en_US&fs=1&
http://hauptwerk.blogspot.com/2008/10/olivier-messiaen-les-yeux-dans-les.html
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theme which is repeated six times, in different permutations. Initially it is presented in its
natural form. Afterwards, it is presented alternatively picking notes from each end of the
original form. Similar transformations are applied each time until the sixth, which is the
retrograde of the first. The entire twelve-tone analysis (pitch only, not rhythm) of the pedal
is shown below:

That is we get the following five permutations which again generate Mathieu 12 :

• a = (2, 3, 5, 9, 8, 10, 6, 11, 4, 7, 12)

• b = (1, 2, 4, 8, 9, 7, 11, 3, 6, 12)(5, 10) = e ∗ a

• c = (1, 12, 11, 9, 5, 4, 6, 2, 10, 7)(3, 8) = e ∗ d

• d = (1, 11, 10, 8, 4, 5, 3, 7, 2, 9, 6)

• e = (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7)

Here’s the piece performed on organ.

Considering the permutations X = d.a−1 and Y = (a.d2.a.d3)−1 one obtains canonical
generators of M12, that is, generators satisfying the defining equations of this sporadic
group

X2 = Y 3 = (XY )11 = [X,Y ]6 = (XYXYXY −1)6 = 1

I leave you to work out the corresponding dessin d’enfant (see the second part).

1.12 Galois’ last letter

”Ne pleure pas, Alfred ! J’ai besoin de tout mon courage pour mourir vingt ans!”

We all remember the last words of Evariste Galois to his brother Alfred. Lesser known are
the mathematical results contained in his last letter, written to his friend Auguste Chevalier,
on the eve of his fatal duel. Here the final sentences :

”Tu prieras publiquement Jacobi ou Gauss de donner leur avis non sur la verite, mais sur
l’importance des theoremes. Apres cela il se trouvera, j’espere, des gens qui trouvent leur
profis a dechiffrer tout ce gachis.

http://www.youtube.com/v/rbNKxRims1s&amp;hl=en&amp;fs=1
http://en.wikipedia.org/wiki/�variste_Galois
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Je t’embrasse avec effusion. E. Galois, le 29 Mai 1832”

A major result contained in this letter concerns the groups L2(p) = PSL2(Fp), that is the
group of 2 × 2 matrices with determinant equal to one over the finite field Fp modulo its
center. L2(p) is known to be simple whenever p ≥ 5.

Galois writes that L2(p) cannot have a non-trivial permutation representation on fewer than
p+ 1 symbols whenever p > 11 and indicates the transitive permutation representation on
exactly p symbols in the three ’exceptional’ cases p = 5, 7, 11.

Let α =

[
1 1
0 1

]
and consider for p = 5, 7, 11 the involutions on P1Fp = Fp ∪∞ (on which

L2(p) acts via Moebius transformations)

π5 = (0,∞)(1, 4)(2, 3)

π7 = (0,∞)(1, 3)(2, 6)(4, 5)

π11 = (0,∞)(1, 6)(3, 7)(9, 10)(5, 8)(4, 2)

(in fact, Galois uses the involution (0,∞)(1, 2)(3, 6)(4, 8)(5, 10)(9, 7) for p = 11), then
L2(p) leaves invariant the set consisting of the p involutions Π = α−iπpα

i : 1 ≤ i ≤ p.
After mentioning these involutions Galois merely writes :

” Ainsi pour le cas de p = 5, 7, 11, l’equation modulaire s’abaisse au degre p. En toute
rigueur, cette reduction n’est pas possible dans les cas plus eleves. ”

Alternatively, one can deduce these permutation representation representations from group
isomorphisms. As L2(5) ' A5, the alternating group on 5 symbols, L2(5) clearly acts
transitively on 5 symbols.

Fig. 1.4: the Fano plane

Similarly, for p = 7 we have L2(7) ' L3(2) and
so the group acts as automorphisms on the projec-
tive plane over the field on two elements P2F2

aka
the Fano plane, depicted on the left.

This finite projective plane has 7 points and 7 lines
and L3(2) acts transitively on them.

For p = 11 the geometrical object is a bit more in-
volved. The set of non-squares in F11 is

{1, 3, 4, 5, 9}

and if we translate this set using the additive struc-
ture in F11 one obtains the following 11 five-
element sets

{1, 3, 4, 5, 9}, {2, 4, 5, 6, 10}, {3, 5, 6, 7, 11},

{1, 4, 6, 7, 8}, {2, 5, 7, 8, 9}, {3, 6, 8, 9, 10},

{4, 7, 9, 10, 11}, {1, 5, 8, 10, 11}, {1, 2, 6, 9, 11},

{1, 2, 3, 7, 10}, {2, 3, 4, 8, 11}

and if we regard these sets as ’lines’ we see that two
distinct lines intersect in exactly 2 points and that

any two distinct points lie on exactly two ’lines’. That is, intersection sets up a bijection
between the 55-element set of all pairs of distinct points and the 55-element set of all pairs
of distinct ’lines’. This is called the biplane geometry.

The subgroup of S11 (acting on the eleven elements of F11) stabilizing this set of 11 5-
element sets is precisely the group L2(11) giving the permutation representation on 11
objects.

http://en.wikipedia.org/wiki/Fano_plane
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An alternative statement of Galois’ result is that for p > 11 there is no subgroup of L2(p)
complementary to the cyclic subgroup

Cp =

[
1 x
0 1

]
: x ∈ Fp

That is, there is no subgroup such that set-theoretically L2(p) = F × Cp (note this is of
courese not a group-product, all it says is that any element can be written as g = f.c with
f ∈ F, c ∈ Cp.

However, in the three exceptional cases we do have complementary subgroups. In fact,
set-theoretically we have

L2(5) = A4 × C5 L2(7) = S4 × C7 L2(11) = A5 × C11

and it is a truly amazing fact that the three groups appearing are precisely the three Platonic
groups!

Recall that here are 5 Platonic solids coming in three sorts when it comes to rotation-
automorphism groups : the tetrahedron (group A4), the cube and octahedron (group S4)
and the dodecahedron and icosahedron (group A5). The ”4” in the cube are the four body
diagonals and the ”5” in the dodecahedron are the five inscribed cubes.

That is, our three ’exceptional’ Galois-groups correspond to the three Platonic groups,
which in turn correspond to the three exceptional Lie algebras E6, E7, E8 via McKay cor-
respondence (wrt. their 2-fold covers). Maybe I’ll detail this latter connection another time.
It sure seems that surprises often come in triples...

Finally, it is well known that L2(5) ' A5 is the automorphism group of the icosahedron
(or dodecahedron) and that L2(7) is the automorphism group of the Klein quartic.

So, one might ask : is there also a nice curve connected with the third group L2(11)?
Rumor has it that this is indeed the case and that the curve in question has genus 70... (to
be continued).

bf Reference : Bertram Kostant, ”The graph of the truncated icosahedron and the last letter
of Galois”

1.13 Arnold’s trinities (1/2)

Fig. 1.5: Vladimir
Arnold

Referring to the triple of exceptional Galois groups
L2(5), L2(7), L2(11) and its connection to the Platonic solids I
wrote in the Galois last letter section : ”It sure seems that surprises
often come in triples”. Briefly I considered replacing triples by
trinities, but then, I didn’t want to sound too mystic...

David Corfield of the n-category cafe and a dialogue on infinity (and
perhaps other blogs I’m unaware of) pointed me to the paper Sym-
plectization, complexification and mathematical trinities by Vladimir
I. Arnold. (here is a PDF-conversion of the paper).

The paper is a write-up of the second in a series of three lectures
Arnold gave in june 1997 at the meeting in the Fields Institute ded-
icated to his 60th birthday. The goal of that lecture was to explain
some mathematical dreams he had.

”The next dream I want to present is an even more fantastic set of
theorems and conjectures. Here I also have no theory and actually the

ideas form a kind of religion rather than mathematics.

http://www.valdostamuseum.org/hamsmith/McKay.html
http://www.valdostamuseum.org/hamsmith/McKay.html
http://math.ucr.edu/home/baez/klein.html
http://www.ams.org/notices/199509/kostant.pdf
http://www.ams.org/notices/199509/kostant.pdf
http://golem.ph.utexas.edu/category/2008/06/the_mathematical_sublime.html
http://dialinf.wordpress.com/2008/06/11/the-sublime/
http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect2.ps.gz
http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect2.ps.gz
http://en.wikipedia.org/wiki/Vladimir_Arnold
http://en.wikipedia.org/wiki/Vladimir_Arnold
http://www.neverendingbooks.org/DATA/ArnoldTrinities.pdf
http://www.fields.utoronto.ca/
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The key observation is that in mathematics one encounters many trinities. I shall present
a list of examples. The main dream (or conjecture) is that all these trinities are united by
some rectangular ”commutative diagrams”.

I mean the existence of some ”functorial” constructions connecting different trinities. The
knowledge of the existence of these diagrams provides some new conjectures which might
turn to be true theorems.”

Follows a list of 12 trinities, many taken from Arnold’s field of expertise being differential
geometry. I’ll restrict to the more algebraically inclined ones.

1. ”The first trinity everyone knows is”

C

R H

but I would like to alter it into H

C O

where H are the Hamiltonian quaternions. The trinity on the left may be natural to dif-
ferential geometers who see real and complex and hyper-Kaehler manifolds as distinct but
related beasts, but I’m willing to bet that most algebraists would settle for the trinity on the
right where O are the octonions.

2. The next trinity is that of the exceptional Lie algebras E6, E7 and E8.

E7

E6 E8

with corresponding Dynkin-Coxeter diagrams

Arnold has this to say about the apparent ubiquity of Dynkin diagrams in mathematics.

” Manin told me once that the reason why we always encounter this list in many different
mathematical classifications is its presence in the hardware of our brain (which is thus
unable to discover a more complicated scheme). I still hope there exists a better reason that
once should be discovered.”

Amen to that. I’m quite hopeful human evolution will overcome some day the limitations
of Manin’s brain...

3. Next comes the Platonic trinity of the tetrahedron, cube and dodecahedron

Cube

Tetra Dode

http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/E6_(mathematics)
http://en.wikipedia.org/wiki/E7_(mathematics)
http://en.wikipedia.org/wiki/E8_(mathematics)
http://en.wikipedia.org/wiki/Tetrahedron
http://en.wikipedia.org/wiki/Cube
http://en.wikipedia.org/wiki/Dodecahedron
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Clearly one can argue against this trinity as follows : a tetrahedron is a bunch of triangles
such that there are exactly 3 of them meeting in each vertex, a cube is a bunch of squares,
again 3 meeting in every vertex, a dodecahedron is a bunch of pentagons 3 meeting in
every vertex... and we can continue the pattern. What should be a bunch a hexagons
such that in each vertex exactly 3 of them meet? Well, only one possibility : it must be
the hexagonal tiling (on the left below). And in normal Euclidian space we cannot have a
bunch of septagons such that three of them meet in every vertex, but in hyperbolic geometry
this is still possible and leads to the Klein quartic (on the right). Check out this wonderful
post by John Baez for more on this.

4. The trinity of the rotation symmetry groups of the three Platonics

S4

A4 A5

where An is the alternating group on n letters and Sn is the symmetric group.

Clearly, any rotation of a Platonic solid takes vertices to vertices, edges to edges and faces
to faces. For the tetrahedron we can easily see the 4 of the group A4, say the 4 vertices.
But what is the 4 of S4 in the case of a cube? Well, a cube has 4 body-diagonals and they
are permuted under the rotational symmetries. The most difficult case is to see the 5 of A5

in the dodecahedron. Well, here’s the solution to this riddle

http://en.wikipedia.org/wiki/Hexagonal_tiling
http://math.ucr.edu/home/baez/klein.html
http://en.wikipedia.org/wiki/Alternating_group
http://en.wikipedia.org/wiki/Symmetric_group
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there are exactly 5 inscribed cubes in a dodecahedron and they are permuted by the rotations
in the same way as A5.

7. The seventh trinity involves complex polynomials in one variable

C[z, z−1]

C[z] C[z, z−1, (z − 1)−1]

the Laurant polynomials and the modular polynomials (that is, rational functions with three
poles at 0,1 and∞.

8. The eight one is another beauty

TrigonoNumbers

Numbers EllipticNumbers

Here ’numbers’ are the ordinary complex numbers C, the ’trigonometric numbers’ are
the quantum version of those (aka q-numbers) which is a one-parameter deformation and
finally, the ’elliptic numbers’ are a two-dimensional deformation. If you ever encountered
a Sklyanin algebra this will sound familiar.

This trinity is based on a paper of Turaev and Frenkel and I must come back to it some
time...

The paper has some other nice trinities (such as those among Whitney, Chern and Pontrya-
gin classes) but as I cannot add anything sensible to it, let us include a few more algebraic
trinities. The first one attributed by Arnold to John McKay:

13. A trinity parallel to the exceptional Lie algebra one is

28− biTangents

27− Lines 120− Tritangents

http://en.wikipedia.org/wiki/John_McKay_(mathematics)
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between the 27 straight lines on a cubic surface, the 28 bitangents on a quartic plane curve
and the 120 tritangent planes of a canonic sextic curve of genus 4.

14. The exceptional Galois groups

L2(7)

L2(5) L2(11)

explained in the Galois’ last letter section.

15. The associated curves with these groups as symmetry groups

KleinQuartic

Dodecahedron ?

where the ? refers to the mysterious genus 70 curve, now known as the Buckyball curve,
see the next sections.

16. The three generations of sporadic groups

Conway

Mathieu Monster

Do you have other trinities you’d like to worship?

1.14 The buckyball symmetries

Recall that the buckyball (middle) is a mixed form of two Platonic solids

the Icosahedron on the left and the Dodecahedron on the right.

Let’s do some bucky-maths : what is the rotation symmetry group of the buckyball?

For starters, dodeca- and icosahedron are dual solids, meaning that if you take the center
of every face of a dodecahedron and connect these points by edges when the correspond-
ing faces share an edge, you’ll end up with the icosahedron (and conversely). Therefore,

http://en.wikipedia.org/wiki/Sporadic_group
http://en.wikipedia.org/wiki/Icosahedron
http://en.wikipedia.org/wiki/Dodecahedron
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both solids (as well as their mixture, the buckyball) will have the same group of rotational
symmetries. Can we at least determine the number of these symmetries?

Take the dodecahedron and fix a face. It is easy to find a rotation taking this face to anyone
of its five adjacent faces. In group-slang : the rotation automorphism group acts transitively
on the 12 faces of the dodecohedron. Now, how many of them fix a given face? These can
only be rotations with axis through the center of the face and there are exactly 5 of them
preserving the pentagonal face. So, in all we have 12 × 5 = 60 rotations preserving any
of the three solids above. By composing two of its elements, we get another rotational
symmetry, so they form a group and we would like to determine what that group is.

There is one group that springs to mind A5, the subgroup of all even permutations on 5 el-
ements. In general, the alternating group has half as many elements as the full permutation
group Sn, that is 1

2n! (for multiplying with the involution (1,2) gives a bijection between
even and odd permutations). So, for A5 we get 60 elements and we can list them :

• the trivial permutation (), being the identity.

• permutations of order two with cycle-decompostion (i1, i2)(i3, i4), and there are
exactly 15 of them around when all numbers are between 1 and 5.

• permutations of order three with cycle-form (i1, i2, i3) of which there are exactly
20.

• permutations of order 5 which have to form one full cycle (i1, i2, i3, i4, i5). There
are 24 of those.

Can we at least view these sets of elements as rotations of the buckyball? Well, a dodeca-
hedron has 12 pentagobal faces. So there are 4 nontrivial rotations of order 5 for every 2
opposite faces and hence the dodecahedron (and therefore also the buckyball) has indeed
6x4=24 order 5 rotational symmetries.

The icosahedron has twenty triangles as faces, so any of the 10 pairs of opposite faces is
responsible for two non-trivial rotations of order three, giving us 10x2=20 order 3 rotational
symmetries of the buckyball.

The order two elements are slightly harder to see. The icosahedron has 30 edges and there
is a plane going through each of the 15 pairs of opposite edges splitting the icosahedron in
two. Hence rotating to interchange these two edges gives one rotational symmetry of order
2 for each of the 15 pairs.

And as 24+20+15+1(identity) = 60 we have found all the rotational symmetries and we see
that they pair up nicely with the elements of A5. But do they form isomorphic groups? In
other words, can the buckyball see the 5 in the group A5.

In the Arnold’s trinities section I’ve shown that one way to see this 5 is as the number of
inscribed cubes in the dodecahedron. But, there is another way to see the five based on the
order 2 elements described before.

If you look at pairs of opposite edges of the icosahedron you will find that they really come
in triples such that the planes determined by each pair are mutually orthogonal (it is best
to feel this on ac actual icosahedron). Hence there are 15/3 = 5 such triples of mutually
orthogonal symmetry planes of the icosahedron and of course any rotation permutes these
triples. It takes a bit of more work to really check that this action is indeed the natural
permutation action of A5 on 5 elements.

Having convinced ourselves that the group of rotations of the buckyball is indeed the al-
ternating group A5, we can reverse the problem : can the alternating group A5 see the
buckyball???

http://en.wikipedia.org/wiki/Alternating_group
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Well, for starters, it can ’see’ the icosahedron in a truly amazing way. Look at the conjugacy
classes ofA5. We all know that in the full symmetric group Sn elements belong to the same
conjugacy class if and only if they have the same cycle decomposition and this is proved
using the fact that the conjugation f a cycle (i1, i2, . . . , ik) under a permutation σ ∈ Sn is
equal to the cycle (σ(i1), σ(i2), . . . , σ(ik)) (and this gives us also the candidate needed to
conjugate two partitions into each other).

Using this trick it is easy to see that all the 15 order 2 elements of A5 form one conjugacy
class, as do the 20 order 3 elements. However, the 24 order 5 elements split up in two
conjugacy classes of 12 elements as the permutation needed to conjugate (1, 2, 3, 4, 5) to
(1, 2, 3, 5, 4) is (4, 5) but this is not an element of A5.

Okay, now take one of these two conjugacy classes of order 5 elements, say that of
(1, 2, 3, 4, 5). It consists of 12 elements, 12 being also the number of vertices of the icosa-
hedron. So, is there a way to identify the elements in the conjugacy class to the vertices in
such a way that we can describe the edges also in terms of group-computations in A5?

Surprisingly, this is indeed the case as is demonstrated in a marvelous paper by Kostant
The graph of the truncated icosahedron and the last letter of Galois.

Two elements a, b in the conjugacy class C share an edge if and only if their
product a.b ∈ A5 still belongs to the conjugacy class C! So, for example
(1, 2, 3, 4, 5).(2, 1, 4, 3, 5) = (2, 5, 4) so there is no edge between these elements, but on
the other hand (1, 2, 3, 4, 5).(5, 3, 4, 1, 2) = (1, 5, 2, 4, 3) so there is an edge between
these! It is no coincidence that (5, 3, 4, 1, 2) = (2, 1, 4, 3, 5)−1 as inverse elements corre-
spond in the bijection to opposite vertices and for any pair of non-opposite vertices of an
icosahedron it is true that either they are neighbors or any one of them is the neighbor of
the opposite vertex of the other element.

If we take u = (1, 2, 3, 4, 5) and v = (5, 3, 4, 1, 2) (or any two elements of the conjugacy
class such that u.v is again in the conjugacy class), then one can describe all the vertices of
the icosahedron group-theoretically as follows

Isn’t that nice? Well yes, you may say, but that is just the icosahedron. Can the group A5

also see the buckyball?

http://www.ams.org/notices/199509/kostant.pdf
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Well, let’s try a similar strategy : the buckyball has 60 vertices, exactly as many as there are
elements in the group A5. Is there a way to connect certain elements in a group according
to fixed rules? Yes, there is such a way and it is called the Cayley Graph of a group. It goes
like this : take a set of generators g1, . . . , gk of a group G, then connect two group element
a, b ∈ G with an edge if and only if a = gi.b or b = gi.a for some of the generators.

Back to the alternating group A5. There are several sets of generators, one of them being
the elements (1, 2, 3, 4, 5), (2, 3)(4, 5). In the paper mentioned before, Kostant gives an
impressive group-theoretic proof of the fact that the Cayley-graph of A5 with respect to
these two generators is indeed the buckyball!

Let us allow to be lazy for once and let SAGE do the hard work for us, and let us just watch
the outcome. Here’s how that’s done

> A=PermutationGroup([’(1,2,3,4,5)’,’(2,3)(4,5)’])
> B=A.cayley_graph()
> B.show3d()

The outcone is a nice 3-dimensional picture of the buckyball. Below you can see a still,
and, if you click here you will get a 3-dimensional model of it (first click the ’here’ link in
the new window and then you’d better control-click and set the zoom to 200

Hence, viewing this Cayley graph from different points we have convinced ourselves that
it is indeed the buckyball. In fact, most (truncated) Platonic solids appear as Cayley graphs
of groups with respect to specific sets of generators. For later use here is a (partial) survey
(taken from Jaap’s puzzle page)

• Tetrahedron : C2 × C2, [(12)(34), (13)(24), (14)(23)]

• Cube : D4, [(1234), (13)]

• Octahedron : S3, [(123), (12), (23)]

http://en.wikipedia.org/wiki/Cayley_graph
http://modular.math.washington.edu/sage/
http://www.neverendingbooks.org/wp-content/jmoldata/bucky2.html" target="_blank
http://www.jaapsch.net/puzzles/
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• Dodecahedron : IMPOSSIBLE

• Icosahedron :** A4, [(123), (234), (13)(24)]

• Truncated tetrahedron : A4, [(123), (12)(34)]

• Cuboctahedron : A4, [(123), (234)]

• Truncated cube : S4, [(123), (34)]

• Truncated octahedron : S4, [(1234), (12)]

• Rhombicubotahedron : S4, [(1234), (123)]

• Rhombitruncated cuboctahedron : IMPOSSIBLE

• Snub cuboctahedron : S4, [(1234), (123), (34)]

• Icosidodecahedron : IMPOSSIBLE

• Truncated dodecahedron : A5, [(124), (23)(45)]

• Truncated icosahedron : A5, [(12345), (23)(45)]

• Rhombicosidodecahedron : A5, [(12345), (124)]

• Rhombitruncated icosidodecahedron : IMPOSSIBLE

• Snub Icosidodecahedron : A5, [(12345), (124), (23)(45)]

Again, all these statements can be easily verified using SAGE via the method described
before. Next time we will go further into the Kostant’s group-theoretic proof that the buck-
yball is the Cayley graph of A5 with respect to (2,5)-generators as this calculation will be
crucial in the description of the buckyball curve, the genus 70 Riemann surface discovered
by David Singerman and Pablo Martin which completes the trinity corresponding to the
Galois trinity (see the Arnold trinities section).

L2(7)

L2(5) L2(11)

Klein quartic

Buckyball Buckyball curve

http://www.personal.soton.ac.uk/ds1/
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1.15 Arnold’s trinities (2/2)

Arnold has written a follow-up to the paper mentioned in the previous section called Poly-
mathematics : is mathematics a single science or a set of arts? (or here for a (huge) PDF-
conversion).

On page 8 of that paper is a nice summary of his 25 trinities :

I learned of this newer paper from a comment by Frederic Chapoton who maintains a nice
webpage dedicated to trinities. In Frederic’s list there is one trinity on sporadic groups :

BabyMonster

F24 Monster

where F24 is the Fischer simple group of order 221.316.52.73.11.13.17.23.29 =
1255205709190661721292800, which is the third largest sporadic group (the two larger
ones being the Baby Monster and the Monster itself).

I don’t know what the rationale is behind this trinity. But I’d like to recall the
(Baby)Monster history as a warning against the trinity-reflex. Sometimes, there is just
no way to extend a would be trinity.

The story comes from Mark Ronan’s book Symmetry and the Monster on page 178.

http://www.pdmi.ras.ru/~arnsem/Arnold/Polymath.ps.gz
http://www.pdmi.ras.ru/~arnsem/Arnold/Polymath.ps.gz
http://www.neverendingbooks.org/DATA/ArnoldPolymathics.pdf
http://math.univ-lyon1.fr/~chapoton/
http://math.univ-lyon1.fr/~chapoton/trinites.html
http://math.univ-lyon1.fr/~chapoton/trinites.html
http://en.wikipedia.org/wiki/Fischer_group
http://en.wikipedia.org/wiki/Baby_Monster_group
http://en.wikipedia.org/wiki/Monster_group
http://www.maa.org/reviews/SymmetryMonster.html
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”Let’s remind ourselves how we got here. A few years earlier, Fischer has created his
’transposition’ groups Fi22, Fi23, and Fi24. He had called them M(22), M(23), and M(24),
because they were related to Mathieu’s groups M22,M23, and M24, and since he used Fi22
to create his new group of mirror symmetries, he tentatively called it M22.

It seemed to appear as a cross-section in something even bigger, and as this larger group
was clearly associated with Fi24, he labeled it M24. Was there something in between that
could be called M23?

Fischer visited Cambridge to talk on his new work, and Conway named these three potential
groups the Baby Monster, the Middle Monster, and the Super Monster. When it became
clear that the Middle Monster didn’t exist, Conway settled on the names Baby Monster and
Monster, and this became the standard terminology.”

Marcus du Sautoy’s account in Finding Moonshine is slightly different. He tells on page
322 that the Super Monster didn’t exist. Anyone knowing the factual story?

”Some mathematical trickery later revealed that the Super Monster was going to be impos-
sible to build: there were certain features that contradicted each other. It was just a mirage,
which vanished under closer scrutiny. But the other two were still looking robust. The
Middle Monster was rechristened simply the Monster.”

And, the inclusion diagram of the sporadic simples tells yet another story.

Anyhow, this inclusion diagram is helpful in seeing the three generations of the Happy
Family (as well as the Pariahs) of the sporadic groups, terminology invented by Robert
Griess in his 100+p Inventiones paper on the construction of the Monster (which he liked
to call, for obvious reasons, the Friendly Giant denoted by FG). The happy family appears
in Table 1.1. of the introduction.

http://en.wikipedia.org/wiki/Bernd_Fischer
http://findingmoonshine.blogspot.com/
http://en.wikipedia.org/wiki/Sporadic_group
http://www.math.lsa.umich.edu/~rlg/
http://www.math.lsa.umich.edu/~rlg/
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It was this picture that made me propose the trinity on the left below in the previous section.
I now like to add another trinity on the right, and, the connection between the two is clear.

Conway

Mathieu Monster

Leech

Golay Griess

Here Golay denotes the extended binary Golay code of which the Mathieu group M24 is
the automorphism group. Leech is of course the 24-dimensional Leech lattice of which
the automorphism group is a double cover of the Conway group Co1. Griess is the Griess
algebra which is a nonassociative 196884-dimensional algebra of which the automorphism
group is the Monster.

I am aware of a construction of the Leech lattice involving the quaternions (the icosian
construction of chapter 8, section 2.2 of SPLAG). Does anyone know of a construction of
the Griess algebra involving octonions???

1.16 Klein’s dessins d’enfants and the buckyball

We saw that the icosahedron can be constructed from the alternating groupA5 by consider-
ing the elements of a conjugacy class of order 5 elements as the vertices and edges between
two vertices if their product is still in the conjugacy class.

This description is so nice that one would like to have a similar construction for the buck-
yball. But, the buckyball has 60 vertices, so they surely cannot correspond to the elements
of a conjugacy class of A5. But, perhaps there is a larger group, somewhat naturally con-
taining A5, having a conjugacy class of 60 elements?

This is precisely the statement contained in Galois’ last letter. He showed that 11 is the
largest prime p such that the group L2(p) = PSL2(Fp) has a (transitive) permutation
presentation on p elements. For, p = 11 the group L2(11) is of order 660, so it permuting
11 elements means that this set must be of the form X = L2(11)/A with A ⊂ L2(11) a
subgroup of 60 elements... and it turns out that A ' A5...

Actually there are TWO conjugacy classes of subgroups isomorphic to A5 in L2(11) and
we have already seen one description of these using the biplane geometry (one class is the
stabilizer subgroup of a ’line’, the other the stabilizer subgroup of a point).

Here, we will give yet another description of these two classes of A5 in L2(11), showing
among other things that the theory of dessins d’enfant predates Grothendieck by 100 years.

http://en.wikipedia.org/wiki/Binary_Golay_code
http://en.wikipedia.org/wiki/Leech_lattice
http://en.wikipedia.org/wiki/Griess_algebra
http://en.wikipedia.org/wiki/Griess_algebra
http://acronyms.thefreedictionary.com/SPLAG
http://en.wikipedia.org/wiki/Fullerene
http://en.wikipedia.org/wiki/Fullerene
http://en.wikipedia.org/wiki/Alexander_Grothendieck
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In the very same paper containing the first depiction of the Dedekind tessellation (see the
Dedekind or Klein section), Klein found that there should be a degree 11 cover P1C → P1C
with monodromy group L2(11), ramified only in the three points 0, 1,∞ such that there is
just one point lying over∞, seven over 1 of which four points where two sheets come to-
gether and finally 5 points lying over 0 of which three where three sheets come together. In
1879 he wanted to determine this cover explicitly in the paper ”Ueber die Transformationen
elfter Ordnung der elliptischen Funktionen” (Math. Annalen) by describing all Riemann
surfaces with this ramification data and pick out those with the correct monodromy group.

He manages to do so by associating to
all these covers their ’dessins d’enfants’
(which he calls Linienzuges), that is the
pre-image of the interval [0,1] in which he
marks the preimages of 0 by a bullet and
those of 1 by a +, such as in the innermost
darker graph on the right above.

He even has these two wonderful pictures
explaining how the dessin determines how
the 11 sheets fit together. (More exam-
ples of dessins and the correspondences of
sheets were drawn in the 1878 paper.)

The ramification data translates to the fol-
lowing statements about the Linienzuge :
(a) it must be a tree (∞ has one preimage),
(b) there are exactly 11 (half)edges (the de-
gree of the cover), (c) there are 7 +-vertices
and 5 o-vertices (preimages of 0 and 1) and
(d) there are 3 trivalent o-vertices and 4 bi-
valent +-vertices (the sheet-information).

Klein finds that there are exactly 10 such
dessins and lists them in his Fig. 2 (left).
Then, he claims that one the two dessins of
type I give the correct monodromy group.
Recall that the monodromy group (see the
second part) is found by giving each of the
half-edges a number from 1 to 11 and look-
ing at the permutation τ of order two pair-

ing the half-edges adjacent to a +-vertex and the order three permutation σ listing the half-
edges by cycling counter-clockwise around a o-vertex. The monodromy group is the group
generated by these two elements.
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For example, if we label the type V-dessin by the numbers of the white regions bor-
dering the half-edges (as in the picture Fig. 3 on the right above) we get σ =
(7, 10, 9)(5, 11, 6)(1, 4, 2) and τ = (8, 9)(7, 11)(1, 5)(3, 4).

Nowadays, it is a matter of a few seconds to determine the monodromy group using GAP
and we verify that this group is A11.

Of course, Klein didn’t have GAP at his disposal, so he had to rule out all these cases by
hand.

> gap> g:=Group((7,10,9)(5,11,6)(1,4,2),(8,9)(7,11)(1,5)(3,4));
> Group([ (1,4,2)(5,11,6)(7,10,9), (1,5)(3,4)(7,11)(8,9) ])
> gap> Size(g);
> 19958400
> gap> IsSimpleGroup(g);
> true

Klein used the fact that L2(7) only has elements of orders 1,2,3,5,6 and 11. So, in each of
the remaining cases he had to find an element of a different order. For example, in type V
he verified that the element τ.(σ.τ)3 is equal to the permutation (1,8)(2,10,11,9,6,4,5)(3,7)
and consequently is of order 14.

Perhaps Klein knew this but GAP tells us that the monodromy group of all the remaining
8 cases is isomorphic to the alternating group A11 and in the two type I cases is indeed
L2(11). Anyway, the two dessins of type I correspond to the two conjugacy classes of
subgroups A5 in the group L2(11).

But, back to the buckyball! The upshot of all this is that we have the group L2(11) contain-
ing two classes of subgroups isomorphic to A5 and the larger group L2(11) does indeed
have two conjugacy classes of order 11 elements containing exactly 60 elements (compare
this to the two conjugacy classes of order 5 elements inA5 in the icosahedral construction).
Can we construct the buckyball out of such a conjugacy class?

To start, we can identify the 12 pentagons of the buckyball from a conjugacy class C
of order 11 elements. If x ∈ C, then so do x3, x4, x5 and x9, whereas the powers
x2, x6, x7, x8, x10 belong to the other conjugacy class. Hence, we can divide our 60 el-
ements in 12 subsets of 5 elements and taking an element x in each of these, the vertices of
a pentagon correspond (in order) to (x, x3, x9, x5, x4).

Group-theoretically this follows from the fact that the factorgroup of the normalizer of
x modulo the centralizer of x is cyclic of order 5 and this group acts naturally on the
conjugacy class of x with orbits of size 5.

Finding out how these pentagons fit together using hexagons is a lot subtler... and in The
graph of the truncated icosahedron and the last letter of Galois Bertram Kostant shows how
to do this.

Fix a subgroup isomorphic to A5 and let D be the set of all its order 2 elements (recall that
they form a full conjugacy class in this A5 and that there are precisely 15 of them). Now,
the startling observation made by Kostant is that for our order 11 element x in C there is a
unique element a ∈ D such that the commutator b = [x, a] = x−1a−1xa belongs again to
D. The unique hexagonal side having vertex x connects it to the element b.xwhich belongs
again to C as b.x = (ax)−1.x.(ax).

Concluding, if C is a conjugacy class of order 11 elements in L2(11), then its 60 elements
can be viewed as corresponding to the vertices of the buckyball. Any element x ∈ C
is connected by two pentagonal sides to the elements x3 and x4 and one hexagonal side
connecting it to τx = b.x.

http://www-gap.mcs.st-and.ac.uk/
http://www.ams.org/notices/199509/kostant.pdf
http://www.ams.org/notices/199509/kostant.pdf
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1.17 The buckyball curve

We are after the geometric trinity corresponding to the trinity of exceptional Galois groups

L2(7)

L2(5) L2(11)

Klein quartic

Buckyball Buckyball curve

The surfaces on the right have the corresponding group on the left as their group of auto-
morphisms. But, there is a lot more group-theoretic info hidden in the geometry. Before
we sketch the L2(11) case, let us recall the simpler situation of L2(7).

There are some excellent web-page on the Klein quartic and it would be too hard to try to
improve on them, so we refer to John Baez’ page and Greg Egan’s page for more details.

The Klein quartic is the degree 4 projective plane curve defined by the equation x3y +
y3z+ z3x = 0. It can be tiled with a set of 24 regular heptagons, or alternatively with a set
of 56 equilateral triangles and these two tilings are dual to each other

http://math.ucr.edu/home/baez/klein.html
http://gregegan.customer.netspace.net.au/SCIENCE/KleinQuartic/KleinQuartic.html
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In the triangular tiling, there are 56 triangles, 84 edges and 24 vertices. The 56 triangles
come in 7 bunches of 8 each and we give the 7 bunches of triangles each a different color as
in the pictures below made by Greg Egan. Observe that in the hyperbolic tiling all triangles
look alike, but in the picture on the left most of them get warped as we try to embed the
quartic in 3-space (which is impossible to do properly). The non-warped triangles (the red
ones) come into pairs, the top and bottom triangles of a triangular prism, one prism at each
of the four ’vertices’ of a tetrahedron.

The automorphism group L2(7) acts on these triangles as S4 acts on the triangles in a
truncated cube.

The buckyball construction from a conjugacy class of order
11 elements from L2(11) recalled in the last section, has an
analogon L2(7), leading to the truncated cube.

In L2(7) there are two conjugacy classes of subgroups iso-
morphic to S4 (the rotation-symmetry group of the cube) as
well as two conjugacy classes of order 7 elements, each con-
sisting of precisely 24 elements, say C and D. The normalizer
subgroup of C has order 21, so there is a cyclic group of or-
der 3 acting non-trivially on the conjugacy class C with 8
orbits consisting of three elements each. These are the eight
triangles of the truncated cube identified above as the red tri-
angles.

http://en.wikipedia.org/wiki/Truncated_cube
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Shifting perspective, we can repeat this for each of the seven different colors. That is, we
have seven truncated cubes in the Klein quartic. On each of them a copy of S4 acts and
these subgroups form one of the two conjugacy classes of S4 in the group L2(7). The
colors of the triangles of these seven truncated cubes are indicated by bullets in the picture
above on the right. The other conjugacy class of S4’s act on ’truncated anti-cubes’ which
also come in seven bunches of which the color is indicated by a square in that picture.

If you spend enough time on it you will see that each (truncated) cube is completely disjoint
from precisely 3 (truncated) anti-cubes. This reminds us of the Fano-plane (picture on the
left) : it has 7 points (our seven truncated cubes), 7 lines (the truncated anti-cubes) and the
incidence relation of points and lines corresponds to the disjointness of (truncated) cubes
and anti-cubes! This is the geometric interpretation of the group-theoretic realization that
L2(7) ' PGL3(F2) is the isomorphism group of the projective plane over the finite field
F2 on two elements, that is, the Fano plane. The colors of the picture on the left indicate
the colors of cubes (points) and anti-cubes (lines) consistent with Egan’s picture above.

Further, the 24 vertices correspond to the 24 cusps of the modular group Γ(7). Recall that
a modular interpretation of the Klein quartic is as H/Γ(7) where H is the upper half-plane
on which the modular group Γ = PSL2(Z) acts via Moebius transformations, that is, to a
2x2 matrix corresponds the transformation[

a b
c d

]
z- 7→ az + b

cz + d

Okay, now let’s briefly sketch the exciting results found by Pablo Martin and David Singer-
man in the paper From biplanes to the Klein quartic and the buckyball, extending the above
to the group L2(11).

There is one important modification to be made. Recall that the Cayley-graph to get the
truncated cube comes from taking as generators of the group S4 the set (3, 4), (1, 2, 3), that
is, an order two and an order three element, defining an epimorphism from the modular
group Γ = C2 ∗ C3 → S4.

We have also seen that in order to get the buckyball as a Cayley-graph for A5 we need to
take the generating set (2, 3)(4, 5), (1, 2, 3, 4, 5), so a degree two and a degree five element.

Hence, if we want to have a corresponding Riemann surface we’d better not start from
the action of the modular group on the upper half-plane, but rather the action via Moebius
transformations of the Hecke group

H5 ' C2 ∗ C5 = 〈z 7→ − 1
z , z 7→ z + φ〉

where φ = 1+
√
5

2 is the golden ratio.

But then, there is an epimorphismH5 → L2(11) (as this group is generated by one element
of degree 2 and one of degree 5) and let Λ denote its kernel. Observe that Λ is the analogon
of the modular subgroup Γ(7) used above to define the Klein quartic.

Hence, Martin and Singerman define the buckyball curve as the modular quotient X =
H/Λ which is a Riemann surface of genus 70.

The terminology is motivated by the fact that, precisely as we got 7 truncated cubes in
the Klein quartic, we now get 11 truncated icosahedra (that is, buckyballs) in X . The 11
coming, analogous to the Klein case, from the fact that there are precisely two conjugacy
classes of subgroups of L2(11) isomorphic to A5, each class containing precisely eleven
elements! The 60 vertices of the buckyball again correspond to the fact that there are 60
cusps in this case.

So, what is the analogon of the Fano plane in this case? Well, observe that the Fano-plane
is a biplane of order two. That is, if we take as ’points’ the points of the Fano plane and

http://en.wikipedia.org/wiki/Fano_plane
http://www.personal.soton.ac.uk/ds1/
http://www.personal.soton.ac.uk/ds1/
http://www.neverendingbooks.org/DATA/biplanesingerman.pdf
http://en.wikipedia.org/wiki/Golden_ratio
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as ’lines’ the complements of lines in the Fano plane then this defines a biplane structure.
This means that any two distinct ’points’ are contained in two distinct ’lines’ and that two
distinct ’lines’ intersect in two distinct ’points’. A biplane is said to be of order k is each
’line’ consist of k-2 ’points’. As the complement of a line in the Fano plane consists of 4
points, the Fano plane is therefore a biplane of order 2. The intersection pattern of cubes
and anti-cubes in the Klein quartic is this biplane structure on the Fano plane.

In a similar way, Martin and Singerman show that the two conjugacy classes of subgroups
isomorphic toA5 in L2(11), each containing exactly 11 elements, correspond to 11 embed-
ded buckyballs (and 11 anti-buckyballs) in the buckyball-curve X and that the intersection
relations among them describe the combinatorial structure of a biplane of order three if we
view the 11 buckys as ’points’ and the anti-buckys as ’lines’.

That is, the buckyball curve is a perfect geometric counterpart of the Klein quartic for the
two trinities

L2(7)

L2(5) L2(11)

Klein quartic

Buckyball Buckyball curve

At the Arcadian Functor, Kea also has a post on this in which she conjectures that the
Kac-Moody algebra of E11 may be related to the buckyball curve.

References :

David Singerman, ”Klein’s Riemann surface of genus 3 and regular embeddings of finite
projective planes” Bull. London Math. Soc. 18 (1986) 364-370.

Pablo Martin and David Singerman, ”From biplanes to the Klein quartic and the Buckyball”

1.18 The ”uninteresting” case p = 5

”I was hoping you would write a post on the unin-
teresting case of p=5 in this context. Note that the
truncated tetrahedron has (V,E,F)=(12,18,8) which
is a triple that appears in the ternary (cyclic) geom-
etry for the cube. This triple can be 4 hexagons and
4 triangles (the truncated tetrahedron) OR 4 pen-
tagons and 4 squares!” Kea commented and I didnt
know the answer to the ’obvious’ question : ”how
can one get the truncated tetrahedron from either
of the two conjugacy classes of order 5 elements in
L2(5) = A5, each consisting of 12 elements”.

Fortunately the groups involved are small enough to
enable hand-calculations. Probably there is a more
elegant way to do this, but I was already happy to
find this construction...

This time, there is just one conjugacy class of subgroups isomorphic to A4 (the symmetry
group of the (truncated) tetrahedron) in L2(5) = A5. Take one of the two conjugacy classes
C of 5-cycles in A5 and use the following notation for its 12 elements :

http://kea-monad.blogspot.com/2008/07/carbon-beauty.html
http://kea-monad.blogspot.com/
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A=(1,2,3,4,5), B=(1,2,4,5,3), C=(1,2,5,3,4), D=(1,3,5,4,2), E=(1,3,2,5,4), F=(1,3,4,2,5),
G=(1,5,4,3,2), H=(1,5,3,2,4), I=(1,5,2,4,3), J=(1,4,2,3,5), K=(1,4,5,2,3), L=(1,4,3,5,2)

We’d like to view these elements as the vertices of a truncated tetrahedron, so we need to
find the 4 triangles and the 6 connecting edges between them. The first task calls for order
3 elements, the second one for order two elements.

Take a conjugacy class of order 3 elements in A4

say T = (2, 4, 3), (1, 2, 3), (1, 3, 4), (1, 4, 2) and
observe that when one computes the products of T
with a fixed 5-cycle in the conjugacy class C there is
a unique element among the four obtained that be-
longs to the conjugacy class C. This gives a cyclic
action on C with orbits of length 3 (the triangles).
Here they are :

A - J - F - A

B - C - H - B

D - G - E - D

I - L - K - I

For the edges, take the conjugacy class S =
(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) of order two el-
ements inA4 and compute for any 5-cycle c in C the

products and observe that among the elements obtained there is again one element belong-
ing to C. This gives the following pairing

A↔ C,B ↔ I,D ↔ F,E ↔ H,G↔ L and J ↔ K

and a bit of puzzling shows that all this can indeed be realized within a truncated tetrahedron
(on the right). As to her other request

” and how about a post on how 1 + 4 + 9 + + 242 = 702 is REALLY a statement about
unifying cusps and holes (genus) as degrees of freedom in quantum geometry?”

The scarecrow will need to take some time to think before giving his answer...

1.19 Tetra lattices

Error-correcting codes can be used to construct interesting lattices, the best known example
being the Leech lattice constructed from the binary Golay code. Recall that a latticeL inRn
is the set of all integral linear combinations of n linearly independent vectors {v1, . . . , vn},
that is

L = Zv1 ⊕ . . .⊕ Zvn
The theta function of the lattice is the power series

ΘL(q) =
∑
l alq

l

with al being the number of vectors in L of squared length l. If all squared lengths are
even integers, the lattice is called even and if it has one point per unit volume, we call it
unimodular. The theta function of an even unimodular lattice is a modular form. One of
the many gems from Conway’s book The sensual (quadratic) form is the chapter ”Can You
Hear the Shape of a Lattice?” or in other words, whether the theta function determines the
lattice.

http://en.wikipedia.org/wiki/Leech_lattice
http://en.wikipedia.org/wiki/Binary_Golay_code
http://en.wikipedia.org/wiki/Theta_function
http://www.amazon.co.uk/gp/reader/0883850303/ref=sib_dp_pt/202-4088950-4861437#reader-link
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Ernst Witt knew already that there are just two even unimodular lattices in 16 dimensions
: E∗ ⊕ E8 and D+

16 and as there is just one modular form of weigth 8 upto scalars, the
theta function cannot determine the latice in 16 dimensions. The number of dimensions
for a counterexample was subsequently reduced to 12 (Kneser), 8 (Kitaoka),6 (Sloane) and
finally 4 (Schiemann).

Fig. 1.6: Ernst Witt

Sloane and Conway found an elegant counterexam-
ple in dimension 4 using two old friends : the tetra-
code and the taxicab number 1729 = 7x13x19.

Recall that the tetra code is a one-error correct-
ing code consisting of the following nine words of
length four over F3 = {0,+,−}

0 000 0 + ++ 0 −−|
+ 0 +− + +−0 + − 0+
− 0−+ − + 0− − −+0

The first element (which is slightly offset from the
rest) is the slope s of the words, and the other three
digits cyclically increase by s (in the field F3). Now
take four mutually orthogonal vectors in R4 with
square lengths

ea.ea = 1
12 , eb.eb = 7

12 , ec.ec = 13
12 , ed.ed = 19

12

and denote with (w, x, y, z) the vector
wea + xeb + yec + zed. Now consider the
two lattices L+ respectively L− spanned by the
vectors (3,−1,−1,−1), (1, 3, 1,−1), (1,−1, 3, 1)
(1, 1,−1, 3), (−3,−1,−1,−1), (1,−3, 1,−1)
(1,−1,−3, 1), (1, 1,−1,−3)

then it follows that if we reduce any vector in either
lattice modulo 3 we get a tetracode word. Using this

fact it is not too difficult to show that there is a length preserving bijection between L+ and
L− given by the rule : change the sign of the first coordinate that is divisible by 3. As a
direct consequence, the theta functions of these two lattices are equal.

Yet, these lattices cannot be isometric. One verifies that the only vectors of norm 4 in L+

are ±(3,−1,−1,−1) and those of norm 8 are ±(1, 3, 1,−1) and one computes that their
in-product is

(3,−1,−1,−1).(1, 3, 1,−1) = −1

Similarly, the only vectors of norm 4 in L− are ±(−3,−1,−1,−1) and those of norm 8
are ±(1,−3, 1,−1) whereas their in-product is

(−3,−1,−1,−1).(1,−3, 1,−1) = 2

so the two lattices are different!

Reference : John H. Conway, ”The sensual (quadratic) form” second lecture ”Can you
hear the shape of a lattice?”

1.20 Who discovered the Leech lattice (1/2)

The Leech lattice was, according to wikipedia, ’originally discovered by Ernst Witt in 1940,
but he did not publish his discovery’ and it ’was later re-discovered in 1965 by John Leech’.
However, there is very little evidence to support this claim.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Witt.html
http://en.wikipedia.org/wiki/Leech_lattice
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The facts

What is certain is that John Leech discovered in 1965 an amazingly dense 24-dimensional
lattice Λ having the property that unit balls around the lattice points touch, each one of
them having exactly 196560 neighbors. The paper ’Notes on sphere packings’ appeared in
1967 in the Canad. J. Math. 19, 251-267.

Compare this to the optimal method to place pennies on a table, leading to the hexagonal
tiling, each penny touching exactly 6 others. Similarly, in dimension 8 the densest packing
is the E8 lattice in which every unit ball has exactly 240 neighbors.

The Leech lattice Λ can be characterized as the unique unimodular positive definite even
lattice such that the length of any non-zero vector is at least two.

The list of all positive definite even unimodular lattices, Γ24, in dimension 24 was classified
later by Hans-Volker Niemeier and are now known as the 24 Niemeier lattices.

For the chronology below it is perhaps useful to note that, whereas Niemeier’s paper did
appear in 1973, it was submitted april 5th 1971 and is just a minor rewrite of Niemeier’s
Ph.D. ”Definite quadratische Formen der Dimension 24 und Diskriminante 1” obtained in
1968 from the University of Gttingen with advisor Martin Kneser.

The claim

http://en.wikipedia.org/wiki/John_Leech_(mathematician)
http://en.wikipedia.org/wiki/Hexagonal_tiling
http://en.wikipedia.org/wiki/Hexagonal_tiling
http://en.wikipedia.org/wiki/E8_lattice
http://en.wikipedia.org/wiki/Hans-Volker_Niemeier
http://en.wikipedia.org/wiki/Niemeier_lattice
http://bit.ly/eDxv7p
http://genealogy.math.ndsu.nodak.edu/id.php?id=57076
http://genealogy.math.ndsu.nodak.edu/id.php?id=21259
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On page 328 of Ernst Witt’s Collected Papers Ina Kersten recalls that Witt gave a collo-
quium talk on January 27, 1970 in Hamburg entitled ”Gitter und Mathieu-Gruppen” (Lat-
tices and Mathieu-groups).

In this talk Witt claimed to have found nine lattices in Γ24 as far back as 1938 and that
on January 28, 1940 he found two additional lattices M and Λ while studying the Steiner
system S(5, 8, 24).

On page 329 of the collected papers is a scan of the abstract Witt wrote in the colloquium
book in Bielefeld where he gave a talk ”Uber einige unimodularen Gitter” (On certain
unimodular lattices) on January 28, 1972

Here, Witt claims that he found three new lattices in Γ24 on January 28, 1940 as the lattices
M ,M ′ and Λ ’feiern heute ihren 32sten Gebursttag!’ (celebrate today their 32nd birthday).

He goes on telling that the lattices M and Λ were number 10 and 11 in his list of lattices
in Γ24 in his paper ”Eine Identität zwischen Modulformen zweiten Grades” in the Abh.
Math. Sem. Univ. Hamburg 14 (1941) 323-337 and he refers in particular to page 324 of
that paper.

He further claims that he computed the orders of their automorphism groups and writes that
Λ ’wurde 1967 von Leech wieder-entdeckt’ (was re-discovered by Leech in 1967) and that
its automorphism group G(Λ) was studied by John Conway. Recall that Conway’s inves-
tigations of the automorphism group of the Leech lattice led to the discovery of three new
sporadic groups, the Conway groups Co1, Co2 and Co3. However, Witt’s 1941-paper does
not contain a numbered list of 24-dimensional lattices. In fact, apart from E8 + E8 + E8

is does not contain a single lattice in Γ24. The only relevant paragraph is indeed on page
324

http://www.amazon.co.uk/Collected-Papers-Abhandlungen-Ernst-Witt/dp/3540570616/
http://en.wikipedia.org/wiki/Steiner_system
http://en.wikipedia.org/wiki/Steiner_system
http://en.wikipedia.org/wiki/Conway_group
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He observes that Mordell already proved that there is just one lattice in Γ8 (the E8-lattice)
and that the main result of his paper is to prove that there are precisely two even uni-
modular 16-dimensional lattices : E8 + E8 and another lattice, now usually called the
16-dimensional Witt-lattice.

He then goes on to observe that Schoeneberg knew that #Γ24 > 1 and so there must be
more lattices than E8 + E8 + E8 in Γ24. Witt concludes with : ”In my attempt to find such
a lattice, I discovered more than 10 lattices in Γ24. The determination of #Γ24 does not
seem to be entirely trivial.”

Hence, it is fair to assume that by 1940 Ernst Witt had discovered at least 11 of the 24
Niemeier lattices. Whether the Leech lattice was indeed lattice 11 on the list is anybody’s
guess.

Next time we will look more closely into the historical context of Witt’s 1941 paper.

1.21 Who discovered the Leech lattice (2/2)

For the better part of the 30ties, Ernst Witt (1) did hang out with the rest of the ’Noetherkn-
aben’, the group of young mathematicians around Emmy Noether (3) in Gottingen.

In 1934 Witt became Helmut Hasse’s assistent in Gottingen, where he qualified as a uni-
versity lecturer in 1936. By 1938 he has made enough of a name for himself to be offered
a lecturer position in Hamburg and soon became an associate professor, the down-graded
position held by Emil Artin (2) until he was forced to emigrate in 1937.

A former fellow student of him in Gottingen, Erna Bannow (4), had gone earlier to Ham-
burg to work with Artin. She continued her studies with Witt and finished her Ph.D. in
1939. In 1940 Erna Bannow and Witt married.

So, life was smiling on Ernst Witt that sunday january 28th 1940, both professionally and
personally. There was just one cloud on the horizon, and a rather menacing one. He was
called up by the Wehrmacht and knew he had to enter service in february. For all he knew,

http://en.wikipedia.org/wiki/Ernst_Witt
http://en.wikipedia.org/wiki/Emmy_Noether
http://en.wikipedia.org/wiki/Helmut_Hasse
http://en.wikipedia.org/wiki/Emil_Artin
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he was spending the last week-end with his future wife... (later in february 1940, Blaschke
helped him to defer his military service by one year). Still, he desperately wanted to finish
his paper before entering the army, so he spend most of that week-end going through the
final version and submitted it on monday, as the published paper shows.

In the 70ties, Witt suddenly claimed he did discover the Leech lattice Λ that sunday. In the
last section we have seen that the only written evidence for Witt’s claim is one sentence in
his 1941-paper Eine Identität zwischen Modulformen zweiten Grades. ”Bei dem Versuch,
eine Form aus einer solchen Klassen wirklich anzugeben, fand ich mehr als 10 verschiedene
Klassen in Γ24.”

But then, why didn’t Witt include more details of this sensational lattice in his paper?

Ina Kersten recalls on page 328 of Witt’s collected papers : ”In his colloquium talk ”Gitter
und Mathieu-Gruppen” in Hamburg on January 27, 1970, Witt said that in 1938, he had
found nine lattices in Γ24 and that later on January 28, 1940, while studying the Steiner
system S(5, 8, 24), he had found two additional lattices M and Λ in Γ24. He continued
saying that he had then given up the tedious investigation of Γ24 because of the surprisingly
low contribution

|Aut(Λ)|−1 < 10−18

to the Minkowski density and that he had consented himself with a short note on page 324
in his 1941 paper.”

In the last sentence he refers to the fact that the sum of the inverse orders of the auto-
morphism groups of all even unimodular lattices of a given dimension is a fixed rational
number, the Minkowski-Siegel mass constant. In dimension 24 this constant is∑
L

1

|Aut(L)|
=

1027637932586061520960267

129477933340026851560636148613120000000
≈ 7.937× 10−15

That is, Witt was disappointed by the low contribution of the Leech lattice to the total con-
stant and concluded that there might be thousands of new even 24-dimensional unimodular
lattices out there, and dropped the problem.

If true, the story gets even better : not only claims Witt to have found the lattices A24
1 = M

and Λ, but also enough information on the Leech lattice in order to compute the order of
its automorphism group Aut(Λ), aka the Conway group Co0 = .0 the dotto-group!

http://en.wikipedia.org/wiki/Leech_lattice
http://en.wikipedia.org/wiki/Conway_group
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Is this possible? Well fortunately, the difficulties one encounters when trying to compute
the order of the automorphism group of the Leech lattice from scratch, is one of the better
documented mathematical stories around.

The books From Error-Correcting Codes through Sphere Packings to Simple Groups by
Thomas Thompson, Symmetry and the monster by Mark Ronan, and Finding moonshine
by Marcus du Sautoy tell the story in minute detail.

It took John Conway 12 hours on a 1968 saturday in Cambridge to compute the order of
the dotto group, using the knowledge of Leech and McKay on the properties of the Leech
lattice and with considerable help offered by John Thompson via telephone.

But then, John Conway is one of the fastest mathematicians the world has known. The
prologue of his book On numbers and games begins with : ”Just over a quarter of a century
ago, for seven consecutive days I sat down and typed from 8:30 am until midnight, with
just an hour for lunch, and ever since have described this book as ”having been written in a
week”.”

Conway may have written a book in one week, Ernst Witt did complete his entire Ph.D. in
just one week! In a letter of August 1933, his sister told her parents : ”He did not have a
thesis topic until July 1, and the thesis was to be submitted by July 7. He did not want to
have a topic assigned to him, and when he finally had the idea, he started working day and
night, and eventually managed to finish in time.”

So, if someone might have beaten John Conway in fast-computing the dottos order, it may
very well have been Witt. Sadly enough, there is a lot of circumstantial evidence to make
Witt’s claim highly unlikely.

For starters, psychology. Would you spend your last week-end together with your wife to
be before going to war performing an horrendous calculation?

Secondly, mathematical breakthroughs often arise from newly found insight. At that time,
Witt was also working on his paper on root lattices ”Spiegelungsgrupen and Aufzähling
halbeinfacher Liescher Ringe” which he eventually submitted in january 1941. Contained
in that paper is what we know as Witt’s lemma which tells us that for any integral lattice
the sublattice generated by vectors of norms 1 and 2 is a direct sum of root lattices.

This leads to the trick of trying to construct unimodular lattices by starting with a direct
sum of root lattices and ’adding glue’. Although this gluing-method was introduced by
Kneser as late as 1967, Witt must have been aware of it as his 16-dimensional lattice D+

16

is constructed this way.

If Witt wanted to construct new 24-dimensional even unimodular lattices in 1940, it would
be natural for him to start off with direct sums of root lattices and trying to add vectors to
them until he got what he was after. Now, all of the Niemeier-lattices are constructed this
way, except for the Leech lattice!

http://www.amazon.co.uk/Error-Correcting-through-Packings-Mathematical-Monographs/dp/0883850370/
http://www.amazon.co.uk/Symmetry-Monster-greatest-quests-mathematics/dp/0192807234/
http://www.amazon.co.uk/Finding-Moonshine-Mathematicians-Journey-Symmetry/dp/0007214626/
http://en.wikipedia.org/wiki/John_Horton_Conway
http://en.wikipedia.org/wiki/John_G._Thompson
http://www.amazon.co.uk/Numbers-Games-John-H-Conway/dp/1568811276/
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I’m far from an expert on the Niemeier lattices but I would say that Witt definitely
knew of the existence of D+

24, E3
8 and A+

24 and that it is quite likely he also constructed
(D16E8)+, (D2

12)+, (A2
12)+, (D3

8)+ and possibly (A17E7)+ and (A15D9)+. I’d rate it far
more likely Witt constructed another two such lattices on sunday january 28th 1940, rather
than discovering the Leech lattice.

Finally, wouldn’t it be natural for him to include a remark, in his 1941 paper on root lattices,
that not every even unimodular lattices can be obtained from sums of root lattices by adding
glue, the Leech lattice being the minimal counter-example?

If it is true he was playing around with the Steiner systems that sunday, it would still be
a pretty good story he discovered the lattices (A12

2 )+ and (A24
1 )+, for this would mean he

discovered the Golay codes in the process!

Which brings us to our next question : who discovered the Golay code?

1.22 Sporadic simple games

Above I did a series of posts on games associated to the Mathieu sporadic group M12,
starting with the section on Conway’s puzzle M13, and, continuing with a discussion of
mathematical blackjack. The idea at the time was to write a book for a general audience,
ending with a series of new challenging mathematical games. I asked : ”What kind of
puzzles should we promote for mathematical thinking to have a fighting chance to survive
in the near future?”
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Now, Scientific American has (no doubt independently) taken up this lead. Their July
2008 issue features the article Rubik’s Cube Inspired Puzzles Demonstrate Math’s ”Simple
Groups” written by Igor Kriz and Paul Siegel.

By far the nicest thing about this article is that it comes with three online games based on
the sporadic simple groups, the Mathieu groups M12, M24 and the Conway group .0.

the M12 game

Scrambles to an arbitrary permutation in M12 and need to use the two generators

INV ERT = (1, 12)(2, 11)(3, 10)(4, 9)(5, 8)(6, 7) and

MERGE = (2, 12, 7, 4, 11, 6, 10, 8, 9, 5, 3)

to return to starting position.

Here is the help-screen :

A few-line GAP-program cracks the puzzle instantly.

the M24 game

Similar in nature, again using two generators of M24. GAP-solution as before.

http://www.sciam.com/article.cfm?id=simple-groups-at-play
http://www.sciam.com/article.cfm?id=simple-groups-at-play
http://www.sciam.com/article.cfm?id=puzzles-simple-groups-at-play


series 1. Monsters 55

This time, they offer this help-screen :

the .0 game

Their most original game is based on Conway’s .0 (dotto) group. Unfortunately, they offer
only a Windows-executable version, so I had to install Bootcamp and struggle a bit with
taking screenshots on a MacBook to show you the game’s starting position :

http://www.apple.com/macosx/features/bootcamp.html
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”Dotto:

Dotto, our final puzzle, represents the Conway group Co0, published in 1968 by mathe-
matician John H. Conway of Princeton University. Co0 contains the sporadic simple group
Co1 and has exactly twice as many members as Co1. Conway is too modest to name Co0
after himself, so he denotes the group .0 (hence the pronunciation dotto).

In Dotto, there are four moves. This puzzle includes the M24 puzzle. Look at the yel-
low/blue row in the bottom. This is, in fact, M24, but the numbers are arranged in a row
instead of a circle. The R move is the ”circle rotation to the right”: the column above
the number 0 stays put, but the column above the number 1 moves to the column over the
number 2 etc. up to the column over the number 23, which moves to the column over the
number 1. You may also click on a column number and then on another column number
in the bottom row, and the ”circle rotation” moving the first column to the second occurs.
The M move is the switch, in each group of 4 columns separated by vertical lines (called
tetrads) the ”yellow” columns switch and the ”blue” columns switch. The sign change
move (S) changes signs of the first 8 columns (first two tetrads). The tetrad move (T) is the
most complicated: Subtract in each row from each tetrad 1/2 times the sum of the numbers
in that tetrad. Then in addition to that, reverse the signs of the columns in the first tetrad.

Strategy hints: Notice that the sum of squares of the numbers in each row doesn’t change.
(This sum of squares is 64 in the first row, 32 in every other row.) If you manage to get an
”8”in the first row, you have almost reduced the game to M24 except those signs. To have
the original position, signs of all numbers on the diagonal must be +. Hint on signs: if the
only thing wrong are signs on the diagonal, and only 8 signs are wrong, those 8 columns
can be moved to the first 8 columns by using only the M24 moves (M,R).”
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1.23 Monstrous frustrations

Thanks for clicking through to this section... I guess.

If nothing else, it shows that just as much as the stock market is fueled by greed, mathe-
matical research is driven by frustration (or the pleasure gained from knowing others to be
frustrated).

I did spend the better part of the day doing a lengthy, if not laborious, calculation, I’ve been
postponing for several years now. Partly, because I didn’t know how to start performing it
(though the basic strategy was clear), partly, because I knew beforehand the final answer
would probably offer me no further insight.

Still, it gives the final answer to a problem that may be of interest to anyone vaguely inter-
ested in Moonshine :

What does the Monster see of the modular group?

I know at least two of you, occasionally reading this blog, understand what I was trying
to do and may now wonder how to repeat the straightforward calculation. Well the simple
answer is : Google for the number 97239461142009186000 and, no doubt, you will be able
to do the computation overnight.

One word of advice : don’t! Get some sleep instead, or make love to your partner, because
all you’ll get is a quiver on nine vertices (which is pretty good for the Monster) but having
an horrible amount of loops and arrows...

If someone wants the details on all of this, just ask. But, if you really want to get me exited
: find a moonshine reason for one of the following two numbers :

791616381395932409265430144165764500492 =

22 ∗ 11 ∗ 293 ∗ 61403690769153925633371869699485301

(the dimension of the monster-singularity up to smooth equivalence), or,

1575918800531316887592467826675348205163 =

523 ∗ 1655089391 ∗ 15982020053213 ∗ 113914503502907

(the dimension of the moduli space).

1.24 What does the monster see?

The Monster is the largest of the 26 sporadic simple groups and has order

808.017.424.794.512.875.886.459.904.961.710.757.005.754.368.000.000.000 =

246320597611213317.19.23.29.31.41.47.59.71

It is not so much the size of its order that makes it hard to do actual calculations in the
monster, but rather the dimensions of its smallest non-trivial irreducible representations
(196.883 for the smallest, 21.296.876 for the next one, and so on).

In characteristic two there is an irreducible representation of one dimension less (196882)
which appears to be of great use to obtain information. For example, Robert Wilson used
it to prove that The Monster is a Hurwitz group. This means that the Monster is generated
by two elements g and h satisfying the relations

g2 = h3 = (gh)7 = 1

http://en.wikipedia.org/wiki/Monstrous_moonshine
http://en.wikipedia.org/wiki/Monster_group
http://en.wikipedia.org/wiki/Modular_group
http://www.google.com/search?client=safari&rls=en-us&q=97239461142009186000&ie=UTF-8&oe=UTF-8
http://en.wikipedia.org/wiki/Monster_group
http://web.mat.bham.ac.uk/R.A.Wilson/pubs/MHurwitz.ps
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Geometrically, this implies that the Monster is the automorphism group of a Riemann sur-
face of genus gen satisfying the Hurwitz bound 84(gen− 1) = #Monster. That is,

gen = 9619255057077534236743570297163223297687552000000001 =

42151199 ∗ 293998543 ∗ 776222682603828537142813968452830193

Or, in analogy with the Klein quartic (see the buckyball curve section) which can be con-
structed from 24 heptagons in the tiling of the hyperbolic plane, there is a finite region of
the hyperbolic plane, tiled with heptagons, from which we can construct this monster curve
by gluing the boundary is a specific way so that we get a Riemann surface with exactly
9619255057077534236743570297163223297687552000000001 holes. This finite part of
the hyperbolic tiling (consisting of #Monster/7 heptagons) we’ll call the empire of the
monster and we’d love to describe it in more detail.

Look at the half-edges of all the heptagons in the empire (the picture above learns that
every edge in cut in two by a blue geodesic). They are exactly #Monster such half-edges
and they form a dessin d’enfant for the monster-curve.

If we label these half-edges by the elements of the Monster, then multiplication by g in the
monster interchanges the two half-edges making up a heptagonal edge in the empire and
multiplication by h in the monster takes a half-edge to the one encountered first by going
counter-clockwise in the vertex of the heptagonal tiling. Because g and h generated the
Monster, the dessin of the empire is just a concrete realization of the monster.

Because g is of order two and h is of order three, the two permutations they determine on
the dessin, gives a group epimorphism C2 ∗C3 = PSL2(Z)→M from the modular group
PSL2(Z) onto the Monster-group.

In noncommutative geometry, the group-algebra of the modular groupCPSL2 can be inter-
preted as the coordinate ring of a noncommutative manifold (because it is formally smooth
in the sense of Kontsevich-Rosenberg or Cuntz-Quillen) and the group-algebra of the Mon-
ster CM itself corresponds in this picture to a finite collection of ’points’ on the manifold.
Using this geometric viewpoint we can now ask the question What does the Monster see of
the modular group?

To make sense of this question, let us first consider the commutative equivalent : what does
a point P see of a commutative variety X?

http://en.wikipedia.org/wiki/Modular_group
http://arxiv.org/abs/math/9812158
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Evaluation of polynomial functions in P gives us an algebra epimorphism C[X]→ C from
the coordinate ring of the variety C[X] onto C and the kernel of this map is the maximal
ideal mP of C[X] consisting of all functions vanishing in P.

Equivalently, we can view the point P = spec C[X]/mP as the scheme corresponding to
the quotient C[X]/mP . Call this the 0-th formal neighborhood of the point P.

This sounds pretty useless, but let us now consider higher-order formal neighborhoods.
Call the affine scheme spec C[X]/mn+1

P the n-th forml neighborhood of P, then the first
neighborhood, that is with coordinate ring C[X]/m2

P gives us tangent-information. Alter-
natively, it gives the best linear approximation of functions near P. The second neighbor-
hood C[X]/m3

P gives us the best quadratic approximation of function near P, etc. etc.

These successive quotients by powers of the maximal ideal mP form a system of algebra
epimorphisms

. . . C[X]

mn+1
P

→ C[X]
mnP
→ . . . . . .→ C[X]

m2
P
→ C[X]

mP
= C

and its inverse limit lim
←

C[X]
mnP

= ÔX,P is the completion of the local ring in P and contains
all the infinitesimal information (to any order) of the variety X in a neighborhood of P. That
is, this completion ÔX,P contains all information that P can see of the variety X.

In case P is a smooth point of X, then X is a manifold in a neighborhood of P and then this
completion ÔX,P is isomorphic to the algebra of formal power series C[[x1, x2, . . . , xd]]
where the xi form a local system of coordinates for the manifold X near P.

Right, after this lengthy recollection, back to our question what does the monster see of the
modular group? Well, we have an algebra epimorphism

π : CPSL2(Z)→ CM

and in analogy with the commutative case, all information the Monster can gain from the
modular group is contained in the m-adic completion

̂CPSL2(Z)m = lim
←

CPSL2(Z)
mn

where m is the kernel of the epimorphism π sending the two free generators of the modular
group PSL2(Z) = C2 ∗ C3 to the permutations g and h determined by the dessin of the
pentagonal tiling of the Monster’s empire.

As it is a hopeless task to determine the Monster-empire explicitly, it seems even more
hopeless to determine the kernel m let alone the completed algebra... But, (surprise) we
can compute ̂CPSL2(Z)m as explicitly as in the commutative case we have ÔX,P '
C[[x1, x2, . . . , xd]] for a point P on a manifold X.
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Here the details : the quotient m/m2 has a natural structure of CM-bimodule. The group-
algebra of the monster is a semi-simple algebra, that is, a direct sum of full matrix-algebras
of sizes corresponding to the dimensions of the irreducible monster-representations. That
is,

CM ' C⊕M196883(C)⊕M21296876(C)⊕ . . . . . .⊕M258823477531055064045234375(C)

with exactly 194 components (the number of irreducible Monster-representations). For any
CM-bimodule M one can form the tensor-algebra

TCM(M) = CM⊕M ⊕ (M ⊗CM M)⊕ (M ⊗CM M ⊗CM M)⊕ . . . . . .

and applying the formal neighborhood theorem for formally smooth algebras (such as
CPSL2(Z)) due to Joachim Cuntz (left) and Daniel Quillen (right) we have an isomor-
phism of algebras

̂CPSL2(Z)m ' ̂TCM(m/m2)

where the right-hand side is the completion of the tensor-algebra (at the unique graded
maximal ideal) of the CM-bimodule m/m2, so we’d better describe this bimodule explic-
itly.

Okay, so what’s a bimodule over a semisimple algebra of the form S = Mn1(C) ⊕ . . . ⊕
Mnk(C)? Well, a simple S-bimodule must be either (1) a factor Mni(C) with all other
factors acting trivially or (2) the full space of rectangular matrices Mni×nj (C) with the
factor Mni(C) acting on the left, Mnj (C) acting on the right and all other factors acting
trivially.

That is, any S-bimodule can be represented by a quiver (that is a directed graph) on k
vertices (the number of matrix components) with a loop in vertex i corresponding to each
simple factor of type (1) and a directed arrow from i to j corresponding to every simple
factor of type (2).

That is, for the Monster, the bimodule m/m2 is represented by a quiver on 194 vertices
and now we only have to determine how many loops and arrows there are at or between
vertices.

Using Morita equivalences and standard representation theory of quivers it isn’t exactly
rocket science to determine that the number of arrows between the vertices corresponding
to the irreducible Monster-representations Si and Sj is equal to

dimC Ext
1
CPSL2(Z)(Si, Sj)− δij

Now, I’ve been wasting a lot of time already explaining what representations of the modular
group have to do with quivers and for quiver-representations we all know how to compute

http://wwwmath.uni-muenster.de/u/cuntz/cuntz.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Quillen.html
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Ext-dimensions in terms of the Euler-form applied to the dimension vectors. Right, so for
every Monster-irreducible Si we have to determine the corresponding dimension-vector
(a1, a2; b1, b2, b3) for the quiver

b1

a1

B11

33

B21

++B31

""

b2

a2

B12

<<

B22

33

B23 ++
b3

Now the dimensions ai are the dimensions of the ±1 eigenspaces for the order 2 element
g in the representation and the bi are the dimensions of the eigenspaces for the order 3
element h. So, we have to determine to which conjugacy classes g and h belong, and from
Wilson’s paper mentioned above these are classes 2B and 3B in standard Atlas notation.

So, for each of the 194 irreducible Monster-representations we look up the character values
at 2B and 3B (see below for the first batch of those) and these together with the dimensions
determine the dimension vector (a1, a2; b1, b2, b3).

For example take the 196883-dimensional irreducible. Its 2B-character is 275 and the 3B-
character is 53. So we are looking for a dimension vector such that a1+a2 = 196883, a1−
275 = a2 and b1 + b2 + b3 = 196883, b1 − 53 = b2 = b3 giving us for that representation
the dimension vector of the quiver above (98579, 98304, 65663, 65610, 65610).

Okay, so for each of the 194 irreducibles Si we have determined a dimension vector
(a1(i), a2(i); b1(i), b2(i), b3(i)), then standard quiver-representation theory asserts that the
number of loops in the vertex corresponding to Si is equal to

dim(Si)
2 + 1− a1(i)2 − a2(i)2 − b1(i)2 − b2(i)2 − b3(i)2

and that the number of arrows from vertex Si to vertex Sj is equal to

http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/M/
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dim(Si)dim(Sj)− a1(i)a1(j)− a2(i)a2(j)− b1(i)b1(j)− b2(i)b2(j)− b3(i)b3(j)

This data then determines completely the CM-bimodule m/m2 and hence the structure of
the completion ĈPSL2m containing all information the Monster can gain from the modular
group.

But then, one doesn’t have to go for the full regular representation of the Monster. Any
faithful permutation representation will do, so we might as well go for the one of minimal
dimension.

That one is known to correspond to the largest maximal subgroup of the Monster which is
known to be a two-fold extension 2.B of the Baby-Monster. The corresponding permuta-
tion representation is of dimension 97239461142009186000 and decomposes into Monster-
irreducibles

S1 ⊕ S2 ⊕ S4 ⊕ S5 ⊕ S9 ⊕ S14 ⊕ S21 ⊕ S34 ⊕ S35

(in standard Atlas-ordering) and hence repeating the arguments above we get a quiver on
just 9 vertices! The actual numbers of loops and arrows (I forgot to mention this, but the
quivers obtained are actually symmetric) obtained were found after laborious computations
mentioned in the previous section and the details I’ll make avalable here.

Anyone who can spot a relation between the numbers obtained and any other part of math-
ematics will obtain quantities of genuine (ie. non-Inbev) Belgian beer...

http://en.wikipedia.org/wiki/Baby_Monster_group
http://www.neverendingbooks.org/DATA/monsterquiver2.html
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2.1 The secret of 163

On page 227 of Symmetry and the Monster, Mark Ronan tells the story of Conway and
Norton computing the number of independent mini j-functions (McKay-Thompson series)
arising from the Moonshine module. There are 194 distinct characters of the monster, but
some of them give the same series reducing the number of series to 171. But, these are not
all linearly independent. Mark Ronan writes :

”Conway recalls that, ’As we went down into the 160s, I said let’s guess what num-
ber we will reach.’ They guessed it would be 163 - which has a very special prop-
erty in number theory - and it was! There is no explanation for this. We don’t know
whether it is merely a coincidence, or something more. The special property of 163
in number theory has intruiging consequences, among which is the fact that eπ

√
163 =

262537412640768743.99999999999925... is very close to being a whole number.”

The corresponding footnote is a bit cryptic and doesn’t explain this near miss integer.

Fig. 2.1: Leopold Kronecker

”This special feature also yields a fact, first noticed
by Euler, that the formula x2 − x + 41 gives prime
numbers for all values of x between 1 and 40. The
connection with 163 is that the solution to x2 − x+
41 = 0 involves the square root of −163.”

So, what is really going on?

The modular j-function has a power series expan-
sion in q = e2πiτ starting off as

j(τ) = q−1 + 744 + 196884q + 21493760q2+

864299970q3 + · · ·

and classifies complex elliptic curves up to isomor-
phism, or equivalently, two-dimensional integral lat-
tices up to a complex scaling factor. A source
of two-dimensional integral lattices is given by the
rings of integers Z.1 + Z.τ in quadratic imaginary
extensions of the rational numbers Q(

√
−D). So,

perhaps one might expect special properties of the j-value j(τ) whenever this ring of inte-
gers has special properties.

Leopold Kronecker discovered in 1857 the remarkable fact that the modular j-function
detects the class number of Q(

√
−D). Recall that the class-number is a finite number

http://www.amazon.co.uk/Symmetry-Monster-Greatest-Quests-Mathematics/dp/0192807226/
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Kronecker.html
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measuring the amount by which the ring on integers Z.1 + Z.τ in Q(
√
−D) fails to be a

unique factorization domain. He proved :

The function-value j(τ) is an algebraic integer whose degree is the class number of the
quadratic extension. In particular, if the ring of integers in Q(

√
−D) satisfied unique fac-

torization (or equivalently, is a principal ideal domain), then j(τ) is an integer!

Special instances of this theorem were already known. For example, the Gaussian integers
Z.1 +Z.i satisfy unique factorization and Gauss knew already that j(i) = 123 = 1728. He
even knew that

j( 1
2 (1 +

√
−163)) = (−640320)3 = −262537412640768000

and because Z.1+Z. 12 (1+
√
−163) is the ring of integers inQ(

√
−163) and as the absolute

value of this j-value is near the value of eπ
√
163 we must be closing in on the solution of

the riddle.

Charles Hermite noticed in 1859 this curious numerical consequence of Kronecker’s
theorem. For, if one takes τ = 1

2 (1 +
√
−163) and plugs this into the def-

inition of q = e2πi one gets the tiny number q = eπi−π
√
163 = −e−π

√
163

which is equal to -0.0000000000000000038089809370076523382... So, all but the
first two terms in the series expansion of j(τ) will be very small. For example
196884q = −0.00000000000074992740... and the next term 21493760q2 is already
0.00000000000000000000000000031183868... and further terms will be even a lot
smaller.

Fig. 2.2: Charles Hermite

Combining this information with the Gauss-
computed value of j(τ) we get that

(−640320)3 = −eπ
√
163 + 744− tiny number

whence the observed curious approaximation of

eπ
√
163 = 262537412640768000 +

744 − tiny number =
262537412640768743.99999999999925...

What about other near misses which follow from
Kronecker’s result? Unfortunately there are only
nine imaginary quadratic extension Q(

√
−D) for

which the corresponding ring of integers satisfies
unique factorization, namely

D = 1, 2, 3, 7, 11, 19, 43, 67, 163

and of course the near misses will be worse for
smaller values of D. For example for the next two
largest values one calculates

eπ
√
67 = 147197952743.99999866245422...

eπ
√
43 = 884736743.99977746603490661...

Reference : John Stillwell, Modular Miracles, The American Mathematical Monthly, 108
(2001) 70-76

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Hermite.html
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2.2 The Dedekind tessellation

In 1877, Richard Dedekind discovered one of the most famous pictures in mathematics :
the black & white tessellation of the upper half-plane in hyperbolic triangles. Recall that
the group SL2(Z) of all invertible 2x2 integer matrices with determinant 1 acts on the
upper halfplane via[
a b
c d

]
.z = az+b

cz+d

and as minus the identity matrix acts trivially, it is really an action of the modular group
Γ = PSL2(Z). Any black or white triangle in the Dedekind-tessellation is a fundamental
domain for the action of the extended modular group Γ∗, generated by Γ and the morphism
z 7→ −z. . Dedekind showed that the union of any back and white region is a fundamental
domain for the action of the modular group. For example, the ’usual’ fundamental domain
is the union of the top middle black and white regions in Dedekinds picture. Having this
tessellation before you is essential if you have to wade through the heavy notation of the
important paper by Ravi Kulkarni ”An arithmetic-geometric method in the study of the
subgroups of the modular group”, which is what we aim to do now. Applications will be
given in future posts in this series.

At some points (such as i) two black and two white regions are coming together, we call
such points even vertices and they form the Γ∗-orbit of i. At other points (such as ρ = e

πi
3 )

three black and white regions are meeting and we call such points odd vertices (they form
the Γ∗-orbit of ρ). The Γ∗-orbit of∞ consists of the rational numbers and they are called
the cusps.

Now, for the edges. There are three types of edges : even edges connecting a cusp and an
even vertex (they form the Γ∗-orbit of the line (∞, i)), odd edges connecting a cusp to an
odd vertex (the translates of (∞, ρ)) and finally f-edges (f for finite) connecting an odd and
even vertex (the Γ∗-orbit of the arc (ρ, i)).

The geodesics (the semi-circles and the vertical lines) are made of edges and they come in
two types : even lines are complete geodesics which are unions of two even edges (such
as the semi-circle (0, 1)) and odd lines (such as the semi-circle (−1, 1)) are complete
geodesics which are unions of two f-edges and two odd edges. Remark that the vertical
lines are even if they pass through an integer and odd when they go through a half-integer.
The modular group Γ acts transitively on the even (resp. odd) lines.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Dedekind.html
http://en.wikipedia.org/wiki/Fundamental_domain
http://en.wikipedia.org/wiki/Fundamental_domain
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If we write rational numbers in reduced form a
b (and if we agree to write integers as n

1 and
∞ = 1

0 ) then, if a geodesic has endpoints a
b and c

d it is an even line iff |ad − bc| = 1 and
an odd line iff |ad− bc| = 2.

This notation was set up to define the notion of a special polygon which is a connected
polygonal region P in the upper-halfplane such that its boundary ∂P consists entirely of
even and odd edges (so no f-edges) together with a side-pairing satisfying the following
requirements

1. Even edges in ∂P come in pairs and each such pair forms an even line.

2. Odd edges in ∂P come in pairs and each pair meets at an odd vertex where they
make an internal angle of 2π

3 .

3. Any odd edge e is side-paired to a different odd edge f which makes on internal angle
2π
3 with e.

4. If e and f are even edges in ∂P forming an even line, then either e is side-paired to f
or else e,f form a **free side** and is side-paired to a different such free side.

5. 0,∞ are among the vertices of P .

The sides of P are : the odd edges on the boundary, the free sides and the even edges on
non-free sides. The vertices of P are the intersections of adjacent sides.

For example, the region inside the thick edges is a
special polygon. Its boundary consists of 8 even
edges (two on the 4 complete geodesics : the ver-
tical lines at 0 and 1 and the semi-circles ( 1

2 ,
2
3 )

and ( 2
3 , 1)) and 2 odd edges the arc-fragments in

the lower left corner, the leftmost being part of the
semi-circle (0, 13 ), the other part of the semi-circle
( 1
4 ,

1
2 ).

We have several option for the side-pairing, the only
forded pairing being the two odd edges which have
to be paired. For the even edges we can either con-
sider 0,2 or 4 of the geodesics as free sides and pair
these, or we can have 0,2 or 4 non-free sides and
then we have to pair up the two even edges making
such a non-free side.

The number of sides of the special polygon depends
on the number of free sides chosen. For 0 free sides,

there are 10 sides and vertices. For 2 free sides, there are 8 sides and vertices and for 4 free
sides we have 6 sides and vertices.

Special polygons are a combinatorial gadget to describe the subgroups of finite index in
the modular group PSL2(Z). Later, we will connect this notion to quilts which are special
’dessins d’enfants’ and to generalized Farey sequences. This will then allow us to find
explicit generators of the subgroups.

Some technical issues : if some of the latex-pictures don’t show up nicely it often helps
to resize the browser-window and resize it back. The drawing of the special polygon was
made using the LaTeX-package MFPIC which is an easy to use interface to MetaPost.

Reference : Ravi S. Kulkarni ”An arithmetic-geometric method in the study of the sub-
groups of the modular group” Amer. J. Math. 113 (1991) 1053-1133

http://www.ctan.org/tex-archive/graphics/mfpic/
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2.3 Dedekind or Klein?

The black and white psychedelic picture on the left
of a tessellation of the hyperbolic upper-halfplane,
we called the Dedekind tessellation, following the
reference given by John Stillwell in his excellent pa-
per Modular Miracles, The American Mathematical
Monthly, 108 (2001) 70-76.

But is this correct terminology? Nobody else uses
it according to Google. So, let’s try to track down
the earliest depiction of this tessellation in the liter-
ature...

Fig. 2.3: Richard Dedekind

Stillwell refers to Richard Dedekind’s 1877 paper
”Schreiben an Herrn Borchard uber die Theorie der
elliptische Modulfunktionen”, which appeared be-
ginning of september 1877 in Crelle’s journal (Jour-
nal fur die reine und angewandte Mathematik, Bd.
83, 265-292).

There are a few odd things about this paper. To start,
it really is the transcript of a (lengthy) letter to Herrn
Borchardt (at first, I misread the recipient as Herrn
Borcherds which would be really weird...), written
on June 12th 1877, just 2 and a half months before it
appeared... Even today in the age of camera-ready-
copy it would probably take longer.

There isn’t a single figure in the paper, but, it is
almost impossible to follow Dedekind’s arguments
without having a mental image of the tessellation.
He gives a fundamental domain for the action of the
modular group Γ = PSL2(Z) on the hyperbolic
upper-half plane (a fact already known to Gauss)
and goes on in section 3 to give a one-to-one map-
ping between this domain and the complex plane us-
ing what he calls the ’valenz’ function v (which is our modular function j, making an
appearance in moonshine, and responsible for the black and white tessellation, the two
colours corresponding to pre-images of the upper or lower half-planes).

Then there is this remarkable opening sentence.

”Sie haben mich aufgefordert, eine etwas ausfuhrlichere Darstellung der Untersuchungen
auszuarbeiten, von welchen ich, durch das Erscheinen der Abhandlung von Fuchs veran-
lasst, mir neulich erlaubt habe Ihnen eine kurze Ubersicht mitzuteilen; indem ich Ihrer
Einladung hiermit Folge leiste, beschranke ich mich im wesentlichen auf den Teil dieser
Untersuchungen, welcher mit der eben genannten Abhandlung zusammenhangt, und ich
bitte Sie auch, die Ubergehung einiger Nebenpunkte entschuldigen zu wollen, da es mir im
Augenblick an Zeit fehlt, alle Einzelheiten auszufuhren.”

Well, just try to get a paper (let alone a letter) accepted by Crelle’s Journal with an opening
line like : ”I’ll restrict to just a few of the things I know, and even then, I cannot be bothered
to fill in details as I don’t have the time to do so right now!” But somehow, Dedekind got
away with it.

So, who was this guy Borchardt? How could this paper be published so swiftly? And, what
might explain this extreme ’je m’en fous’-opening ?

http://www.jstor.org/pss/2695682
http://www.jstor.org/pss/2695682
http://www-history.mcs.st-andrews.ac.uk/Biographies/Dedekind.html
http://en.wikipedia.org/wiki/Crelle's_Journal
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Carl Borchardt was a Berlin mathematician whose main claim to fame seems to be that
he succeeded Crelle in 1856 as main editor of the ’Journal fur reine und...’ until 1880 (so
in 1877 he was still in charge, explaining the swift publication). It seems that during this
time the ’Journal’ was often referred to as ”Borchardt’s Journal” or in France as ”Journal
de M Borchardt”. After Borchardt’s death, the Journal für die Reine und Angewandte
Mathematik again became known as Crelle’s Journal.

Fig. 2.4: Carl Borchardt

As to the opening sentence, I have a toy-theory of
what was going on. In 1877 a bitter dispute was
raging between Kronecker (an editor for the Journal
and an important one as he was the one succeed-
ing Borchardt when he died in 1880) and Cantor.
Cantor had published most of his papers at Crelle
and submitted his latest find : there is a one-to-one
correspondence between points in the unit interval
[0,1] and points of d-dimensional space! Kronecker
did everything in his power to stop that paper to
the extend that Cantor wanted to retract it and sub-
mit it elsewhere. Dedekind supported Cantor and
convinced him not to retract the paper and used his
influence to have the paper published in Crelle in
1878. Cantor greatly resented Kronecker’s oppo-
sition to his work and never submitted any further
papers to Crelle’s Journal.

Clearly, Borchardt was involved in the dispute and
it is plausible that he ’invited’ Dedekind to submit a
paper on his old results in the process. As a further
peace offering, Dedekind included a few ’nice’ words for Kronecker

”Bei meiner Versuchen, tiefer in diese mir unentbehrliche Theorie einzudringen und mir
einen einfachen Weg zu den ausgezeichnet schonen Resultaten von Kronecker zu bahnen,
die leider noch immer so schwer zuganglich sind, enkannte ich sogleich...”

Probably, Dedekind was referring to Kronecker’s relation between class groups of quadratic
imaginary fields and the j-function, see the miracle of 163. As an added bonus, Dedekind
was elected to the Berlin academy in 1880...

Anyhow, no visible sign of ’Dedekind’s’ tessellation in the 1877 Dedekind paper, so, we
have to look further. I’m fairly certain to have found the earliest depiction of the black and
white tessellation (if you have better info, please drop a line). Here it is

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Borchardt.html
http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Kronecker.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Cantor.html
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It is figure 7 in Felix Klein’s paper ”Uber die Transformation der elliptischen Funktionen
und die Auflosung der Gleichungen funften Grades” which appeared in may 1878 in the
Mathematische Annalen (Bd. 14 1878/79). He even adds the j-values which make it clear
why black triangles should be oriented counter-clockwise and white triangles clockwise. If
Klein would still be around today, I’m certain he’d be a metapost-guru.

So, perhaps the tessellation should be called Klein’s tessellation?? Well, not quite. Here’s
what Klein writes wrt. figure 7

” Diese Figur nun - welche die eigentliche Grundlage fur das Nachfolgende abgibt - ist
eben diejenige, von der Dedekind bei seiner Darstellung ausgeht. Er kommt zu ihr durch
rein arithmetische Betrachtung.”

Case closed : Klein clearly acknowledges that Dedekind did have this picture in mind when
writing his 1877 paper!

But then, there are a few odd things about Klein’s paper too, and, I do have a toy-theory
about this as well... (tbc)

2.4 Monsieur Mathieu

Take your favourite SL2(Z)-representation. Here is mine : the permutation presentation of
the Mathieu group(s). Emile Leonard Mathieu is remembered especially for his discovery
(in 1861 and 1873) of five sporadic simple groups named after him, the Mathieu groups
M11,M12,M22,M23 and M24. These were studied in his thesis on transitive functions.

He had a refreshingly direct style of writing. I’m not sure what Cauchy would have thought
(Cauchy died in 1857) about this ’acknowledgement’ in his 1861-paper in which Mathieu
describes M12 and claims the construction of M24.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Klein.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Mathieu_Emile.html
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Also the opening sentenses of his 1873 paper are nice, something along the lines of ”if no
expert was able to fill in the details of my claims made twelve years ago, I’d better do it
myself”.

However, even after this paper opinions remained divided on the issue whether or not he
did really achieve his goal, and the matter was settled decisively by Ernst Witt connecting
the Mathieu groups to Steiner systems (if I recall well from Mark Ronan’s book Symmetry
and the monster)

As Mathieu observed, the quickest way to describe these groups would be to give genera-
tors, but as these groups are generated by two permutations on 12 respectively 24 elements,
we need to have a mnemotechnic approach to be able to reconstruct them whenever needed.

Here is a nice approach, due to Gunther Malle in a Luminy talk in
1993 on ”Dessins d’enfants” (more about them later). Consider
the drawing of ”Monsieur Mathieu” on the left. That is, draw the
left-handed bandit picture on 6 edges and vertices, divide each
edge into two and give numbers to both parts (the actual num-
bering is up to you, but for definiteness let us choose the one on
the left). Then, M12 is generated by the order two permutation
describing the labeling of both parts of the edges

s = (1, 2)(3, 4)(5, 8)(7, 6)(9, 12)(11, 10)

together with the order three permutation obtained from cycling
counterclockwise around a trivalent vertex and calling out the la-
bels one encounters. For example, the three cycle corresponding
to the ’neck vertex’ is (1, 2, 3) and the total permutation is

t = (1, 2, 3)(4, 5, 6)(8, 9, 10)

A quick verification using GAP tells that these elements do indeed
generate a simple group of order 95040.

http://www.amazon.co.uk/Symmetry-Monster-Greatest-Quests-Mathematics/dp/0192807226/
http://www.amazon.co.uk/Symmetry-Monster-Greatest-Quests-Mathematics/dp/0192807226/
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Similarly, if you have to reconstruct the largest Mathieu group from scratch, apply the same
method to the the pictures above, copied from Alexander Zvonkin’s paper How to draw a
group as well as the computational details below.

This is all very nice and well but what do these drawings have to do with Grothendieck’s
”dessins d’enfants”? Consider the map from the projective line onto itself

P1C → P1C
defined by the rational map

f(z) = (z3−z2+az+b)3(z3+cz2+dz+e)
Kz

where N. Magot calculated that

a = 107+7
√
−11

486 , b = − 13
567a+ 5

1701 , c = − 17
9 , d = 23

7 a+ 256
567 , e = − 1573

567 a+ 605
1701

and finally

K = − 16192
301327047a+ 10880

903981141

One verifies that this map is 12 to 1 everywhere except over the points 0, 1,∞ (that is,
there are precisely 12 points mapping under f to a given point of P1C − 0, 1,∞. From the
expression of f(z) it is clear that over 0 there lie 6 points (3 of which with multiplicity three,
the others of multiplicity one). Over∞ there are two points, one with multiplicity 11 and
one with multiplicity one. The difficult part is to compute the points lying over 1. The
miraculous fact of the given values is that

f(z)− 1 = −B(z)2

Kz

with

B(z) = z6 + 1
11 (10c− 8)z5 + (5a+ 9d− 7c)z4

+(2b + 4ac + 8e − 6d)z3 + (3ad + bc − 5e)z2 +
2aez − be)

and hence there are 6 points lying over 1 each with
mutiplicity two.

Right, now consider the complex projective line P1C
as the Riemann sphere S2 and mark the six points
lying over 1 by a white vertex and the six points ly-
ing over 0 with a black vertex (in the source sphere).

Now, lift the real interval [0, 1] in the target sphere
P1C = S2 to its inverse image on the source sphere.

http://www.labri.fr/perso/zvonkin/
http://www.labri.fr/perso/zvonkin/Research/drawgroup.ps.gz
http://www.labri.fr/perso/zvonkin/Research/drawgroup.ps.gz
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As there are exactly 12 points lying over each real number 0 � r � 1, this inverse image
will consist of 12 edges which are noncrossing and each end in one black and one white
vertex.

The obtained graph will look like the ”Monsieur Mathieu” drawing above with the vertices
corresponding to the black vertices and the three points over 1 of multiplicity three corre-
sponding to the trivalent vertices, those of multiplicity one to the three end-vertices. The
white vertices correspond to mid-points of the six edges, so that we do get a drawing with
twelve edges, one corresponding to each number.

From the explicit description of f(z) it is clear that this map is defined over Q
√
−11 which

is also the smallest field containing all character-values of the Mathieu groupM12. Further,
the Galois group of the extension Gal(Q

√
−11/Q) = Z/2Z and is generated by complex

conjugation. So, one might wonder what would happen if we replaced in the definition of
the rational map f(z) the value of a by a = 107−

√
−11

486 .

It turns out that this modified map has the same properties as f(z) so again one can draw
on the source sphere a picture consisting of twelve edges each ending in a white and black
vertex.

If we consider the white vertices (which incidentally each lie on
two edges as all points lying over 0 are of multiplicity two) as mid-
points of longer edges connecting the black vertices we obtain a
drawing on the sphere which looks like ”Monsieur Mathieu” but
this time as a right handed bandit, and applying our mnemotech-
nic rule we obtain another (non conjugated) embedding of M12

in the full symmetric group on 12 vertices.

What is the connection with SL2(Z)-representations? Well, the
permutation generators s and t of M12 (or M24 for that matter)
have orders two and three, whence there is a projection from the
free group product C2 ? C3 (here Cn is just the cyclic group of
order n) onto M12 (respectively M24).

We will say more about such free group products and show
(among other things) that PSL2(Z) ' C2 ? C3 whence the con-
nection with SL2(Z). Further on, we will extend the Monsieur
Mathieu example to arbitrary dessins dénfants which will allow
us to assign to curves defined over Q permutation representations

of SL2(Z) and other cartographic groups such as the congruence subgroups Γ0(2) and
Γ(2).

2.5 The best rejected research proposal, ever

The Oscar in the category The Best Rejected Research Proposal in
Mathematics (ever) goes to ... Alexander Grothendieck for his pro-
posal Esquisse d’un Programme, Grothendieckś research program
from 1983, written as part of his application for a position at the
CNRS, the French equivalent of the NSF. An English translation is
available.

Here is one of the problems discussed : Give TWO non-trivial elements
ofGal(Q/Q) the absolute Galois group of the algebraic closure of the
rational numbers Q, that is the group of all Q-automorphisms of Q.
One element most of us can give (complex-conjugation) but to find
any other element turns out to be an extremely difficult task.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Grothendieck.html
http://www.math.jussieu.fr/~leila/grothendieckcircle/EsquisseFr.pdf
http://www.math.jussieu.fr/~leila/grothendieckcircle/EsquisseEng.pdf
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To get a handle on this problem, Grothendieck introduced his ’Dessins d’enfants’ (Chil-
dren’s drawings). Recall from the last section the pictures of the left and right handed
Monsieur Mathieu

The left hand side drawing was associated to a map P1C → P1C which was defined over
the field Q

√
−11 whereas the right side drawing was associated to the map given when

one applies to all coefficients the unique non-trivial automorphism in the Galois group
Gal(Q

√
−11/Q) (which is complex-conjugation).

Hence, the Galois group Gal(Q
√
−11/Q) acts faithfully on the drawings associated to

maps P1Q√−11 → P1Q√−11 which are ramified only over the points 0, 1,∞.

Grothendieck’s idea was to extend this to more general maps. Assume that a projective
smooth curve (a Riemann surface) X is defined over the algebraic numbers Q and assume
that there is a map X → P1C ramified only over the points 0, 1,∞, then we can repeat the
procedure of last time and draw a picture on X consisting of d edges (where d is the degree
of the map, that is the number of points lying over another point of P1C) between white resp.
black points (the points of X lying over 1 (resp. over 0)).

Call such a drawing a ’dessin dénfant’ and look at the collection of ALL dessins d’enfants
associated to ALL such maps where X runs over ALL curves defined over Q. On this
set, there is an action of the absolute Galois group Gal(Q/Q) and if this action would be
faithful, then this would give us insight into this group. However, at that time even the
existence of a map X → P1 ramified in the three points 0, 1,∞ seemed troublesome to
prove, as Grothendieck recalls in his proposal

”In more erudite terms, could it be true that every projective non-singular algebraic curve
defined over a number field occurs as a possible modular curve parametrising elliptic
curves equipped with a suitable rigidification? Such a supposition seemed so crazy that I
was almost embarrassed to submit it to the competent people in the domain. Deligne when
I consulted him found it crazy indeed, but didn’t have any counterexample up his sleeve.
Less than a year later, at the International Congress in Helsinki, the Soviet mathematician
Bielyi announced exactly that result, with a proof of disconcerting simplicity which fit
into two little pages of a letter of Deligne never, without a doubt, was such a deep and
disconcerting result proved in so few lines!

” In the form in which Bielyi states it, his result essentially says that every algebraic curve
defined over a number field can be obtained as a covering of the projective line ramified
only over the points 0, 1 and infinity. This result seems to have remained more or less
unobserved. Yet, it appears to me to have considerable importance. To me, its essential
message is that there is a profound identity between the combinatorics of finite maps on
the one hand, and the geometry of algebraic curves defined over number fields on the other.
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This deep result, together with the algebraic- geometric interpretation of maps, opens the
door onto a new, unexplored world within reach of all, who pass by without seeing it. ”

Belyi’s proof is indeed relatively easy (full details can be found in the paper Dessins
d’enfants on the Riemann sphere by Leila Schneps). Roughly it goes as follows : as both
X and the map are defined over Q the map is only ramified over (finitely many) Q-points.
Let S be the finite set of all Galois-conjugates of these points and consider the polynomial

f0(z0) =
∏
s∈S(z0 − s) ∈ Q[z0]

Now, do a resultant trick. Consider the polynomial f1(z1) = Resz0( df0dz0
, f0(z0)− z1) then

the roots of f1(z1) are exactly the finite critical values of f0, f1 is again defined overQ and
has lower degree (in z1) than f0 in z1. Continue this trick a finite number of times untill
you have constructed a polynomial fn(zn) ∈ Q[zn] of degree zero.

Composing the original map with the maps fj in succession yields that all ramified points
of this composition are Q-points! Now, we only have to limit the number of these ramified
Q-points (let us call this set T) to three.

Take any three elements of T, then there always exist integers m,n ∈ Z such that the
three points go under a linear fractional transformation (a Moebius-function associated to
a matrix in PGL2(Q)) to 0, m

m+n , 1. Under the transformation z → (m+n)m+n

mmnn zm(1 −
z)n the points 0 and 1 go to 0 and m

m+n goes to 1 whence the ramified points of the
composition are one less in number than T. Continuing in this way we can get the set of
ramifiedQ-points of a composition at most having three elements and then a final Moebius
transformation gets them to 0, 1,∞, done!

As a tribute for this clever argument, maps X → P1
ramified only in 0,1 and ∞ are now called Be-
lyi morphisms. Here is an example of a Belyi-
morphism (and the corresponding dessin d’enfants)
associated to one of the most famous higher genus
curves around : the Klein quartic (if you haven’t
done so yet, take your time to go through this mar-
velous pre-blog post by John Baez).

One can define the Klein quartic as the plane pro-
jective curve K with defining equation in P2mathbbC
given by X3Y + Y 3Z + Z3X = 0 K has a large
group of automorphism, namely the simple group
of order 168 G = PSL2(F7) = SL3(F2).

It is a classical fact (see for example the excellent
paper by Noam Elkies The Klein quartic in number
theory) that the quotient map K → K/G = P1C is

ramified only in the points 0,1728 and∞ and the number of points of K lying over them
are resp. 56, 84 and 24.

Now, compose this map with the Moebius transformation taking 0, 1728,∞ → 0, 1,∞
then the resulting map is a Belyi-map for the Klein quartic. A topological construction
of the Klein quartic is fitting 24 heptagons together so that three meet in each vertex, see
below for the gluing data-picture in the hyperbolic plane : the different heptagons are given
a number but they appear several times telling how they must fit together)

http://www.math.jussieu.fr/~leila/Fschneps.pdf
http://www.math.jussieu.fr/~leila/Fschneps.pdf
http://en.wikipedia.org/wiki/Resultant
http://math.ucr.edu/home/baez/klein.html
http://www.msri.org/publications/books/Book35/files/elkies.pdf
http://www.msri.org/publications/books/Book35/files/elkies.pdf
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The resulting figure has exactly 7×24
2 = 84 edges and the 84 points of K lying over 1 (the

white points in the dessin) correspond to the midpoints of the edges. There are exactly
7×24

3 = 56 vertices corresponding to the 56 points lying over 0 (the black points in the
dessin).

Hence, the dessin dénfant associated to the Klein quartic is the figure traced out by the
edges on K. Giving each of the 168 half-edges a different number one assigns to the white
points a permutation of order two and to the three-valent black-points a permutation of
order three, whence to the Belyi map of the Klein quartic corresponds a 168-dimensional
permutation representation of SL2(Z), which is not so surprising as the group of automor-
phisms is PSL2(F7) and the permutation representation is just the regular representation
of this group.

Further on, we will see how one can always associate to a curve defined over Q a permuta-
tion representation (via the Belyi map and its dessin) of one of the congruence subgroups
Γ(2) or Γ0(2) or of SL2(Z) itself.

2.6 The cartographer’s groups (1/2)

Just as cartographers like Mercator drew maps of the then known world, we draw dessins
d ’enfants to depict the associated algebraic curve defined over Q.

In order to see that such a dessin d’enfant determines a permutation representation of one of
Grothendieck’s cartographic groups, SL2(Z),Γ0(2) or Γ(2) we need to have realizations
of these groups (as well as their close relatives PSL2(Z), GL2(Z) and PGL2(Z)) in terms
of generators and relations.

http://en.wikipedia.org/wiki/Gerardus_Mercator
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As this will be rather technical I’d better first explain what we will prove (so that you can
skip it if you feel comfortable with the statements) and why we want to prove it. What
we will prove in detail below is that these groups can be written as free (or amalgamated)
group products. We will explain what this means and will establish that

PSL2(Z) = C2 ∗ C3,Γ0(2) = C2 ∗ C∞,Γ(2) = C∞ ∗ C∞
SL2(Z) = C4 ∗C2

C6, GL2(Z) = D4 ∗D2
D6, PGL2(Z) = D2 ∗C2

D3

where Cn resp. Dn are the cyclic (resp. dihedral) groups. The importance of these facts
it that they will allow us to view the set of (isomorphism classes of) finite dimensional
representations of these groups as noncommutative manifolds . Looking at the statements
above we see that these arithmetical groups can be build up from the first examples in any
course on finite groups : cyclic and dihedral groups.

Recall that the cyclic group of order n, Cn is the group of rotations of a regular n-gon (so
is generated by a rotation r with angle 2π

n and has defining relation rn = 1, where 1 is the
identity). However, regular n-gons have more symmetries : flipping over one of its n lines
of symmetry

The dihedral group Dn is the group generated by the n rotations and by these n flips. If,
as before r is a generating rotation and d is one of the flips, then it is easy to see that the
dihedral group is generated by r and d and satisfied the defining relations

rn = 1 and d2 = 1 = (rd)2

Flipping twice does nothing and to see the relation (rd)2 = 1 check that doing twice a
rotation followed by a flip brings all vertices back to their original location. The dihedral
group Dn has 2n elements, the n-rotations ri and the n flips dri.

In fact, to get at the cartographic groups we will only need the groups D4, D6 and their
subgroups. Let us start by finding generators of the largest group GL2(Z) which is the
group of all invertible 2× 2 matrices with integer coefficients.

Consider the elements

U =

[
0 −1
1 0

]
, V =

[
0 1
−1 1

]
and R =

[
0 1
1 0

]
and form the matrices

X = UV =

[
1 −1
0 1

]
, Y = V U =

[
1 0
1 1

]
By induction we prove the following relations in GL2(Z)
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Xn

[
a b
c d

]
=

[
a− nc b− nd
c d

]
and

[
a b
c d

]
Xn =

[
a b− na
c d− nc

]
Y n
[
a b
c d

]
=

[
a b

c+ na d+ nb

]
and

[
a b
c d

]
Y n =

[
a+ nb b
c+ nd d

]
The determinant ad-bc of a matrix in GL2(Z) must be ±1 whence all rows and columns of[
a b
c d

]
∈ GL2(Z)

consist of coprime numbers and hence a and c can be reduced modulo each other by left
multiplication by a power of X or Y until one of them is zero and the other is ±1. We may
even assume that a = ±1 (if not, left multiply with U).

So, by left multiplication by powers of X and Y and U we can bring any element ofGL2(Z)
into the form[
±1 β
0 ±1

]
and again by left multiplication by a power of X we can bring it in one of the four forms[
±1 0
0 ±1

]
= 1, UR,RU,U2

This proves that GL2(Z) is generated by the elements U,V and R.

Similarly, the group SL2(Z) of all 2 × 2 integer matrices with determinant 1 is generated
by the elements U and V as using the above method and the restriction on the determinant
we will end up with one of the two matrices[
1 0
0 1

]
,

[
−1 0
0 −1

]
= 1, U2

so we never need the matrix R. As for relations, there are some obvious relations among
the matrices U,V and R, namely

U2 = V 3 and 1 = U4 = R2 = (RU)2 = (RV )2

The real problem is to prove that all remaining relations are consequences of these basic
ones. As R clearly has order two and its commutation relations with U and V are just
RU = U−1R and RV = V −1R we can pull R in any relation to the far right and (possibly
after multiplying on the right with R) are left to prove that the only relations among U and
V are consequences of U2 = V 3 and U4 = 1 = V 6.

Because U2 = V 3 this element is central in the group generated by U and V (which we
have seen to be SL2(Z)) and if we quotient it out we get the **modular group**

Γ = PSL2(Z)

Hence in order to prove our claim it suffices that

PSL2(Z) = 〈U, V : U
2

= V
3

= 1〉

Phrased differently, we have to show that PSL2(Z) is the **free group product** of the
cyclic groups of order two and three (those generated by u = U and v = V ) C2 ∗ C3

Any element of this free group product is of the form (u)va1uva2u . . . uvak(u) where
beginning and trailing u are optional and all ai are either 1 or 2.

So we have to show that in PSL2(Z) no such word can give the identity element. We
will first sketch the classical argument based on the theory of groups acting on trees due to
Jean-Pierre Serre and Hyman Bass.

http://en.wikipedia.org/wiki/Jean-Pierre_Serre
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In the next section, we will give a short elegant proof due to Roger Alperin and draw
consequences to the description of the carthographic groups as amalgamated free products
of cyclic and dihedral groups.

Recall that GL2(Z) acts via Moebius transformations on the complex plane C = R2 (ac-
tually it is an action on the Riemann sphere P1C) given by the maps[
a b
c d

]
.z = az+b

cz+d

Note that the action of the center of GL2(Z) (that is of ±
[
1 0
0 1

]
) acts trivially, so it is

really an action of PGL2(Z).

As R interchanges the upper and lower half-plane we might as well restrict to the action
of SL2(Z) on the upper-halfplane H. It is quite easy to see that a fundamental domain for
this action is given by the greyed-out area

To see that any z ∈ H can be taken into this region by an element of PSL2(Z) note the
following two Moebius transformations[
1 1
0 1

]
.z = z + 1 and

[
0 1
−1 0

]
.z = − 1

z

The first operation takes any z into a strip of length one, for example that with Re(z) be-
tween − 1

2 and 1
2 and the second interchanges points within and outside the unit-circle, so

combining the two we get any z into the greyed-out region. Actually, we could have taken
any of the regions in the above tiling as our fundamental domain as they are all translates
of the greyed-out region by an element of PSL2(Z).

Of course, points on the boundary of the greyed-out fundamental region need to be identi-
fied (in order to get the identification ofH/PSL2(Z) with the Riemann sphere S2 = P1C).
For example, the two halves of the boundary by the unit circle are interchanged by the
action of the map z → − 1

z and if we take the translates under PSL2(Z) of the indicated
circle-part

http://www.math.sjsu.edu/~alperin/
http://en.wikipedia.org/wiki/Möbius_transformation
http://en.wikipedia.org/wiki/Fundamental_domain
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we get a connected tree with fundamental domain the circle part bounded by i and ρ =
1
2 +

√
3
2 i. Calculating the stabilizer subgroup of i (that is, the subgroup of elements fixing

i) we get that this subgroup is 〈u〉 = C2 whereas the stabilizer subgroup of ρ is 〈v〉 = C3.

Using this facts and the general results of Jean-Pierre Serres book Trees one deduces that
PSL2(Z) = C2 ∗ C3 and hence that the obvious relations among U,V and R given above
do indeed generate all relations.

2.7 The cartographer’s groups (2/2)

Fortunately, there is a drastic shortcut to the general tree-argument of the previous section,
due to Roger Alperin. Recall that the Moebius transformations corresponding to u resp. v
send z resp. to

− 1
z and 1

1−z

whence the Moebius transformation corresponding to v−1 send z to 1− 1
z .

Consider the set P of all positive irrational real numbers and the set N of all negative
irrational real numbers and observe that

u(P) ⊂ N and v±(N ) ⊂ P

We have to show that no alternating word w = (u)v±uv±u . . . v±(u) in u and v± can be
the identity in PSL2(Z).

If the length of w is odd then either w(P) ⊂ N or w(N ) ⊂ P depending on whether w
starts with a u or with a v± term. Either way, this proves that no odd-length word can be
the identity element in PSL2(Z).

If the length of the word w is even we can assume that w = v±uv±u . . . v±u (if necessary,
after conjugating with u we get to this form).

There are two subcases, either w = v−1uv±u . . . v±u in which case w(P) ⊂ v−1(N ) and
this latter set is contained in the set of all positive irrational real numbers which are strictly
larger than one.

Or, w = vuv±u . . . v±u in which case w(P) ⊂ v(N ) and this set is contained in the set of
all positive irrational real numbers strictly smaller than one.

Either way, this shows that w cannot be the identity morphism on P so cannot be the
identity element in PSL2(Z). Hence we have proved that

PSL2(Z) = C2 ∗ C3 = 〈u, v : u2 = 1 = v3〉

A description of SL2(Z) in terms of generators and relations follows

SL2(Z) = 〈U, V : U4 = 1 = V 6, U2 = V 3〉

It is not true that SL2(Z) is the free product C4 ∗C6 as there is the extra relation U2 = V 3.

This relation says that the cyclic groups C4 = 〈U〉 and C6 = 〈V 〉 share a common sub-
group C2 = 〈U2 = V 3〉 and this extra condition is expressed by saying that SL2(Z) is
the amalgamated free product of C4 with C6, amalgamated over the common subgroup C2

and denoted as

SL2(Z) = C4 ∗C2 C6

More generally, if G and H are finite groups, then the free product G ∗ H consists of
all words of the form (g1)h1g2h2g3 . . . gnhn(gn−1) (so alternating between non-identity
elements of G and H) and the group-law is induced by concatenation of words (and group-
laws in either G or H when end terms are elements in the same group).

http://www.amazon.co.uk/gp/reader/3540442375/
http://www.math.sjsu.edu/~alperin/
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For example, take the dihedral groups D4 = 〈U,R : U4 = 1 = R2, (RU)2 = 1〉 and
D6 = 〈V, S : V 6 = 1 = S2, (SV )2 = 1〉 then the free product can be expressed as

D4 ∗D6 = 〈U, V,R, S : U4 = 1 = V 6 = R2 = S2 = (RV )2 = (RU)2〉

This almost fits in with our obtained description of GL2(Z)

GL2(Z) = 〈U, V,R : U4 = 1 = V 6 = R2 = (RU)2 = (RV )2, U2 = V 3〉

except for the extra relations R = S and U2 = V 3 which express the fact that we demand
that D4 and D6 have the same subgroup

D2 = 〈U2 = V 3, S = R〉

So, again we can express these relations by saying that GL2(Z) is the amalgamated free
product of the subgroups D4 = 〈U,R〉 and D6 = 〈V,R〉, amalgamated over the common
subgroup D2 = C2 × C2 = 〈U2 = V 3, R〉. We write

GL2(Z) = D4 ∗D2
D6

Similarly (but a bit easier) for PGL2(Z) we have

PGL2(Z) = 〈u, v,R | u2 = v3 = 1 = R2 = (Ru)2 = (Rv)2〉

which can be seen as the amalgamated free product of D2 = 〈u,R〉 with D3 = 〈v,R〉,
amalgamated over the common subgroup C2 = 〈R〉 and therefore

PGL2(Z) = D2 ∗C2
D3

Now let us turn to congruence subgroups of the modular group. With Γ(n) one denotes the
kernel of the natural surjection

PSL2(Z)→ PSL2(Z/nZ)

that is all elements represented by a matrix[
a b
c d

]
such that a = d = 1 (mod n) and b = c = 0 (mod n). On the other hand Γ0(n) consists
of elements represented by matrices such that only c = 0 (mod n). Both are finite index
subgroups of PSL2(Z).

As we have seen that PSL2(Z) = C2 ∗ C3 it follows from general facts on free products
that any finite index subgroup is of the form

C2 ∗ C2 ∗ · · · ∗ C2 ∗ C3 ∗ C3 ∗ · · · ∗ C3 ∗ C∞ ∗ C∞ · · · ∗ C∞
that is the free product of k copies of C2, l copies of C3 and m copies of C∞ where it
should be noted that k,l and m are allowed to be zero. There is an elegant way to calculate
explicit generators of these factors for congruence subgroups, due to Ravi S. Kulkarni
(An Arithmetic-Geometric Method in the Study of the Subgroups of the Modular Group ,
American Journal of Mathematics, Vol. 113, No. 6. (Dec., 1991), pp. 1053-1133) which
we will discuss later.

Using this method one finds that Γ0(2) is generated by the Moebius transformations corre-
sponding to the matrices

X =

[
1 1
0 1

]
and Y =

[
1 −1
2 −1

]
and that generators for Γ(2) are given by the matrices

A =

[
1 0
−2 1

]
and B =

[
1 −2
2 −3

]

http://en.wikipedia.org/wiki/Modular_group_Gamma
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Next, one has to write these generators in terms of the generating matrices u and v of
PSL2(Z) and as we know all relations between u and v the relations of these congruence
subgroups will follow.

We will give the details for Γ0(2) and leave you to figure out that Γ(2) = C∞ ∗ C∞ (that
is that there are no relations between the matrices A and B).

Calculate that X = v2u and that Y = vuv2. Because the only relations between u and v
are v3 = 1 = u2 we see that Y is an element of order two as Y 2 = vuv3uv2 = v3 = 1 and
that no power of X can be the identity transformation.

But then also none of the elements (Y )Xi1Y Xi2Y . . . Y Xin(Y ) can be the identity (write
it out as a word in u and v) whence, indeed

Γ0(2) = C∞ ∗ C2

The picture is due to Helena Verrill and she has a page with more pictures. The picture
above depicts a way to get a fundamental domain for the action of Γ0(2) on the upper half
plane. Such a fundamental domain consists of any choice of 6 tiles with different colours
(note that there are two shades of blue and green). Helena also has a Java-applet to draw
fundamental domains of more congruence subgroups.

2.8 Permutation representations of monodromy groups

We will explain how curves defined over Q determine permutation representations of the
carthographic groups.

We have seen that any smooth projective curve C (a Riemann surface) defined over the
algebraic closure Q of the rationals, defines a Belyi map C

π // P1 which is
only ramified over the three points
0, 1,∞.

By this we mean that there are exactly d points of C lying over any other point of P1 (we
call d the degree of π) and that the number of points over 0, 1 and ∞ is smaller than d.
To such a map we associate a dessin dénfant, a drawing on C linking the pre-images of 0
and 1 with exactly d edges (the preimages of the open unit-interval).

Next, we look at the preimages of 0 and associate a permutation τ0 of d letters to it by
cycling counter-clockwise around these preimages and recording the edges we meet. We
repeat this procedure for the preimages of 1 and get another permutation τ1. That is, we
obtain a subgroup of the symmetric group 〈τ0, τ1〉 ⊂ Sd which is called the monodromy
group of the covering π.

http://www.math.lsu.edu/~verrill/
http://www.math.lsu.edu/~verrill/fundomain/magmaFD.html
http://www.math.lsu.edu/~verrill/fundomain/index2.html
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For example, the dessin on the leftis associated to a degree 8 map
P1 → P1 and if we let the black (resp. starred) vertices be the
preimages of 0 (respectively of 1), then the corresponding parti-
tions are τ0 = (2, 3)(1, 4, 5, 6) and τ1 = (1, 2, 3)(5, 7, 8) and the
monodromy group is the alternating group A8 (use GAP).

But wait! The map is also ramified in∞ so why dont́ we record
also a permutation τ∞ and are able to compute it from the dessin?
(Note that all three partitions are needed if we want to reconstruct
C from the d sheets as they encode in which order the sheets fit
together around the preimages).

Well, the monodromy group of a P1 covering ramified only in
three points is an epimorphic image of the fundamental group
of the sphere minus three points π1(P1 − 0, 1,∞). That is, the
group of all loops beginning and ending in a basepoint upto ho-
motopy (that is, two such loops are the same if they can be trans-
formed into each other in a continuous way while avoiding the

three points).

This group is generated by loops σi running from the basepoint
to nearby the i-th point, doing a counter-clockwise walk around
it and going back to be basepoint Q0 and the epimorphism to the
monodromy group is given by sending

σ1 7→ τ0 σ2 7→ τ1 σ3 7→ τ∞

Now, these three generators are not independent. In fact, this fun-
damental group is

π1(P1 − {0, 1,∞}) = 〈σ1, σ2, σ3 | σ1σ2σ3 = 1〉

To understand this, let us begin with an easier case, that of the
sphere minus one point. The fundamental group of the plane mi-
nus one point is Z as it encodes how many times we walk around
the point. However, on the sphere the situation is different as we
can make our walk around the point longer and longer until the whole walk is done at
the backside of the sphere and then we can just contract our walk to the base point. So,
there is just one type of walk on a sphere minus one point (up to homotopy) whence this
fundamental group is trivial. Next, let us consider the sphere minus two points

Repeat the foregoing to the walk σ2, that is, strech the upper part of the circular tour all
over the backside of the sphere and then we see that we can move it to fit with the walk
σ1 BUT for the orientation of the walk! That is, if we do this modified walk σ1σ

′

2 we just
made the trivial walk. So, this fundamental group is 〈σ1, σ2 | σ1σ2 = 1〉 = Z This is also
the proof of the above claim. For, we can modify the third walk σ3 continuously so that it
becomes the walk σ1σ2 but with the reversed orientation!

http://www.gap-system.org/
http://en.wikipedia.org/wiki/Fundamental_group
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As σ3 = (σ1σ2)−1 this allows us to compute the ḿissingṕermutation τ∞ = (τ0τ1)−1 In the
example above, we obtain τ∞ = (1, 2, 6, 5, 8, 7, 4)(3) so it has two cycles corresponding to
the fact that the dessin has two regions (remember we should draw ths on the sphere) : the
head and the outer-region. Hence, the pre-images of∞ correspond to the different regions
of the dessin on the curve C. For another example, consider the degree 168 map

K → P1

which is the modified orbit map for the action of PSL2(F7) on the Klein quartic. The
corresponding dessin is the heptagonal construction of the Klein quartic

Here, the pre-images of 1 correspond to the midpoints of the 84 edges of the polytope
whereas the pre-images of 0 correspond to the 56 vertices. We can label the 168 half-edges
by numbers such that τ0 and τ1 are the standard generators b resp. a of the 168-dimensional
regular representation (see the atlas page).

Calculating with GAP the element τ∞ = (τ0τ1)−1 = (ba)−1 one finds that this permuta-
tion consists of 24 cycles of length 7, so again, the pre-images of∞ lie one in each of the 24
heptagonal regions of the Klein quartic. Now, we are in a position to relate curves defined
over Q via their Belyi-maps and corresponding dessins to Grothendiecks carthographic
groups Γ(2), Γ0(2) and SL2(Z).

The dessin gives a permutation representation of the monodromy group and because the
fundamental group of the sphere minus three points π1(P1 −
0, 1,∞) = 〈σ1, σ2, σ3 | σ1σ2σ3 = 1〉 = 〈σ1, σ2〉 is the free group op two generators, we
see that any dessin determines a permutation representation of the congruence subgroup
Γ(2).

A clean dessin is one for which one type of vertex has all its valancies (the number of
edges in the dessin meeting the vertex) equal to one or two. (for example, the pre-images
of 1 in the Klein quartic-dessin or the pre-images of 1 in the monsieur Mathieu example).

The corresponding permutation τ1 then consists of 2-cycles and hence the monodromy
group gives a permutation representation of the free product C∞ ∗ C2 = Γ0(2) Finally, a
clean dessin is said to be a quilt dessin if also the other type of vertex has all its valancies
equal to one or three (as in the Klein quartic or Mathieu examples).

http://brauer.maths.qmul.ac.uk/Atlas/v3/permrep/L27G1-p168B0
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Then, the corresponding permutation has order 3 and for these quilt-dessins the mon-
odromy group gives a permutation representation of the free product C2 ∗C3 = PSL2(Z).

2.9 Modular quilts and cuboid tree diagrams

Conjugacy classes of finite index subgroups of the
modular group Γ = PSL2(Z) are determined by a
combinatorial gadget : a modular quilt.

By this we mean a finite connected graph drawn on
a Riemann surface such that its vertices are either
black or white. Moreover, every edge in the graph
connects a black to a white vertex and the valency
(that is, the number of edges incident to a vertex) of
a black vertex is either 1 or 2, that of a white vertex
is either 1 or 3. Finally, for every white vertex of
valency 3, there is a prescribed cyclic order on the
edges incident to it.

On the left a modular quilt consisting of 18 num-
bered edges (some vertices and edges re-appear)

which gives a honeycomb tiling on a torus. All white vertices have valency 3 and the
order of the edges is given by walking around a point in counterclockwise direction. For
example, the order of the edges at the top left vertex (which re-appears at the middle right
vertex) can be represented by the 3-cycle (6,11,14), that around the central vertex gives the
3-cycle (2,7,16).

We have seen that the modular group Γ is freely generated by the two elements

U =

[
0 1
−1 0

]
V =

[
1 1
−1 0

]
and remark that U2 = V 3 = 1. To a modular quilt having d edges we can associate a
transitive permutation representation of Γ on d letters (the labels of the edges) such that
the action of U is given by the order two permutation given by the product of all 2-cycles
of incident edges to black 2-valent vertices and the action of V is given by the order three
permutation given by the cyclic ordering of edges around white 3-valent vertices in the
quilt. For the example above we have

U → (1, 7)(2, 15)(3, 9)(4, 17)(5, 11)(6, 13)(8, 18)(10, 14)(12, 16)

V → (1, 13, 8)(2, 7, 16)(3, 15, 10)(4, 9, 18)(5, 17, 12)(6, 11, 14)

The (index d) subgroup of Γ corresponding to the modular quilt is then the stabilizer sub-
group of a fixed edge. Note that choosing a different edge gives a conjugate subgroup.

Conversely, given an index d subgroup G we can label the d left-cosets in Γ/G by the
numbers 1,2,...,d and describe the action of left multiplication by U and V on the cosets as
permutations in the symmetric group Sd. Because U has order two, its permutation will
be a product of two cycles which we can interprete as giving the information on edges
incident to 2-valent black vertices. Similarly, V has order three and hence its permutation
consists of 3-cycles giving the ordering of edges around 3-valent white vertices. Edges not
appearing in U (resp. V) have as their leaf-vertex a black (resp. white) vertex of valency
1. Because the permutation action is transitive, this procedure gives a connected graph on
d edges, d white and d black vertices and is a modular quilt.

In order to connect modular quilts to special hyperbolic polygons we need the intermediate
concept of cuboid tree diagrams. These are trees (that is, connected graphs without cycles)

http://en.wikipedia.org/wiki/Modular_group
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such that all internal vertices are 3-valent (and have an order on the incident edges) and
the leaf-vertices are tinted either red or blue. In addition, there is an involution on the red
vertices.

The tree on the left is a cuboid tree, the involution interchanges the two top red vertices
(indicated by having the same number). We associate to such a cuboid tree diagram a
modular quilt by taking as the white vertices : all internal vertices together with the blue
leaf-vertices, and as the black vertices : the midpoints of internal edges, together with the
midpoints of edges connecting a blue leaf-vertex, together will all red leaf-vertices. If two
red leaf-vertices correspond under the involution, we glue the corresponding black vertices
together.

That is, the picture of the right is the resulting modular quilt. Conversely, starting with a
modular quilt we can always construct from it a cuboid tree diagram by breaking cycles in
black vertices until there are no cycles left. All black leaf-vertices in the resulting tree are
tinted red and correspond under the involution when they came from the same black quilt-
vertex. Remaining leaf-vertices are tinted blue. All internal black vertices are removed (and
the edges incident to them glued into larger edges) and all internal white vertices become
the internal vertices of the cuboid tree.

While a cuboid tree diagram determines the modular quilt uniquely, there are in general
several choices of breaking up cycles in a modular quilt, so also several cuboid tree dia-
grams determining the same modular quilt. That is, we have shown that there are natural
maps

cuboid tree -- modular quilt↔ conjugacy class of finite index subgroup

where the first map is finite to one and the second map is a bijection.

Observe that we can also use modular quilts (or their associated cuboid trees) as a
mnemotechnic device to remember the construction of groups, generated by an order two
and an order three element and having a low dimensional faithful permutation representa-
tion. For example, the sporadic simple Mathieu group M12 has a 12-dimensional permu-
tation representation encoded by the above left quilt, which we call the M12 quilt. That is,
M12 is generated by the two permutations

(1,2)(3,4)(5,6)(7,8)(9,10)(11,12) and (1,2,3)(4,7,5)(8,9,11)

Hence the cuboid tree on the right can be called the M12 tree. Similarly, the sporadic
simple Mathieu group M24 has a 24-dimensional permutation representation which can be
represented by the modular quilt, the M24 quilt
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That is,M24 is generated by the permutations (1,2,3)(4,5,7)(8,9,15)(10,11,13)(16,17,19)(20,21,23)
and (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24) with cor-
responding M24 tree with the two red vertices interchanging under the involution.

References :

Tim Hsu, ”Permutation techniques for cosed representations of modular subgroups”

Ravi S. Kulkarni, ”An arithmetic-geometric method in the study of the subgroups of the
modular group” Amer. J. Math. 113 (1991) 1053-1133

2.10 Hyperbolic Mathieu polygons

We will link modular quilts (via their associated cuboid tree diagrams) to special hyperbolic
polygons. The above drawing gives the hyperbolic polygon (the gray boundary) associated
to the M24 tree diagram (the black interior graph). In general, the correspondence goes as
follows.

Recall that a cuboid tree diagram is a tree such that all internal vertices are 3-valent and
have a specified ordering on the incident edges (given by walking counterclockwise around
the vertex) and such that all leaf-vertices are tinted blue or red, the latter ones are paired
via an involution (indicated by giving paired red vertices the same label). Introduce a new

http://www.math.sjsu.edu/~hsu/pdf/block.pdf
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2-valent vertex on all edges joining two internal vertices or a blue vertex to an internal
vertex.

So, the picture on the right corresponds to the tree diagram on the left. Equip this extended
tree with a metric such that every edge has length equal to an f-edge in the Dedekind
tessellation. Fix an edge having a red vertex and develop this isometrically onto the f-edge
connecting i to ρ in the tessellation. Then, the extended tree develops uniquely along the
f-edges of the tessellation and such that the circled black and blue vertices correspond to
odd vertices, the circled red and added uncircled vertices correspond to even vertices in
the tessellation. Starting from the above tree (and choosing the upper-left edge to start
the embedding), we obtain the picture on the left (we have removed the added 2-valent
vertices)

We will now associate a special hyperbolic polygon to this tree. At a red vertex take the
even line going through the vertex. If under the involution the red vertex is send to itself,
the even edges will be paired.

Otherwise, the line is a free side and will be paired to the free side containing the red vertex
corresponding under the involution. At a blue vertex, take the two odd edges making an
angle of π

3 with the tree-edge containing the blue vertex. These odd edges will be paired.
If we do this procedure for all blue and red vertices, we obtain a special polygon (see the
picture on the right, the two vertical lines are paired). Conversely, suppose we start with a
special polygon such as the one on the left below

and consider all even and odd vertices on the boundary (which are tinted red, respectively
blue) together with all odd vertices in the interior of the special polygon. These are indi-
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cated in the picture on the right above. If we connect these vertices with the geodesics in
the polygon we get a cuboid tree diagram.

This correspondence special polygons -- tree diagrams is finite to one as we have made
a choice in the starting red vertex and edge. If we would have taken the other edge contain-
ing a red vertex we would end up with the following special polygon

It is no accident that these two special polygons consist of exactly 24 triangles of
the Dedekind tessellation as they correspond to the index 12 subgroup of the modular
group Γ determining the 12-dimensional permutation representation of the Mathieu group
M12. Similarly, the top drawing has 48 hyperbolic triangles and corresponds to the 24-
dimensional permutation representation of M24. Next time, we will make the connection
with Farey series which will allow us to give free generators of finite index subgroups.

Reference :

Ravi S. Kulkarni, ”An arithmetic-geometric method in the study of the subgroups of the
modular group”, Amer. J. Math. 113 (1991) 1053-1133

2.11 Farey codes

John Farey (1766-1826) was a geologist of sorts. Eyles, quoted on the math-biographies
site described his geological work as

”As a geologist Farey is entitled to respect for the work which he carried out himself,
although it has scarcely been noticed in the standard histories of geology.”

That we still remember his name after 200 years is due to a short letter he wrote in 1816 to
the editor of the Philosophical Magazine

”On a curious Property of vulgar Fractions. By Mr. J. Farey, Sen. To Mr. Tilloch

Sir. - On examining lately, some very curious and elaborate Tables of ”Complete decimal
Quotients,” calculated by Henry Goodwyn, Esq. of Blackheath, of which he has printed a
copious specimen, for private circulation among curious and practical calculators, prepara-
tory to the printing of the whole of these useful Tables, if sufficient encouragement, either
public or individual, should appear to warrant such a step: I was fortunate while so doing,
to deduce from them the following general property; viz.

If all the possible vulgar fractions of different values, whose greatest denominator (when
in their lowest terms) does not exceed any given number, be arranged in the order of their
values, or quotients; then if both the numerator and the denominator of any fraction therein,

http://en.wikipedia.org/wiki/John_Farey,_Sr.
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Farey.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Farey.html
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be added to the numerator and the denominator, respectively, of the fraction next but one
to it (on either side), the sums will give the fraction next to it; although, perhaps, not in its
lowest terms.

For example, if 5 be the greatest denominator given; then are all the possible fractions,
when arranged, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, and 4/5; taking 1/3, as the given
fraction, we have (1+1)/(5+3) = 2/8 = 1/4 the next smaller fraction than 1/3; or (1+1)/(3+2)
= 2/5, the next larger fraction to 1/3. Again, if 99 be the largest denominator, then, in a part
of the arranged Table, we should have 15/52, 28/97, 13/45, 24/83, 11/38, and if the third of
these fractions be given, we have (15+13)/(52+45) = 28/97 the second: or (13+11)/(45+38)
= 24/83 the fourth of them: and so in all the other cases.

I am not acquainted, whether this curious property of vulgar fractions has been before
pointed out?; or whether it may admit of any easy or general demonstration?; which are
points on which I should be glad to learn the sentiments of some of your mathematical
readers; and am

Sir, Your obedient humble servant, J. Farey. Howland-street.”

So, if we interpolate ”childish addition of
fractions” a

b ⊕
c
d = a+c

b+d and start with the
numbers 0 = 0

1 and∞ = 1
0 we get the bi-

nary Farey-tree. For a fixed natural number
n, if we stop the interpolation whenever the
denominator of the fraction would become
larger than n and order the obtained frac-
tions (smaller or equal to one) we get the
Farey sequence F(n). For example, if n=3
we start with the sequence 0

1 ,
1
1 . The next

step we get 0
1 ,

1
2 ,

1
1 and the next step gives

0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1

and as all the denomnators of childish ad-
dition on two consecutive fractions will be larger than 3, the above sequence is F(3). A
remarkable feature of the series F(n) is that if ab and c

d are consecutive terms in F(n), then

det

[
a c
b d

]
= −1

and so these two fractions are the endpoints of an even geodesic in the Dedekind tessella-
tion.

A generalized Farey series is an ordered collection of fractions∞, x0, x1, · · · , xn,∞ such
that x0 and xn are integers and some xi = 0. Moreover, writing xi = ai

bi
we have that

det

[
ai ai+1

bi bi+1

]
= −1

A Farey code is a generalized Farey sequence consisting of all the vertices of a special
polygon that lie in R ∪ {∞} together with side-pairing information. If two consecutive
terms are such that the complete geodesic between xi and xi+1 consists of two sides of the
polygon which are paired we denote this fact by xi ◦ xi+1 .

If they are the endpoints of two odd sides of the polygon which are paired we denote this
by xi • xi+1 . Finally, if they are the endpoints of a free side which is paired to
another free side determined by xj and xj+1 we denote this fact by marking both edges
xi

k
xi+1 and xj

k
xj+1 with the same number.

http://www.cut-the-knot.org/blue/Farey.shtml
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For example, for the M12 special polygon on the
left (bounded by the thick black geodesics), the only
vertices in R ∪ {∞} are∞, 0, 13 ,

1
2 , 1. The two ver-

tical lines are free sides and are paired, whereas all
other sides of the polygon are odd. Therefore the
Farey-code for this Mathieu polygon is

∞
1

0 •
1

3 •
1

2 • 1
1
∞

Conversely, to a Farey-code we can associate a spe-
cial polygon by first taking the hyperbolic convex
hull of all the terms in the sequence (the region
bounded by the vertical lines and the bottom red cir-
cles in the picture on the left) and adding to it for
each odd interval xi • xi+1 the triangle just
outside the convex hull consisting of two odd edges
in the Dedekind tessellation (then we obtain the re-

gion bounded by the black geodesics). Again, the side-pairing of the obained special poly-
gon can be obtained from that of the Farey-code. This correspondence gives a natural
one-to-one correspondence

special polygons↔ Farey-codes

Later we will see how the Farey-code determines the group structure of the corresponding
finite index subgroup of the modular group Γ = PSL2(Z).

Reference :

Ravi S. Kulkarni, ”An arithmetic-geometric method in the study of the subgroups of the
modular group”, Amer. J. Math 113 (1991) 1053-1133

2.12 Generators of modular subgroups

Wehave already seen that the modular group Γ = PSL2(Z) is the group free product
C2 ∗ C3, so let’s just skim over details here. First one observes that Γ is generated by (the
images of) the invertible 2x2 matrices

U =

[
0 −1
1 0

]
and V =

[
0 1
−1 1

]
A way to see this is to consider X=U.V and Y=V.U and notice that multiplying with powers
of X adds multiples of the second row to the first (multiply on the left) or multiples of the
first column to the second (multiply on the right) and the other cases are handled by taking
multiples with powers of Y. Use this together with the fact that matrices in GL2(Z) have
their rows and columns made of coprime numbers to get any such matrix by multiplication
on the left or right by powers of X and Y into the form[
±1 0
0 ±1

]
and because U2 = V 3 =

[
−1 0
0 −1

]
we see that Γ is an epimorphic image of C2 ∗ C3. To prove isomorphism one can use the
elegant argument due to Roger Alperin considering the action of the Moebius transforma-
tions u(z) = − 1

z and v(z) = 1
1−z (with v−1(z) = 1− 1

z ) induced by the generators U and
V on the sets P andN of all positive (resp. negative) irrational real numbers. Observe that

u(P) ⊂ N and v±(N ) ⊂ P

http://www.math.sjsu.edu/~alperin/
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Hence, if w is a word in u and v± of off length we
either have w(P) ⊂ N or w(N ) ⊂ P so w can
never be the identity. If the length is even we can
conjugate w such that it starts with v±. If it starts
with v then w(P) ⊂ v(N ) is a subset of positive
rationals less than 1 whereas if it starts with v−1

then w(P) ⊂ v−1(N ) is a subset of positive ratio-
nals greater than 1, so again it cannot be the identity.
Done!

By a result of Aleksandr Kurosh it follows that ev-
ery modular subgroup is the group free product op
copies of C2, C3 or C∞ and we would like to de-
termine the free generators explicitly for a cofinite
subgroup starting from its associated Farey code as-
sociated to a special polygon corresponding to the
subgroup.

To every even interval

xi =
ai
bi ◦ xi+1 =

ai+1

bi+1
in the Farey code

one associates the generator of a C2 component

Ai =

[
ai+1bi+1 + aibi −a2i − a2i+1

b2i + b2i+1 −ai+1bi+1 − aibi

]
to every odd interval xi =

ai
bi • xi+1 =

ai+1

bi+1
in the Farey code we associate the

generator of a C3 component the matrix Bi[
ai+1bi+1 + aibi+1 + aibi −a2i − aiai+1 − a2i+1

b2i + bibi+1 + b2i+1 −ai+1bi+1 − ai+1bi − aibi

]
and finally, to every pair of free intervals xk a

xk+1 . . . xl a
xl+1 we associate

the generator of a C∞ component

Ck,l =

[
al −al+1

bl −bl+1

] [
ak+1 ak
bk+1 bk

]−1

Kulkarni’s result states that these matrices are free generators of the cofinite modular sub-
group determined by the Farey code. For example, for the M12 special polygon on the left
(bounded by the thick black geodesics), the Farey-code for this Mathieu polygon is

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Kurosh.html
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∞
1

0 •
1

3 •
1

2 • 1
1
∞

Therefore, the structure of the subgroup must be C∞ ∗ C3 ∗ C3 ∗ C3 with the generator of
the infinite factor being[
−1 1
−1 0

]
and those of the cyclic factors of order three[

3 −1
13 −4

]
,

[
7 −3
19 8

]
and

[
4 −3
7 −5

]
This approach also gives another proof of the fact that Γ = C2 ∗C3 because the Farey code
to the subgroup of index 1 is ∞ ◦ 0 • ∞ corresponding to the fundamental
domain on the left. This finishes (for now) this thread on Kulkarni’s paper (or rather, part
of it).

Reference :

Ravi S. Kulkarni, ”An arithmetic-geometric method in the study of the subgroups of the
modular group”, Amer. J. Math 113 (1991) 1053-1133

2.13 Iguanodon series of simple groups

Bruce Westbury has a page on recent work on series of Lie groups including exceptional
groups. Moreover, he did put his slides of a recent talk (probably at MPI) online.

Probably, someone considered a similar problem for simple groups. Are there natural con-
structions leading to a series of finite simple groups including some sporadic groups as
special members? In particular, does the following sequence appear somewhere ?

L2(7),M12, A16,M24, A28, A40, A48, A60, . . .

Here,L2(7) is the simple group of order 168 (the automorphism group of the Klein quartic),
M12 andM24 are the sporadic Mathieu groups and theAn are the alternating simple groups.

I’ve stumbled upon this series playing around with Farey sequences and their associated
’dessins d’enfants’ (I’ll come back to the details of the construction in the second part) and
have dubbed this sequence the Iguanodon series because the shape of the doodles leading
to its first few terms

http://www.warwick.ac.uk/~masdbn/series.html
http://www.mpim-bonn.mpg.de/digitalAssets/2327_westbury.pdf
http://en.wikipedia.org/wiki/Farey_sequence
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reminded me of the Iguanodons of Bernissart (btw. this sketch outlines the construction to
the experts). Conjecturally, all groups appearing in this sequence are simple and probably
all of them (except for the first few) will be alternating.

I did verify that none of the known low-dimensional permutation representations of other
sporadic groups appear in the series. However, there are plenty of similar sequences one
can construct from the Farey sequences, and it would be nice if one of them would contain
the Conway group Co1. (to be continued)

2.14 The iguanodon disected

Here the details of the iguanodon series. Start with the Farey sequence F (n) of order n
which is the sequence of completely reduced fractions between 0 and 1 which, when in
lowest terms, have denominators less than or equal to n, arranged in order of increasing
size. Here are the first eight Fareys

F (1) = { 01 ,
1
1}

F (2) = { 01 ,
1
2 ,

1
1}

F (3) = { 01 ,
1
3 ,

1
2 ,

2
3 ,

1
1}

F (4) = { 01 ,
1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1}

F (5) = { 01 ,
1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

1
1}

F (6) = { 01 ,
1
6 ,

1
5 ,

1
4 ,

1
3 ,

2
5 ,

1
2 ,

3
5 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ,

1
1}

F (7) = { 01 ,
1
7 ,

1
6 ,

1
5 ,

1
4 ,

2
7 ,

1
3 ,

2
5 ,

3
7 ,

1
2 ,

4
7 ,

3
5 ,

2
3 ,

5
7 ,

3
4 ,

4
5 ,

5
6 ,

6
7 ,

1
1}

F (8) = { 01 ,
1
8 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

2
7 ,

1
3 ,

3
8 ,

2
5 ,

3
7 ,

1
2 ,

4
7 ,

3
5 ,

5
8 ,

2
3 ,

5
7 ,

3
4 ,

4
5 ,

5
6 ,

6
7 ,

7
8 ,

1
1}

Fig. 2.5: Edmund Landau

Farey sequences have plenty of mysterious prop-
erties. For example, in 1924 J. Franel and Ed-
mund Landau proved that an asymptotic density re-
sult about Farey sequences is equivalent to the Rie-
mann hypothesis. More precisely, let a(n) be the
number of terms in the Farey sequence F(n) (that
is, a(1)=2,a(2)=3,...,a(8)=23 etc). This is sequence
A005728 in the online integer sequences catalog.
Let F (n)j denote the j-th term in F(n), then the fol-
lowing conjecture is equivalent to the Riemann hy-
pothesis

For every ε > 0 there is a constant C depending on
ε such that

a(n)∑
j=1

|F (n)j −
j

a(n)
| < Cn

1
2+ε

when n goes to infinity. Anyway, let us continue our
construction.

Farey sequences are clearly symmetric around 1
2 so let us just take half of them, so we jump

to 1 when we have reached 1
2 . Let us extend this halved Farey on both sides with∞ and

call it the modified Farey sequence f(n). For example,

f(3) = { ∞, 0, 13 ,
1
2 , 1,∞}

http://en.wikipedia.org/wiki/Iguanodon
http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/Co1/
http://en.wikipedia.org/wiki/Farey_sequence
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Landau.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Landau.html
http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Riemann_hypothesis
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Now consider the Farey code (see the second part) in which we identify the two sides
connected to∞ and mark two consecutive Farey numbers as

f(n)i • f(n)i+1

That is, the Farey code associated to the modified sequence f(3) is

∞
1

0 •
1

3 •
1

2 • 1
1
∞

In the second part we will see that to
a Farey-code we can associate a special
polygon by first taking the hyperbolic con-
vex hull of all the terms in the sequence
(the region bounded by the vertical lines
and the bottom red circles in the picture on
the left) and adding to it for each odd in-
terval f(n)i • f(n)i+1 the triangle
just outside the convex hull consisting of
two odd edges in the Dedekind tessellation
(then we obtain the region bounded by the
black geodesics for the sequence f(3)).

Next, we can associate to this special poly-
gon a cuboid tree diagram (see also the
second part) by considering all even and
odd vertices on the boundary (which are
tinted red, respectively blue) together with
all odd vertices in the interior of the spe-
cial polygon. These are indicated in the

left picture below. If we connect these vertices with the geodesics in the polygon we get a
cuboid tree diagram. The obtained cuboid tree diagram is depicted on the right below.

Finally, identifying the red points (as they lie on geodesics connected to ∞ which are
identified in the Farey code), adding even points on the remaining geodesics and numbering
the obtained half-lines we obtain the dessin d’enfant given on the left hand side.

To such a dessin we can associate its monodromy group which is a permutation group on
the half-lines generated by an order two element indicating which half-lines make up a line
and an order three element indicating which half-lines one encounters by walking counter-
clockwise around a three-valent vertex. For the dessin on the left the group is therefore the
subgroup of S12 generated by the elements
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α = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)

β = (1, 2, 3)(4, 5, 7)(8, 9, 11)

and a verification with GAP tells us that this group is the sporadic
Mathieu groupM12. This concludes the description of the second
member of the Iguanodon series. If you like to check that the first
8 iguanodons are indeed the simple groups

L2(7),M12, A16,M24, A28, A40, A48, A60, . . .

the following dissection of the Iguanodon may prove useful

to verify the claimed series of simple groups.

2.15 More iguanodons via kfarey.sage

For what it is worth, I have computed some more terms in the
iguanodon series. Here they are

L2(7),M12, A16,M24, A28, A40, A48, A60, A68, A88, A96, A120, A132, A148, A164, A196, . . .

By construction, the n-th iguanodon group Ign (corresponding to the n-th Farey sequence)
is a subgroup of the alternating group on its (half)legs. Hence to prove that all remaining
iguanodons are alternating groups boils down to proving that they are sufficiently transitive,
for example, by showing that there are permutations of certain cycle-types in the group.
I’m sure any grouptheorist can crack this problem over lunch, so if you did, please drop a
comment.

Clearly, I didn’t do the calculations in the archaic way of the previous section which con-
sisted in adding a pair of new legs at the proper place in the spine for every new Farey
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number, write down the two generating permutations, giving them to GAP and check sim-
plicity and the isomorphism type.

Instead I used a nice SAGE-package to compute with Farey-symbols written by Chris Kurth
and available from his website. As this package is a good tool to experiment hunting for
other dinosaur-series of simple groups coming from series of Farey-symbols, Ill include
the details for Ig3 (the example used to outline the construction of the Iguanodon-series ).

First we need to have the n-th Farey-sequence F (n). There are several short Python pro-
grams around to do this, for example this one from the Python-Cookbook. Save it to your
sage-directory and name it fareyseq.py and load it into sage via load fareyseq.py. Then
typing farey(3) to the sage-prompt spits back

sage: farey(3)
[(1, 3), (1, 2), (2, 3)]

That is, 0 and 1 are not included and Farey-numbers are represented by numerator-
denominator couples. The iguanodon-series uses the Fareys upto 1

2 , identifies the edges
connecting 0 and 1 to ∞ and makes all other intervals odd. That is, the corresponding
Farey symbol for F(3) is

∞
1

0 •
1

3 •
1

2 • 1
1
∞

(to add to the confusion, I denote odd intervals by a black-bullet whereas in Kulkarni’s
paper they are white...) Anyway, get Kurth’s kfarey-package and save the folder as kfarey
in your sage-folder. Kurth uses the following notation for Farey-symbols

The Farey Symbol is a list [a, b, p] where a is a list of numerators, b a list of denominators,
and p the pairing information. If x[i] = a[i]

b[i] then p[i] is the pairing of the side between
x[i− 1] and x[i]. The p[i]s can be positive integers, indicating pairing between sides, or -2
or -3, meaning an even or odd pairing respectively.

The above Farey-symbol is therefore represented as

[[0, 1, 1, 1], [1, 3, 2, 1], [1,−3,−3,−3, 1]].

The kfarey-function LRCosetRep(F) returns two permutations L and R giving the permu-
tation action of the two generators of the modular group PSL2(Z)

L =

[
1 1
0 1

]
and R =

[
1 0
1 1

]
on the half-legs of the inguanodon (the dessin corresponding to the Farey-symbol). Here’s
the sage transcript

sage: load kfarey/farey.sage
sage: load kfarey/conggroups.sage
sage: load kfarey/LR.sage
sage: ig3=[[0,1,1,1],[1,3,2,1],[1,-3,-3,-3,1]]
sage: LRCosetRep(ig3)

[(1,2,3,9,10,11,6,7,8,4,5)(12), (1,8,4,2,11,6,3,12,10,7,5)(9)]

Giving these two generators to GAP one verifies that they indeed generate M12

gap> ig3:=Group((1,2,3,9,10,11,6,7,8,4,5)(12),
(1,8,4,2,11,6,3,12,10,7,5)(9));

http://www.sagemath.org/
http://www.public.iastate.edu/~kurthc/research/index.html
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496821
http://www.public.iastate.edu/~kurthc/research/kfarey051707.zip
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Group([ (1,2,3,9,10,11,6,7,8,4,5), (1,8,4,2,11,6,3,12,10,7,5) ])
gap> IsSimpleGroup(ig3);

true
gap> IsomorphismTypeInfoFiniteSimpleGroup(ig3);

rec( series := "Spor", name := "M(12)" )

kfarey has plenty of other useful functions. One can even create an .eps file of the fun-
damental domain specified by the subgroup of the modular group encoded by the Farey
symbol using MakeEpsFile(F). For the above example it returns the picture on the right.
Not quite as nice as the one on the left, but surely a lot easier to create.

2.16 Farey symbols of sporadic groups

John Conway once wrote :

”There are almost as many different constructions of M24 as there have been mathemati-
cians interested in that most remarkable of all finite groups.”

We added yet another construction of the Mathieu groups M12 and M24 starting from (half
of) the Farey sequences and the associated cuboid tree diagram obtained by demanding that
all edges are odd. In this way the Mathieu groups turned out to be part of a (conjecturally)
infinite sequence of simple groups, starting as follows :

L2(7),M12, A16,M24, A28, A40, A48, A60, A68, A88, A96, A120, A132, A148, . . .

It is quite easy to show that none of the other sporadics will appear in this sequence via
their known permutation representations. Still, several of the sporadic simple groups are
generated by an element of order two and one of order three, so they are determined by a
finite dimensional permutation representation of the modular group PSL2(Z) and hence
are hiding in a special polygonal region of the Dedekind’s tessellation.

Let us try to figure out where the sporadic with the next simplest permutation representation
is hiding : the second Janko group J2, via its 100-dimensional permutation representation.
The Atlas tells us that the order two and three generators act as

e:= (1,84)(2,20)(3,48)(4,56)(5,82)(6,67)(7,55)(8,41)(9,35)(10,40)(11,78)(12, 100)

(13,49)(14,37)(15,94)(16,76)(17,19)(18,44)(21,34)(22,85)(23,92)(24, 57)(25,75)

(26,28)(27,64)(29,90)(30,97)(31,38)(32,68)(33,69)(36,53)(39,61) (42,73)(43,91)

(45,86)(46,81)(47,89)(50,93)(51,96)(52,72)(54,74)(58,99) (59,95)(60,63)(62,83)

(65,70)(66,88)(71,87)(77,98)(79,80);

http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/J2/
http://brauer.maths.qmul.ac.uk/Atlas/v3/permrep/J2G1-p100B0
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v:= (1,80,22)(2,9,11)(3,53,87)(4,23,78)(5,51,18)(6,37,24)(8,27,60)(10,62,47)

(12,65,31)(13,64,19)(14,61,52)(15,98,25)(16,73,32)(17,39,33)(20,97,58)

(21,96,67)(26,93,99)(28,57,35)(29,71,55)(30,69,45)(34,86,82)(38,59,94)

(40,43,91)(42,68,44)(46,85,89)(48,76,90)(49,92,77)(50,66,88)(54,95,56)

(63,74,72)(70,81,75)(79,100,83);

But as the kfarey.sage package written by Chris Kurth calculates the Farey symbol using the L-R
generators, we use GAP to find those

L = e ∗ v−1 and R = e ∗ v−2, so

L=(1,84,22,46,70,12,79)(2,58,93,88,50,26,35)(3,90,55,7,71,53,36)(4,95,38,65,75,98,92)

(5,86,69,39,14,6,96)(8,41,60,72,61,17, 64)(9,57,37,52,74,56,78)(10,91,40,47,85,80,83)

(11,23,49,19,33,30,20)(13,77,15,59,54,63,27)(16,48,87,29,76,32,42)(18,68, 73,44,51,21,82)

(24,28,99,97,45,34,67)(25,81,89,62,100,31,94)

R=(1,84,80,100,65,81,85)(2,97,69,17,13,92,78)(3,76,73,68,16,90,71)(4,54,72,14,24,35,11)

(5,34,96,18,42,32,44)(6,21,86,30,58, 26,57)(7,29,48,53,36,87,55)(8,41,27,19,39,52,63)

(9,28,93,66,50,99,20)(10,43,40,62,79,22,89)(12,83,47,46,75,15,38)(23,77, 25,70,31,59,56)

(33,45,82,51,67,37,61)(49,64,60,74,95,94,98)

Defining these permutations in sage and using kfarey, this gives us the Farey-symbol of the associated
permutation representation

L=SymmetricGroup(Integer(100))(”(1,84,22,46,70,12,79)(2,58,93,88,50,26,35)(3,90,55,7,71,53,36)

(4,95,38,65,75,98,92)(5,86,69,39,14,6,96)(8,41,60,72,61,17, 64)(9,57,37,52,74,56,78)(10,91,40,47,85,80,83)

(11,23,49,19,33,30,20)(13,77,15,59,54,63,27)(16,48,87,29,76,32,42)(18,68, 73,44,51,21,82)

(24,28,99,97,45,34,67)(25,81,89,62,100,31,94)”)

R=SymmetricGroup(Integer(100))(”(1,84,80,100,65,81,85)(2,97,69,17,13,92,78)(3,76,73,68,16,90,71)

(4,54,72,14,24,35,11)(5,34,96,18,42,32,44)(6,21,86,30,58, 26,57)(7,29,48,53,36,87,55)(8,41,27,19,39,52,63)

(9,28,93,66,50,99,20)(10,43,40,62,79,22,89)(12,83,47,46,75,15,38)(23,77, 25,70,31,59,56)

(33,45,82,51,67,37,61)(49,64,60,74,95,94,98)”)

sage: FareySymbol(”Perm”,[L,R])

[[0, 1, 4, 3, 2, 5, 18, 13, 21, 71, 121, 413, 292, 463, 171, 50, 29, 8, 27, 46, 65, 19, 30, 11, 3, 10, 37,
64, 27, 17, 7, 4, 5],

[1, 1, 3, 2, 1, 2, 7, 5, 8, 27, 46, 157, 111, 176, 65, 19, 11, 3, 10, 17, 24, 7, 11, 4, 1, 3, 11, 19, 8, 5, 2,
1, 1],

[-3, 1, 4, 4, 2, 3, 6, -3, 7, 13, 14, 15, -3, -3, 15, 14, 11, 8, 8, 10, 12, 12, 10, 9, 5, 5, 9, 11, 13, 7, 6, 3,
2, 1]]

Here, the first string gives the numerators of the cusps, the second the denominators and the third
gives the pairing information (where −2 denotes an even edge and −3 an odd edge. Fortunately,
kfarey also allows us to draw the special polygonal region determined by a Farey-symbol. So, here it
is (without the pairing data) :

http://www.public.iastate.edu/~kurthc/research/kfarey011408.zip
http://www.public.iastate.edu/~kurthc/index.html
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the hiding place of J2...

It would be nice to have (a) other Farey-symbols associated to the second Janko group, hopefully
showing a pattern that one can extend into an infinite family as in the inguanodon series and (b) to
determine Farey-symbols of more sporadic groups.

2.17 The McKay-Thompson series

Monstrous moonshine was born (sometime in 1978) the moment John McKay realized that the linear
term in the j-function

j(q) = 1
q

+ 744 + 196884q + 21493760q2 + 864229970q3 + . . .

is surprisingly close to the dimension of the smallest non-trivial irreducible representation of the
monster group, which is 196883.

Note that at that time, the Monster hasn’t been constructed yet, and, the only traces of its possible
existence were kept as semi-secret information in a huge ledger (costing 80 pounds...) kept in the
Atlas-office at Cambridge. Included were 8 huge pages describing the character table of the monster,
the top left fragment, describing the lower dimensional irreducibles and their characters at small order
elements, reproduced below

If you look at the dimensions of the smallest irreducible representations (the first column) : 196883,
21296876, 842609326, ... you will see that the first, second and third of them are extremely close
to the linear, quadratic and cubic coefficient of the j-function. In fact, more is true : one can obtain
these actual j-coefficients as simple linear combination of the dimensions of the irrducibles :

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296876

864229970 = 2× 1 + 2× 196883 + 21296876 + 842609326

Often, only the first relation is attributed to McKay, whereas the second and third were supposedly
discovered by John Thompson after MKay showed him the first. Marcus du Sautoy tells a somewhat
different sory in Finding Moonshine :

”McKay has also gone on to find these extra equations, but is was Thompson who first published
them. McKay admits that ”I was a bit peeved really, I don’t think Thompson quite knew how much I
knew.”

By the work of Richard Borcherds we now know the (partial according to some) explanation behind
these numerical facts : there is a graded representation V = ⊕iVi of the Monster-group (actually,

http://en.wikipedia.org/wiki/Monstrous_moonshine
http://en.wikipedia.org/wiki/John_McKay_mathematics
http://en.wikipedia.org/wiki/Monster_group
http://en.wikipedia.org/wiki/John_G._Thompson
http://www.neverendingbooks.org/index.php/finding-moonshine.html
http://en.wikipedia.org/wiki/Richard_Borcherds
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it has a lot of extra structure such as being a vertex algebra) such that the dimension of the i-th
factor Vi equals the coefficient f qi in the j-function. The homogeneous components Vi being finite
dimensional representations of the monster, they decompose into the 194 irreducibles Xj . For the
first three components we have the decompositions
V1 = X1 ⊕X2

V2 = X1 ⊕X2 ⊕X3

V3 = X⊕2
1 ⊕X⊕2

2 ⊕X3 ⊕X4

Calculating the dimensions on both sides give the above equations. However, being isomorphisms
of monster-representations we are not restricted to just computing the dimensions. We might as well
compute the character of any monster-element on both sides (observe that the dimension is just the
character of the identity element). Characters are the traces of the matrices describing the action of a
monster-element on the representation and these numbers fill the different columns of the character-
table above.

Hence, the same integral combinations of the character values of any monster-element give another
q-series and these are called the McKay-Thompson series. John Conway discovered them to be
classical modular functions known as Hauptmoduln.

In most papers and online material on this only the first few coefficients of these series are docu-
mented, which may be just too little information to make new discoveries!

Fortunately, David Madore has compiled the first 3200 coefficients of all the 172 monster-series
which are available in a huge 8Mb file. And, if you really need to have more coefficients, you can
always use and modify his moonshine python program.

In order to reduce bandwidth, here a list containing the first 100 coefficients of the j-function

jfunct=[196884, 21493760, 864299970, 20245856256, 333202640600,
4252023300096, 44656994071935, 401490886656000, 3176440229784420,
22567393309593600, 146211911499519294, 874313719685775360,
4872010111798142520, 25497827389410525184, 126142916465781843075,
593121772421445058560, 2662842413150775245160, 11459912788444786513920,
47438786801234168813250, 189449976248893390028800, 731811377318137519245696,
2740630712513624654929920, 9971041659937182693533820, 35307453186561427099877376,
121883284330422510433351500, 410789960190307909157638144,
1353563541518646878675077500, 4365689224858876634610401280,
13798375834642999925542288376, 42780782244213262567058227200,
130233693825770295128044873221, 389608006170995911894300098560,
1146329398900810637779611090240, 3319627709139267167263679606784,
9468166135702260431646263438600, 26614365825753796268872151875584,
73773169969725069760801792854360, 201768789947228738648580043776000,
544763881751616630123165410477688, 1452689254439362169794355429376000,
3827767751739363485065598331130120, 9970416600217443268739409968824320,
25683334706395406994774011866319670, 65452367731499268312170283695144960,
165078821568186174782496283155142200, 412189630805216773489544457234333696,
1019253515891576791938652011091437835, 2496774105950716692603315123199672320,
6060574415413720999542378222812650932, 14581598453215019997540391326153984000,
34782974253512490652111111930326416268, 82282309236048637946346570669250805760,
193075525467822574167329529658775261720, 449497224123337477155078537760754122752,
1038483010587949794068925153685932435825, 2381407585309922413499951812839633584128,
5421449889876564723000378957979772088000, 12255365475040820661535516233050165760000,
27513411092859486460692553086168714659374, 61354289505303613617069338272284858777600,
135925092428365503809701809166616289474168, 299210983800076883665074958854523331870720,
654553043491650303064385476041569995365270, 1423197635972716062310802114654243653681152,
3076095473477196763039615540128479523917200, 6610091773782871627445909215080641586954240,
14123583372861184908287080245891873213544410, 30010041497911129625894110839466234009518080,
63419842535335416307760114920603619461313664, 133312625293210235328551896736236879235481600,
278775024890624328476718493296348769305198947, 579989466306862709777897124287027028934656000,
1200647685924154079965706763561795395948173320, 2473342981183106509136265613239678864092991488,

http://en.wikipedia.org/wiki/Vertex_algebra
http://en.wikipedia.org/wiki/Thompson-McKay_series
http://en.wikipedia.org/wiki/John_Horton_Conway
http://en.wikipedia.org/wiki/Hauptmodul
http://www.madore.org/~david/
http://mathforum.org/kb/thread.jspa?forumID=253&threadID=1602206&messageID=5836094#5836094
ftp://quatramaran.ens.fr/pub/madore/moonshine/moonshine.dat.gz
ftp://quatramaran.ens.fr/pub/madore/moonshine/moonshine.py
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5070711930898997080570078906280842196519646750, 10346906640850426356226316839259822574115946496,
21015945810275143250691058902482079910086459520, 42493520024686459968969327541404178941239869440,
85539981818424975894053769448098796349808643878, 171444843023856632323050507966626554304633241600,
342155525555189176731983869123583942011978493364, 679986843667214052171954098018582522609944965120,
1345823847068981684952596216882155845897900827370, 2652886321384703560252232129659440092172381585408,
5208621342520253933693153488396012720448385783600, 10186635497140956830216811207229975611480797601792,
19845946857715387241695878080425504863628738882125, 38518943830283497365369391336243138882250145792000,
74484518929289017811719989832768142076931259410120, 143507172467283453885515222342782991192353207603200,
275501042616789153749080617893836796951133929783496,
527036058053281764188089220041629201191975505756160,
1004730453440939042843898965365412981690307145827840,
1908864098321310302488604739098618405938938477379584,
3614432179304462681879676809120464684975130836205250,
6821306832689380776546629825653465084003418476904448,
12831568450930566237049157191017104861217433634289960,
24060143444937604997591586090380473418086401696839680,
44972195698011806740150818275177754986409472910549646,
83798831110707476912751950384757452703801918339072000]

This information will come in handy for our Monstrous Easter Egg Race.

2.18 Monstrous Easter Egg Race

Here’s a sweet Easter egg for you to crack : a mysterious message from none other than the discoverer
of Monstrous Moonshine himself...

From: mckayj@Math.Princeton.EDU
Date: Mon 10 Mar 2008 07:51:16 GMT+01:00
To: lieven.lebruyn@ua.ac.be

The secret of Monstrous Moonshine and the universe.

Let j(q) = 1/q + 744 + sum( c[k]*qˆk,k>=1) be the Fourier expansion
at oo of the elliptic modular function.

Compute sum(c[k]ˆ2,k=1..24) modulo 70

Background: w_25 of page x of the preface of Conway/Sloane book SPLAG

Also in Chapter 27:
The automorphism group of the 26-dimensional Lorentzian lattice
The Weyl vector w_25 of section 2.

Jm

I realize that all of you will feel frustrated by the fact that most university libraries are closed today
and possibly tomorrow, hence some help with the background material.

SPLAG of course refers to the cult-book Sphere Packings, Lattices and Groups.

26-dimensional Lorentzian space R25,1 is 26-dimensional real space equipped with the norm-map

||~v|| =
∑25
i=1 v

2
i − v226

The Weyl vector ~w25 is the norm-zero vector in R25,1

~w25 = (0, 1, 2, 3, 4, . . . , 22, 23, 24, 70) (use the numerical fact that 12 +22 +32 + . . .+242 = 702)

The relevance of this special vector is that it gives a one-line description for one of the most mysteri-
ous objects around, the 24-dimensional Leech Lattice L24. In fact

http://www.research.att.com/~njas/doc/splag.html
http://en.wikipedia.org/wiki/Leech_lattice
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L24 = ~w⊥/~w with ~w⊥ = ~x ∈ Π25,1 : ~x.~w = 0

where Π25,1 is the unique even unimodular lattice in R25,1. These facts amply demonstrate the
moonshine nature of the numbers 24 and 70. Apart from this, the list of numbers at the end of the
foregoing section may also be of use.

2.19 The secret revealed

Often, one can appreciate the answer to a problem only after having spend some time trying to solve
it, and having failed ... pathetically.

When someone with a track-record of coming up with surprising mathematical tidbits like John
McKay sends me a mystery message claiming to contain ”The secret of Monstrous Moonshine and the
universe”, I’m happy to spend the remains of the day trying to make sense of the apparent nonsense

Let j(q) = 1/q + 744 + sum( c[k]*qˆk,k>=1) be the Fourier
expansion at oo of the elliptic modular function.
Compute sum(c[k]ˆ2,k=1..24) modulo 70

I expected the j-coefficients modulo 70 (or their squares, or their partial sums of squares) to reveal
some hidden pattern, like containing the coefficients of Leech vectors or E(8)-roots, or whatever...
and spend a day trying things out. But, all I got was noise... I left it there for a week or so, rechecked
everything and... gave up

Subject: Re: mystery message
From: lieven.lebruyn@ua.ac.be
Date: Fri 21 Mar 2008 12:37:47 GMT+01:00
To: mckayj@Math.Princeton.EDU

i forced myself to recheck the calculations i did once
after receiving your mail. here are the partial sums
of squares of j-coefficients modulo 70 for the first

100 of them

[0, 46, 26, 16, 32, 62, 38, 3, 53, 13, 63, 39, 29, 59, 45, 10, 60, 40, 30,
10, 40, 26, 6, 56, 42, 22, 68, 48, 48, 64, 64, 45, 25, 15, 31, 31, 67,
47, 7, 21, 51, 31, 31, 61, 21, 1, 17, 12, 2, 16, 46, 60, 20, 10, 54, 49,
63, 63, 53, 29, 29, 23, 13, 13, 27, 27, 17, 7, 67, 43, 43, 52, 42, 42,
16, 6, 42, 42, 42, 36, 66, 32, 62, 52, 66, 66, 0, 25, 5, 5, 35, 21, 11,
11, 57, 57, 61, 41, 41]

term 24 is 42...
i still fail to see the significance of it all.
atb :: lieven.

A couple of hours later I received his reply and simply couldn’t stop laughing...

From: mckay@encs.concordia.ca
Subject: Re: mystery message
Date: Sat 22 Mar 2008 02:33:19 GMT+01:00
To: lieven.lebruyn@ua.ac.be

I apologize for wasting your time. It is a joke
depending, it seems, on one’s cultural background.

See the google entry:
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Answer to Life, the Universe, and Everything

Best, John McKay

Still confused? Well, do it!

2.20 The monster graph and McKay’s observation

While the verdict on a neolithic Scottish icosahedron is still open, let us recall Kostant’s group-
theoretic construction of the icosahedron from its rotation-symmetry group A5.

The alternating group A5 has two conjugacy classes of
order 5 elements, both consisting of exactly 12 elements.
Fix one of these conjugacy classes, say C and construct
a graph with vertices the 12 elements of C and an edge
between two u, v ∈ C if and only if the group-product
u.v ∈ C still belongs to the same conjugacy class.

Observe that this relation is symmetric as from u.v =
w ∈ C it follows that v.u = u−1.u.v.u = u−1.w.u ∈ C.
The graph obtained is the icosahedron, depicted on the
right with vertices written as words in two adjacent ele-
ments u and v from C, as indicated.

Kostant writes : ”Normally it is not a common practice
in group theory to consider whether or not the product of
two elements in a conjugacy class is again an element in
that conjugacy class. However such a consideration here
turns out to be quite productive.”

Still, similar constructions have been used in other groups
as well, in particular in the study of the largest sporadic

group, the monster groupM.

There is one important catch. Whereas it is quite trivial to multiply two permutations and verify
whether the result is among 12 given ones, for most of us mortals it is impossible to do actual calcu-
lations in the monster. So, we’d better have an alternative way to get at the icosahedral graph using
only A5-data that is also available for the monster group, such as its character table.

Let G be any finite group and consider three of its conjugacy classes C(i), C(j) and C(k). For any
element w ∈ C(k) we can compute from the character table of G the number of different products
u.v = w such that u ∈ C(i) and v ∈ C(j). This number is given by the formula

|G|
|CG(gi)||CG(gj)|

∑
χ

χ(gi)χ(gj)χ(gk)

χ(1)

where the sum is taken over all irreducible characters χ and where gi ∈ C(i), gj ∈ C(j) and
gk ∈ C(k). Note also that |CG(g)| is the number of G-elements commuting with g and that this
number is the order of G divided by the number of elements in the conjugacy class of g.

The character table of A5 is given below : the five columns correspond to the different conjugacy
classes of elements of order resp. 1,2,3,5 and 5 and the rows are the character functions of the 5
irreducible representations of dimensions 1,3,3,4 and 5.

Let us fix the 4th conjugacy class, that is 5a, as our class C. By the general formula, for a fixed
w ∈ C the number of different products u.v = w with u, v ∈ C is equal to

60
25

( 1
1

+
( 1+
√

5
2

)3

3
+

( 1−
√

5
2

)3

3
− 1

4
+ 0

5
) = 60

25
(1 + 4

3
− 1

4
) = 5

http://en.wikipedia.org/wiki/The_Answer_to_Life,_the_Universe,_and_Everything
http://en.wikipedia.org/wiki/Monster_group
http://en.wikipedia.org/wiki/Character_table
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Because for each x ∈ C also its inverse x−1 ∈ C, this can be rephrased by saying that there are
exactly 5 different products w−1.u ∈ C, or equivalently, that the valency of every vertex w−1 ∈ C
in the graph is exactly 5.

That is, our graph has 12 vertices, each with exactly 5 neighbors, and with a bit of extra work one
can show it to be the icosahedral graph.

For the monster group, the Atlas tells us that it has exactly 194 irreducible representations (and hence
also 194 conjugacy classes). Of these conjugacy classes, the involutions (that is the elements of order
2) are of particular importance.

Fig. 2.6: Bernd Fischer

There are exactly 2 conjugacy classes of involutions, usu-
ally denoted 2A and 2B. Involutions in class 2A are called
”Fischer-involutions”, after Bernd Fischer, because their
centralizer subgroup is an extension of Fischer’s baby
Monster sporadic group.

Likewise, involutions in class 2B are usually called
”Conway-involutions” because their centralizer subgroup
is an extension of the largest Conway sporadic group.

Let us define the monster graph to be the graph having as
its vertices the Fischer-involutions and with an edge be-
tween two of them u, v ∈ 2A if and only if their product
u.v is again a Fischer-involution.

Because the centralizer subgroup is 2.B, the number of
vertices is equal to

97239461142009186000 = 24 ∗ 37 ∗ 53 ∗ 74 ∗ 11 ∗ 132 ∗
29 ∗ 41 ∗ 59 ∗ 71.

From the general result recalled before we have that the
valency in all vertices is equal and to determine it we have to use the character table of the monster
and the formula. Fortunately GAP provides the function ClassMultiplicationCoefficient to do this
without making errors.

‘

gap> table:=CharacterTable("M");
CharacterTable( "M" )
gap> ClassMultiplicationCoefficient(table,2,2,2);
27143910000

‘

http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/M/
http://en.wikipedia.org/wiki/Bernd_Fischer
http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/B/
http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/B/
http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/Co1/
http://www-gap.mcs.st-and.ac.uk/Manuals/doc/htm/ref/chapters.htm
http://www-gap.mcs.st-and.ac.uk/Manuals/doc/htm/ref/CHAP069.htm
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Fig. 2.7: John McKay

Perhaps noticeable is the fact that the prime decomposi-
tion of the valency 27143910000 = 24 ∗ 34 ∗ 54 ∗ 23 ∗
31∗47 is symmetric in the three smallest and three largest
prime factors of the baby monster order.

Robert Griess proved that one can recover the monster
group M from the monster graph as its automorphism
group!

As in the case of the icosahedral graph, the number of
vertices and their common valency does not determine
the monster graph uniquely. To gain more insight, we
would like to know more about the sizes of minimal cir-
cuits in the graph, the number of such minimal circuits
going through a fixed vertex, and so on.

Such an investigation quickly leads to a careful analysis
which other elements can be obtained from products u.v
of two Fischer involutions u, v ∈ 2A. We are in for a
major surprise, first observed by John McKay:

Printing out the number of products of two Fischer-involutions giving an element in the i-th conjugacy
class of the monster, where i runs over all 194 possible classes, we get the following string of numbers

97239461142009186000, 27143910000, 196560, 920808, 0, 3, 1104, 4, 0, 0, 5, 0,
6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

‘

That is, the elements of only 9 conjugacy classes can be written as products of two Fischer-
involutions! These classes are :

• 1A = 1 written in 97239461142009186000 different ways (after all involutions have order
two)

• 2A, each element of which can be written in exactly 27143910000 different ways (the valency)

• 2B, each element of which can be written in exactly 196560 different ways. Observe that this
is the kissing number of the Leech lattice leading to a permutation representation of 2.Co1.

• 3A, each element of which can be written in exactly 920808 ways. Note that this number gives
a permutation representation of the maximal monster subgroup 3.F i′24.

• 3C, each element of which can be written in exactly 3 ways.

• 4A, each element of which can be written in exactly 1104 ways.

• 4B, each element of which can be written in exactly 4 ways.

• 5A, each element of which can be written in exactly 5 ways.

• 6A, each element of which can be written in exactly 6 ways.

Let us forget about the actual numbers for the moment and concentrate on the orders of these 9
conjugacy classes : 1,2,2,3,3,4,4,5,6. These are precisely the components of the fundamental root of
the extended Dynkin diagram Ẽ8!

This is the content of John McKay’s E(8)-observation : there should be a precise relation between
the nodes of the extended Dynkin diagram and these 9 conjugacy classes in such a way that the order
of the class corresponds to the component of the fundamental root. More precisely, one conjectures
the following correspondence

http://cjournal.concordia.ca/journalarchives/2006-07/apr_19/009196.shtml
http://en.wikipedia.org/wiki/Leech_lattice
http://brauer.maths.qmul.ac.uk/Atlas/v3/permrep/2Co1G1-p196560B0
http://brauer.maths.qmul.ac.uk/Atlas/v3/permrep/Mmax3G0-p920808B0
http://www-math.mit.edu/~lesha/dynkin-diagrams.html
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This is similar to the classical McKay correspondence between finite subgroups of SU(2) and ex-
tended Dynkin diagrams (the binary icosahedral group corresponding to extended E(8)). In that
correspondence, the nodes of the Dynkin diagram correspond to irreducible representations of the
group and the edges are determined by the decompositions of tensor-products with the fundamental
2-dimensional representation.

Here, however, the nodes have to correspond to conjugacy classes (rather than representations) and
we have to look for another procedure to arrive at the required edges! An exciting proposal has
been put forward recently by John Duncan in his paper Arithmetic groups and the affine E8 Dynkin
diagram.

t will take us a couple of sections to get there, but for now, let’s give the gist of it : monstrous
moonshine gives a correspondence between conjugacy classes of the monster and certain arithmetic
subgroups of PSL2(R) commensurable with the modular group Γ = PSL2(Z). The edges of the
extended Dynkin E(8) diagram are then given by the configuration of the arithmetic groups corre-
sponding to the indicated 9 conjugacy classes!

2.21 Conway’s big picture

Fig. 2.8: J.H. Conway, S. Norton

Conway and Norton showed that there are exactly 171
moonshine functions and associated two arithmetic sub-
groups to them. We want a tool to describe these and
here’s where Conway’s big picture comes in very handy.
All moonshine groups are arithmetic groups, that is, they
are commensurable with the modular group. Conway’s
idea is to view several of these groups as point- or set-wise
stabilizer subgroups of finite sets of (projective) commen-
surable 2-dimensional lattices.

Expanding (and partially explaining) the original moon-
shine observation of McKay and Thompson, John Con-
way and Simon Norton formulated monstrous moonshine
:

To every cyclic subgroup 〈m〉 of the Monster M is asso-
ciated a function

fm(τ) = 1
q

+ a1q + a2q
2 + . . . with q = e2πiτ and

all coefficients ai ∈ Z are characters at m of a represen-
tation of M. These representations are the homogeneous
components of the so called Moonshine module.

Each fm is a principal modulus for a certain genus
zero congruence group commensurable with the modu-
lar group Γ = PSL2(Z). These groups are called the
moonshine groups.

Conway and Norton showed that there are exactly 171
different functions fm and associated two arithmetic sub-
groups F (m) ⊂ E(m) ⊂ PSL2(R) to them (in most

cases, but not all, these two groups coincide).

http://math.ucr.edu/home/baez/ADE.html
http://www.math.harvard.edu/~jfd/
http://arxiv.org/abs/0810.1465
http://arxiv.org/abs/0810.1465
http://en.wikipedia.org/wiki/Monstrous_moonshine
http://en.wikipedia.org/wiki/Monstrous_moonshine
http://www.neverendingbooks.org/index.php/the-mckay-thompson-series.html
http://en.wikipedia.org/wiki/John_Horton_Conway
http://en.wikipedia.org/wiki/John_Horton_Conway
http://en.wikipedia.org/wiki/Simon_P._Norton
http://en.wikipedia.org/wiki/Monstrous_moonshine
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Whereas there is an extensive literature on subgroups of the modular group (see for instance the series
of posts starting here), most moonshine groups are not contained in the modular group. So, we need
a tool to describe them and here’s where Conway’s big picture comes in very handy.

All moonshine groups are arithmetic groups, that is, they are subgroups G of PSL2(R) which are
commensurable with the modular group Γ = PSL2(Z) meaning that the intersection G ∩ Γ is of
finite index in bothG and in Γ. Conway’s idea is to view several of these groups as point- or set-wise
stabilizer subgroups of finite sets of (projective) commensurable 2-dimensional lattices.

Start with a fixed two dimensional latticeL1 = Ze1+Ze2 = 〈e1, e2〉 and we want to name all lattices
of the form L = 〈v1 = ae1 + be2, v2 = ce1 +de2〉 that are commensurable to L1. Again this means
that the intersection L ∩ L1 is of finite index in both lattices. From this it follows immediately that
all coefficients a, b, c, d are rational numbers.

It simplifies matters enormously if we do not look at lattices individually but rather at projective
equivalence classes, that is L = 〈v1, v2〉 ∼ L′ = 〈v′1, v′2〉 if there is a rational number λ ∈ Q
such that λv1 = v′1, λv2 = v′2. Further, we are of course allowed to choose a different ’basis’
for our lattices, that is, L = 〈v1, v2〉 = 〈w1, w2〉 whenever (w1, w2) = (v1, v2).γ for some
γ ∈ PSL2(Z). Using both operations we can get any lattice in a specific form. For example,

〈 1
2
e1 + 3e2, e1 − 1

3
e2

(1)
= 〈3e1 + 18e2, 6e1 − 2e2〉

(2)
= 〈3e1 + 18e2, 38e2〉

(3)
= 〈 3

38
e1 + 9

19
e2, e2〉

Here, identities (1) and (3) follow from projective equivalence and identity (2) from a base-change.
In general, any lattice L commensurable to the standard lattice L1 can be rewritten uniquely as
L = 〈Me1 + g

h
e2, e2〉 where M a positive rational number and with 0 ≤ g

h
< 1.

Another major feature is that one can define a symmetric hyper-distance between (equivalence classes
of) such lattices. Take L = 〈Me1 + g

h
e2, e2〉 and L′ = 〈Ne1 + i

j
e2, e2〉 and consider the matrix

DLL′ =

[
M g

h

0 1

] [
N i

j

0 1

]−1

and letα be the smallest positive rational number such that all entries

of the matrix α.DLL′ are integers, then

δ(L,L′) = det(α.DLL′) ∈ N defines a symmetric hyperdistance which depends only of the equiv-
alence classes of lattices (**hyper**distance because the log of it behaves like an ordinary distance).

Conway’s big picture is the graph obtained by taking as its vertices the equivalence classes of lattices
commensurable with L1 and with edges connecting any two lattices separated by a prime number
hyperdistance. Here’s part of the 2-picture, that is, only depicting the edges of hyperdistance 2.

The 2-picture is an infinite 3-valent tree as there are precisely 3 classes of lattices at hyperdistance 2
from any lattice L = 〈v1, v2〉 namely (the equivalence classes of) 〈 1

2
v1, v2〉 , 〈v1, 1

2
v2〉 and 〈 1

2
(v1 +

v2), v2〉.

http://www.neverendingbooks.org/index.php/modular-quilts-and-cuboid-tree-diagrams.html
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Similarly, for any prime hyperdistance p, the p-picture is an infinite p+1-valent tree and the big
picture is the product over all these prime trees. That is, two lattices at square-free hyperdistance
N = p1p2 . . . pk are two corners of a k-cell in the big picture! (Astute readers of this blog (if such
people exist...) may observe that Conway’s big picture did already appear here prominently, though
in disguise. More on this another time).

The big picture presents a simple way to look at arithmetic groups and makes many facts about them
visually immediate. For example, the point-stabilizer subgroup of L1 clearly is the modular group
PSL2(Z). The point-stabilizer of any other lattice is a certain conjugate of the modular group inside
PSL2(R). For example, the stabilizer subgroup of the lattice LN = 〈Ne1, e2〉 (at hyperdistance N
from L1) is the subgroup[
a b

N

Nc d

]
|
[
a b
c d

]
∈ PSL2(Z)

Fig. 2.9: the 4-ball

Now the intersection of these two groups is the modular
subgroup Γ0(N) (consisting of those modular group ele-
ment whose lower left-hand entry is divisible by N). That
is, the proper way to look at this arithmetic group is as
the joint stabilizer of the two lattices L1, LN . The picture
makes it trivial to compute the index of this subgroup.

Consider the ball B(L1, N) with center L1 and hyper-
radius N (on the left, the ball with hyper-radius 4). Then,
it is easy to show that the modular group acts transi-
tively on the boundary lattices (including the lattice LN ),
whence the index [Γ : Γ0(N)] is just the number of these
boundary lattices. For N=4 the picture shows that there
are exactly 6 of them. In general, it follows from our
knowledge of all the p-trees the number of all lattices at
hyperdistance N from L1 is equal to N

∏
p|N (1 + 1

p
), in

accordance with the well-known index formula for these
modular subgroups!

But, there are many other applications of the big picture
giving a simple interpretation for the Hecke operators, an
elegant proof of the Atkin-Lehner theorem on the normal-
izer of Γ0(N) (the whimsical source of appearances of the

number 24) and of Helling’s theorem characterizing maximal arithmetical groups inside PSL2(C)
as conjugates of the normalizers of Γ0(N) for square-free N. J.H. Conway’s paper ”Understanding
groups like Γ0(N)” containing all this material is a must-read! Unfortunately, I do not know of an
online version.

2.22 Looking for the moonshine picture

We have seen that Conway’s big picture helps us to determine all arithmetic subgroups of PSL2(R)
commensurable with the modular group PSL2(Z), including all groups of monstrous moonshine.

As there are exactly 171 such moonshine groups, they are determined by a finite subgraph of Con-
way’s picture and we call the minimal such subgraph the **moonshine picture**. Clearly, we would
like to determine its structure.

Below is a depiction of a very small part of it. It is the minimal subgraph of Conway’s picture needed
to describe the 9 moonshine groups appearing in Duncan’s realization of McKay’s E(8)-observation.
Here, only three primes are relevant : 2 (blue lines), 3 (reds) and 5 (green). All lattices are number-
like (recall that M g

h
stands for the lattice 〈Me1 + g

h
e2, e2〉).

http://en.wikipedia.org/wiki/Hecke_operator
http://en.wikipedia.org/wiki/Monstrous_moonshine
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We observe that a large part of this mini-moonshine picture consists of the three p-tree subgraphs (the
blue, red and green tree starting at the 1-lattice 1 = 〈e1, e2〉. Whereas Conway’s big picture is the
product over all p-trees with p running over all prime numbers, we observe that the mini-moonshine
picture is a very small subgraph of the product of these three subtrees. In fact, there is just one 2-cell
(the square 1,2,6,3).

Hence, it seems like a good idea to start our investigation of the full moonshine picture with the
determination of the p-subtrees contained in it, and subsequently, worry about higher dimensional
cells constructed from them. Surely it will be no major surprise that the prime numbers p that appear
in the moonshine picture are exactly the prime divisors of the order of the monster group, that is
p=2,3,5,7,11,13,17,19,23,29,31,41,47,59 or 71. Before we can try to determine these 15 p-trees, we
need to know more about the 171 moonshine groups.

Recall that the proper way to view the modular subgroup Γ0(N) is as the subgroup fixing the two
lattices L1 and LN , whence we will write Γ0(N) = Γ0(N |1), and, by extension we will denote with
Γ0(X|Y ) the subgroup fixing the two lattices LX and LY .

As Γ0(N) fixes L1 and LN it also fixes all lattices in the (N—1)-thread, that is all lattices occurring
in a shortest path from L1 to LN (above a picture of the (200—1)-thread).

If N = pa11 pa22 . . . p
ak
k , then the (N—1)-thread has 2k involutions as symmetries, called the Atkin-

Lehner involutions. For every exact divisor e||N (that is, e|N and gcd(e, N
e

) = 1 we have an
involutionWe which acts by sending each point in the thread-cell corresponding to the prime divisors
of e to its antipodal cell-point and acts as the identity on the other prime-axes. For example, in the
(200—1)-thread on the left, W8 is the left-right reflexion, W25 the top-bottom reflexion and W200

the antipodal reflexion. The set of all exact divisors of N becomes the group (Z/2Z)k under the
operation e ∗ f = e×f

gcd(e,f)2
.

http://en.wikipedia.org/wiki/Monster_group
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Most of the moonshine groups are of the form Γ0(n|h) +
e, f, g, ... for some N = h.n such that h|24 and h2|N .
The group Γ0(n|h) is then conjugate to the modular sub-

group Γ0(n
h

) by the element
[
h 0
0 1

]
. With Γ0(n|h) +

e, f, g, ... we mean that the group Γ0(n|h) is extended
with the involutions We,Wf ,Wg, .... If we simply add
all Atkin-Lehner involutions we write Γ0(n|h)+ for the
resulting group.

Finally, whenever h 6= 1 there is a subgroup Γ0(n||h) +
e, f, g, ... which is the kernel of a character λ being triv-
ial on Γ0(N) and on all involutions We for which every
prime dividing e also divides n

h
, evaluating to e

2πi
h on all

cosets containing
[
1 1

h

0 1

]
and to e±

2πi
h for cosets con-

taining
[

1 0
n 0

]
(with a + sign if

[
0 −1
N 0

]
is present

and a - sign otherwise). Btw. it is not evident at all that
this is a character, but hard work shows it is!

Clearly there are heavy restrictions on the numbers that
actually occur in moonshine. In the paper On the discrete
groups of moonshine, John Conway, John McKay and
Abdellah Sebbar characterized the 171 arithmetic sub-
groups of PSL2(R) occuring in monstrous moonshine as
those of the form G = Γ0(n||h) + e, f, g, ... which are

(a) of genus zero, meaning that the quotient of the upper-
half plane by the action of G ⊂ PSL2(R) by Moebius-
transformations gives a Riemann surface of genus zero,

(b) the quotient group G/Γ0(nh) is a group of exponent
2 (generated by some Atkin-Lehner involutions), and

(c) every cusp can be mapped to ∞ by an element of
PSL2(R) which conjugates the group to one containing
Γ0(nh).

Now, if Γ0(n||h) + e, f, g, ... is of genus zero, so is the
larger group Γ0(n|h) + e, f, g, ..., which in turn, is con-
jugated to the group Γ0(n

h
) + e, f, g, .... Therefore, we

need a list of all groups of the form Γ0(n
h

) + e, f, g, ...
which are of genus zero. There are exactly 123 of them, listed on the right.

How does this help to determine the structure of the p-subtree of the moonshine picture for the fifteen
monster-primes p? Look for the largest p-power pk such that pk+e, f, g... appears in the list. That is
for p=2,3,5,7,11,13,17,19,23,29,31,41,47,59,71 these powers are resp. 5,3,2,2,1,1,1,1,1,1,1,1,1,1,1.
Next, look for the largest p-power pl dividing 24 (that is, 3 for p=2, 1 for p=3 and 0 for all other
primes). Then, these relevant moonshine groups contain the modular subgroup Γ0(pk+2l) and are
contained in its normalizer in PSL2(R) which by the Atkin-Lehner theorem is precisely the group
Γ0(pk+l|pl)+.

Right, now the lattices fixed by Γ0(pk+2l) (and permuted by its normalizer), that is the lattices in
our p-subtree, are those that form the (pk+2l|1)-snake in Conway-speak. That is, the lattices whose
hyper-distance to the (pk+l|pl)-thread divides 24. So for all primes larger than 2 or 3, the p-tree is
just the (pl|1)-thread.

For p=3 the 3-tree is the (243—1)-snake having the (81—3)-thread as its spine. It contains the
following lattices, all of which are number-like.

http://www.mathstat.uottawa.ca/~asebbar/publi/proc2.pdf
http://www.mathstat.uottawa.ca/~asebbar/publi/proc2.pdf
http://www.mathstat.uottawa.ca/~asebbar/
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Depicting the 2-tree, which is the (2048—1)-snake may take a bit longer... Perhaps someone should
spend some time figuring out which cells of the product of these fifteen trees make up the moonshine
picture!

2.23 E(8) from moonshine groups

Are the valencies of the 171 moonshine groups compatible, that is, can one construct a (disconnected)
graph on the 171 vertices such that in every vertex (determined by a moonshine group G) the vertex-
valency coincides with the valency of the corresponding group? Duncan describes a subset of 9
moonshine groups for which the valencies are compatible. These 9 groups are characterized as those
moonshine groups G having width 1 at the cusp and such that their intersection with the modular
group is big.

Fig. 2.10: John Duncan

Time to wrap up this series on John Duncan’s paper Arithmetic
groups and the affine E8 Dynkin diagram in which he gives a re-
alization of the extended E(8)-Dynkin diagram (together with its
isotropic root vector) from the moonshine groups, compatible with
McKay’s E(8)-observation.

In the previous section, we described all 171 moonshine groups us-
ing Conway’s big picture. This description will allow us to associate
two numbers to a moonshine group G ⊂ PSL2(R). Recall that for
any such group we have a positive integer N such that

Γ0(N) ⊂ G ⊂ Γ0(h, N
h

)+

where h is the largest divisor of 24 such that h2|N . Let us call
nG = N

h
the dimension of G (Duncan calls this number the ’nor-

malized level’) as it will give us the dimension component at the
vertex determined by G.

We have also seen last time that any moonshine group is of the form
G = Γ0(nG||h) + e, f, g, that is, G/Γ0(nG||h) is an elementary
abelian group (Z/2Z)m generated by Atkin-Lehner involutions.

Let’s call vG = m + 1 the valency of the group G as it will give s the valency of the vertex de-
termined by G.

Duncan describes a subset of 9 moonshine groups for which the valencies are compatible. These 9
groups are characterized as those moonshine groups G having width 1 at the cusp and such that their
intersection with the modular group Γ = PSL2(Z) is big, more precisely the index [Γ : Γ∩G] ≤ 12
and [Γ : Γ ∩G]/[G : Γ ∩G] ≤ 3.

They can be described using the mini-moonshine picture below. They are :

The modular group itself 1 = Γ, being the stabilizer of the lattice 1. This group has clearly dimension
and valency equal to one.

The modular subgroup 2 = Γ0(2) being the point-wise stabilizer of the lattices 1 and 2 (so it has
valency one and dimension two, and, its normalizer 2+ = Γ0(2)+ which is the set-wise stabilizer
of the lattices 1 and 2 and the one Atkin-Lehner involution interchanges both. So, this group has
valency two (as we added one involution) as well as dimension two.

http://www.math.harvard.edu/~jfd/
http://arxiv.org/abs/0810.1465
http://arxiv.org/abs/0810.1465
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Likewise, the groups 3+ = Γ0(3)+ and 5+ = Γ0(5)+ are the stabilzer subgroups of the red 1-
cell (1,3) resp. the green 1-cell (1,5) and hence have valency two (as we add one involution) and
dimensions 3 resp. 5.

The group 4+ = Γ0(4)+ stabilizes the (1—4)-thread and as we add one involution must have
valency 2 and dimension 4.

On the other hand, the group 6+ = Γ0(6)+ stabilizes the unique 2-cell in the picture (having lattices
1,2,3,6) so this time we will add three involutions (horizontal and vertical switches and their product
the antipodal involution). Hence, for this group the valency is three and its dimension is equal to six.

Remain the two groups connected to the mini-snakes in the picture. The red mini-snake (top left
hand) is the ball with center 3 and hyper-distance 3 and determines the group 3||3 = Γ0(3||3) which
has valency one (we add no involutions) and dimension 3. The blue mini-snake (the extended D(5)-
Dynkin in the lower right corner) determines the group 4||2+ = Γ(4||2)+ which has valency two
and dimension 4.

The valencies of these 9 moonshine groups are compatible and they can be arranged in the extended
E(8) diagram depicted below

Moreover, the dimensions of the groups give the exact dimension-components of the isotropic root of
the extended E(8)-diagram. Further, the dimension of the group is equal to the order of the elements
making up the conjugacy class of the monster to which exactly the given groups correspond via
monstrous moonshine and hence compatible with John McKay’s original E(8)-observation!

http://en.wikipedia.org/wiki/Monster_group
http://en.wikipedia.org/wiki/Monstrous_moonshine
http://en.wikipedia.org/wiki/John_McKay_(mathematician)
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Once again, I would love to hear when someone has more information on the cell-decomposition of
the moonshine picture or if someone can extend the moonshine E(8)-graph, possibly to include all
171 moonshine groups.

2.24 Hexagonal moonshine

Hexagons keep on popping up in the representation theory of the modular group and its close asso-
ciates.

Let’s find representations of the extended modular group Γ̃ = PGL2(Z), which is obtained by
adding to the modular group

Γ = 〈U =

[
0 −1
1 0

]
, V =

[
0 1
−1 1

]
〉 the matrix R =

[
0 1
1 0

]
In terms of generators and relations, one easily verfifies that

Γ̃ = 〈 U, V,R | U2 = R2 = V 3 = (RU)2 = (RV )2 = 1 〉

and therefore Γ̃ is the amalgamated free product of the dihedral groupsD2 andD3 over their common
subgroup C2 = 〈 R 〉, that is

Γ̃ = 〈U,R|U2 = R2 = (RU)2 = 1〉 ∗〈R|R2=1〉 〈V,R|V 3 = R2 = (RV )2 = 1〉 = D2 ∗C2 D3

From this description it is easy to find all n-dimensional Γ̃-representations V and relate them to
quiver-representations. D2 = C2 × C2 and hence has 4 1-dimensonal simples S1, S2, S3, S4. Re-
stricting V ↓D2 to the subgroup D2 it decomposes as

V ↓D2' S
⊕a1
1 ⊕ S⊕a22 ⊕ S⊕a33 ⊕ S⊕a44 with a1 + a2 + a3 + a4 = n

Similarly, because D3 = S3 has two one-dimensional representations T, S (the trivial and the sign
representation) and one simple 2-dimensional representation W , restricting V to this subgroup gives
a decomposition

V ↓D3' T b1 ⊕ S⊕b2 ⊕W⊕b3 , this time with b1 + b2 + 2b3 = n

Restricting both decompositions further down to the common subgroup C2 one obtains a C2-
isomorphism φ : V ↓D2

- V ↓D3 which implies also that the above numbers must be chosen
such that a1 + a3 = b1 + b3 and a2 + a4 = b2 + b3. We can summarize all this info about V in a
representation of the quiver

Here, the vertex spaces on the left are the iso-typical factors of V ↓D2

and those on the right those of V ↓D3 and the arrows give the block-
components of the C2-isomorphism φ.

The nice things is that one can also reverse this process to get all Γ̃-
representations from θ-semistable representations of this quiver (having
the additional condition that the square matrix made of the arrows is in-
vertible) and isomorphisms of group-representation correspond to those
of quiver-representations!

This proves that for all n the varieties of n-dimensional representations
repn Γ̃ are smooth (but have several components corresponding to the
different dimension vectors (a1, a2, a3, a4; b1, b2, b3) such that

∑
ai =

n = b1 + b2 + 2b3.

The basic principle of noncommutative geometry is that a lot of the repre-
sentation theory follows from the ’one quiver’ determined by the simples
of smallest dimensions. In the case of the extended modular group Γ̃ it
follows that there are exactly 4 one-dimensional simples and exactly 4
2-dimensional simples, corresponding to the dimension vectors
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
a = (0, 0, 0, 1; 0, 1, 0)

b = (0, 1, 0, 0; 0, 1, 0)

c = (1, 0, 0, 0; 1, 0, 0)

d = (0, 0, 1, 0; 1, 0, 0)

resp.


e = (0, 1, 1, 0; 0, 0, 1)

f = (1, 0, 0, 1; 0, 0, 1)

g = (0, 0, 1, 1; 0, 0, 1)

h = (1, 1, 0, 0; 0, 0, 1)

If one calculates the ’one quiver’ of these 8 simples one
obtains the double quiver of the graph on the left. Note
that a and b appear twice, so one should glue the left and
right hand sides together as a Moebius-strip. That is, the
clan determining the representation theory of the extended
modular group is a Moebius strip made of two hexagons!

However, one should not focuss too much on the hexagons
(that is, the extended Dynkin diagram Ã5) here. The two
’backbones’ (e–f and g–h) have their vertices correspond-
ing to 2-dimensional simples whereas the top and bottom
vertices correspond to one-dimensional simples. Hence,
the correct way to look at this clan is as two copies of the
double quiver of the extended Dynkin diagram D̃5 glued
over their leaf vertices to form a Moebius strip. Remark
that the components of the sotropic root of D̃5 give the
dimensions of the corresponding Γ̃ simples.

The remarkable ubiquity of (extended) Dynkins never ceases to amaze!
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