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BRAVE NEW GEOMETRIES

1.1 Mumford’s treasure map

David Mumford did receive earlier this year the 2007 AMS Leroy P. Steele Prize for Math-
ematical Exposition. The jury honors Mumford for ”his beautiful expository accounts of
a host of aspects of algebraic geometry”. Not surprisingly, the first work they mention are
his mimeographed notes of the first 3 chapters of a course in algebraic geometry, usually
called ”Mumford’s red book” because the notes were wrapped in a red cover. In 1988, the
notes were reprinted by Springer-Verlag. Unfortunately, the only red they preserved was in
the title.

Fig. 1.1: D. Mumford

The AMS describes the impor-
tance of the red book as follows.
”This is one of the few books
that attempt to convey in pictures
some of the highly abstract no-
tions that arise in the field of
algebraic geometry. In his re-
sponse upon receiving the prize,
Mumford recalled that some of
his drawings from The Red Book
were included in a collection
called Five Centuries of French
Mathematics. This seemed fit-
ting, he noted: ”After all, it was
the French who started impres-
sionist painting and isn’t this just
an impressionist scheme for ren-
dering geometry?””

These days it is perfectly possible
to get a good grasp on difficult concepts from algebraic geometry by reading blogs, watch-
ing YouTube or plugging in equations to sophisticated math-programs. In the early seven-
ties though, if you wanted to know what Grothendieck’s scheme-revolution was all about
you had no choice but to wade through the EGA’s and SGA’s and they were notorious for
being extremely user-unfriendly regarding illustrations...

So the few depictions of schemes available, drawn by people sufficiently fluent in
Grothendieck’s new geometric language had no less than treasure-map-cult-status and were
studied in minute detail. Mumford’s red book was a gold mine for such treasure maps.
Here’s my favorite one, scanned from the original mimeographed notes (it looks somewhat
tidier in the Springer-version)

 http://www.dam.brown.edu/people/mumford/
http://www.ams.org/ams/press/steele2007-exposition.html
http://www.springer.com/math/algebra/book/978-3-540-63293-1?detailsPage=otherBooks&CIPageCounter=CI_MORE_BOOKS_BY_AUTHOR0
http://www.culturesfrance.com/adpf-publi/folio/textes/maths.pdf
http://www.culturesfrance.com/adpf-publi/folio/textes/maths.pdf
http://www.grothendieckcircle.org/
http://www.math.jussieu.fr/~leila/grothendieckcircle/pubtexts.php
http://modular.fas.harvard.edu/sga/sga/pdf/index.html
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It is the first depiction of spec(Z[x]), the affine scheme of the ring Z[x] of all integral
polynomials. Mumford calls it the”arithmetic surface” as the picture resembles the one
he made before of the affine scheme spec(C[x, y]) corresponding to the two-dimensional
complex affine space A2

C. Mumford adds that the arithmetic surface is ’the first example
which has a real mixing of arithmetic and geometric properties’.

Let’s have a closer look at the treasure map. It introduces some new signs which must have
looked exotic at the time, but have since become standard tools to depict algebraic schemes.

For starters, recall that the underlying topological space of spec(Z[x]) is the set of all
prime ideals of the integral polynomial ring Z[x], so the map tries to list them all as well as
their inclusions/intersections.

Fig. 1.2: Generic point

The doodle in the right upper corner depicts the
’generic point’ of the scheme. That is, the geomet-
ric object corresponding to the prime ideal (0) (note
that Z[x] is an integral domain). Because the zero
ideal is contained in any other prime ideal, the al-
gebraic/geometric mantra (”inclusions reverse when
shifting between algebra and geometry”) asserts that
the geometric object corresponding to (0) should
contain all other geometric objects of the arithmetic
plane, so it is just the whole plane! Clearly, it is
rather senseless to depict this fact by coloring the
whole plane black as then we wouldn’t be able to
see the finer objects. Mumford’s solution to this is to
draw a hairy ball, which in this case, is sufficiently
thick to include fragments going in every possible
direction. In general, one should read these doodles as saying that the geometric object
represented by this doodle contains all other objects seen elsewhere in the picture if the
hairy-ball-doodle includes stuff pointing in the direction of the smaller object. So, in the
case of the object corresponding to (0), the doodle has pointers going everywhere, saying
that the geometric object contains all other objects depicted.

Let’s move over to the doodles in the lower right-hand corner.

http://en.wikipedia.org/wiki/Prime_ideal
http://en.wikipedia.org/wiki/Generic_point
http://en.wikipedia.org/wiki/Integral_domain
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They represent the geometric object corresponding
to principal prime ideals of the form (p(x)), where
p(x) in an irreducible polynomial over the integers,
that is, a polynomial which we cannot write as the
product of two smaller integral polynomials. The
objects corresponding to such prime ideals should
be thought of as ’horizontal’ curves in the plane.

The doodles depicted correspond to the prime ideal
(x), containing all polynomials divisible by x so
when we divide it out we get, as expected, a domain
Z[x]/(x) ' Z, and the one corresponding to the
ideal (x2 + 1), containing all polynomials divisible
by x2 + 1, which can be proved to be a prime ide-
als of Z[x] by observing that after factoring out we
get Z[x]/(x2 + 1) ' Z[i], the domain of all Gaus-
sian integers Z[i]. The corresponding doodles (the
’generic points’ of the curvy-objects) have a pre-
dominant horizontal component as they have the express the fact that they depict horizontal
curves in the plane. It is no coincidence that the doodle of (x2 + 1) is somewhat bulkier
than the one of (x) as the later one must only depict the fact that all points lying on the
straight line to its left belong to it, whereas the former one must claim inclusion of all points
lying on the ’quadric’ it determines.

Apart from these ’horizontal’ curves, there
are also ’vertical’ lines corresponding to
the principal prime ideals (p), containing
the polynomials, all of which coefficients
are divisible by the prime number p. These
are indeed prime ideals of Z[x], because
their quotients are Z[x]/(p) ' (Z/pZ)[x]
are domains, being the ring of polynomials over the finite field Z/pZ = Fp. The doodles
corresponding to these prime ideals have a predominant vertical component (depicting the
’vertical’ lines) and have a uniform thickness for all prime numbers p as each of them only
has to claim ownership of the points lying on the vertical line under them.

Fig. 1.3: Points

Right! So far we managed to depict the zero prime
ideal (the whole plane) and the principal prime ide-
als of Z[x] (the horizontal curves and the vertical
lines). Remains to depict the maximal ideals. These
are all known to be of the form m = (p, f(x)) where
p is a prime number and f(x) is an irreducible in-
tegral polynomial, which remains irreducible when
reduced modulo p (that is, if we reduce all coef-
ficients of the integral polynomial f(x) modulo p
we obtain an irreducible polynomial in Fp[x]). By
the algebra/geometry mantra mentioned before, the
geometric object corresponding to such a maximal
ideal can be seen as the ’intersection’ of an hori-
zontal curve (the object corresponding to the princi-
pal prime ideal (f(x))) and a vertical line (corresponding to the prime ideal (p)). Be-
cause maximal ideals do not contain any other prime ideals, there is no reason to have
a doodle associated to m and we can just depict it by a ”point” in the plane, more pre-
cisely the intersection-point of the horizontal curve with the vertical line determined by
m = (p, f(x)). Still, Mumford’s treasure map doesn’t treat all ”points” equally. For ex-

http://en.wikipedia.org/wiki/Irreducible_polynomial
http://en.wikipedia.org/wiki/Gaussian_integers
http://en.wikipedia.org/wiki/Gaussian_integers
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Maximal_ideal
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ample, the point corresponding to the maximal ideal m1 = (3, x + 2) is depicted by a
solid dot ., whereas the point corresponding to the maximal ideal m2 = (3, x2 + 1) is
represented by a fatter point ◦. The distinction between the two ’points’ becomes evi-
dent when we look at the corresponding quotients (which we know have to be fields).
We have Z[x]/m1 = Z[x]/(3, x + 2) = (Z/3Z)[x]/(x + 2) = Z/3Z = F3 whereas
Z[x]/m2 = Z[x]/(3, x2 + 1) = Z/3Z[x]/(x2 + 1) = F3[x]/(x2 + 1) = F32 because the
polynomial x2 + 1 remains irreducible over F3, the quotient F3[x]/(x2 + 1) is no longer
the prime-field F3 but a quadratic field extension of it, that is, the finite field consisting of
9 elements F32 . That is, we represent the ’points’ lying on the vertical line corresponding
to the principal prime ideal (p) by a solid dot . when their quotient (aka residue field is the
prime field Fp, by a bigger point ◦ when its residue field is the finite field Fp2 , by an even
fatter point© when its residue field is Fp3 and so on, and on. The larger the residue field,
the ’fatter’ the corresponding point.

In fact, the ’fat-point’ signs in Mumford’s treasure map are an attempt to depict the fact
that an affine scheme contains a lot more information than just the set of all prime ideals.
In fact, an affine scheme determines (and is determined by) a ”functor of points”. That
is, to every field (or even every commutative ring) the affine scheme assigns the set of its
’points’ defined over that field (or ring). For example, the Fp-points of spec(Z[x]) are the
solid . points on the vertical line (p), the Fp2 -points of spec(Z[x]) are the solid . points
and the slightly bigger ◦ points on that vertical line, and so on.

This concludes our first attempt to decipher Mumford’s drawing, but if we delve a bit
deeper, we are bound to find even more treasures...

1.2 Grothendieck’s functor of points

A comment-thread well worth following while on vacation was Algebraic Geometry with-
out Prime Ideals at the Secret Blogging Seminar. Peter Woit became [lyric about it :

Fig. 1.4: A. Grothendieck

”My nomination for the all-time highest
quality discussion ever held in a blog com-
ment section goes to the comments on this
posting at Secret Blogging Seminar, where
several of the best (relatively)-young al-
gebraic geometers in the business discuss
the foundations of the subject and how it
should be taught.”

I follow far too few comment-sections to
make such a definite statement, but found
the contributions by James Borger and
David Ben-Zvi of exceptional high quality.
They made a case for using Grothendieck’s
’functor of points’ approach in teaching al-
gebraic geometry instead of the ’usual’ ap-
proach via prime spectra and their structure
sheaves.

The text below was written on december 15th of last year, but never posted. As far as I
recall it was meant to be part two of the ’Brave New Geometries’-series starting with the
Mumford’s treasure map post 1.1. Anyway, it may perhaps serve someone unfamiliar with
Grothendieck’s functorial approach to make the first few timid steps in that directions.

Allyn Jackson’s beautiful account of Grothendieck’s life Comme Appele du Neant, part II
(the first part of the paper can be found here) contains this gem :

http://en.wikipedia.org/wiki/Residue_field
http://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
http://sbseminar.wordpress.com/2009/08/06/algebraic-geometry-without-prime-ideals/
http://www.math.columbia.edu/~woit/wordpress/?p=2240
http://wwwmaths.anu.edu.au/~borger/
http://www.ma.utexas.edu/users/benzvi/
http://www.ams.org/staff/jackson/articles.html
http://www.math.jussieu.fr/~leila/grothendieckcircle/allyn2.pdf
http://www.math.jussieu.fr/~leila/grothendieckcircle/allyn1.pdf
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”One striking characteristic of Grothendiecks mode of thinking is that it seemed to rely so
little on examples. This can be seen in the legend of the so-called Grothendieck prime. In a
mathematical conversation, someone suggested to Grothendieck that they should consider
a particular prime number. You mean an actual number? Grothendieck asked. The other
person replied, yes, an actual prime number. Grothendieck suggested, All right, take 57.
But Grothendieck must have known that 57 is not prime, right? Absolutely not, said David
Mumford of Brown University. He doesnt think concretely.

We have seen before how Mumford’s doodles (post 1.1) allow us to depict all ’points’ of
the affine scheme spec(Z[x]), that is, all prime ideals of the integral polynomial ring Z[x].
Perhaps not too surprising, in view of the above story, Alexander Grothendieck pushed the
view that one should consider all ideals, rather than just the primes. He achieved this by
associating the ’functor of points’ to an affine scheme.

Consider an arbitrary affine integral scheme X with coordinate ring Z[X] =
Z[t1, . . . , tn]/(f1, . . . , fk), then any ringmorphism φ : Z[t1, . . . , tn]/(f1, . . . , fk) → R
is determined by an n-tuple of elements (r1, . . . , rn) = (φ(t1), . . . , φ(tn)) from R which
must satisfy the polynomial relations fi(r1, . . . , rn) = 0. Thus, Grothendieck argued, one
can consider (r1, . . . , rn) an an ’R-point’ ofX and all such tuples form a set hX(R) called
the set of R-points of X . But then we have a functor

hX : comrings - sets R 7→ hX(R) = Rings(Z[t1, . . . , tn]/(f1, . . . , fk), R)

So, what is this mysterious functor in the special case of interest to us, that is when X =
spec(Z[x])? Well, in that case there are no relations to be satisfied so any ringmorphism
Z[x]→ R is fully determined by the image of x which can be any element r ∈ R. That is,
Ring(Z[x], R) = R and therefore Grothendieck’s functor of points hspec(Z[x] is nothing
but the forgetful functor.

But, surely the forgetful functor cannot give us interesting extra information on Mumford’s
drawing? Well, have a look at the slightly extended drawing below :

http://en.wikipedia.org/wiki/57_(number)
http://en.wikipedia.org/wiki/Alexander_Grothendieck
http://en.wikipedia.org/wiki/Functor
http://en.wikipedia.org/wiki/Forgetful_functor
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What are these ’smudgy’ lines and ’spiky’ points? Well, before we come to those let us
consider the easier case of identifying the R-points in case R is a domain. Then, for any
r ∈ R, the inverse image of the zero prime ideal of R under the ringmap φr : Z[x] → R
must be a prime ideal of Z[x], that is, something visible in Mumford’s drawing. Let’s
consider a few easy cases :

For starters, what are the Z-points of spec(Z[x])? Any natural number n ∈ Z determines
the surjective ringmorphism φn : Z[x] → Z identifying Z with the quotient Z[x]/(x −
n), identifying the ’arithmetic line’ spec(Z) = (2), (3), (5), . . . , (p), . . . , (0) with the
horizontal line in spec(Z[x]) corresponding to the principal ideal (x − n) (such as the
indicated line (x)).

When Q are the rational numbers, then λ = m
n with m,n coprime integers, in which case

we have φ−1
λ (0) = (nx −m), hence we get again an horizontal line in spec(Z[x]). For

Q, the algebraic closure of Q we have for any λ that φ−1
λ (0) = (f(x)) where f(x) is a

minimal integral polynomial for which λ is a root. But what happens when K = C and λ
is a trancendental number?

Well, in that case the ringmorphism φλ : Z[x]→ C is injec-
tive and therefore φ−1

λ (0) = (0) so we get the whole arith-
metic plane! In the case of a finite field Fpn we have seen
that there are ’fat’ points in the arithmetic plane, correspond-
ing to maximal ideals (p, f(x)) (with f(x) a polynomial of
degree n which remains irreducible over Fp), having Fpn as
their residue field. But these are not the only Fpn -points. For,
take any element λ ∈ Fpn , then the map φλ takes Z[x] to the
subfield of Fpn generated by λ. That is, the Fpn -points of
spec(Z[x]) consists of all fat points with residue field Fpn ,
together with slightly slimmer points having as their residue
field Fpm wherem is a divisor of n. In all, there are precisely
pn (that is, the number of elements of Fpn ) such points, as
could be expected.

Things become quickly more interesting when we consider
R-points for rings containing nilpotent elements.

1.3 Manin’s geometric axis

Mumford’s drawing (see post 1.1) has a clear emphasis on the vertical direction.

Fig. 1.5: Yu. I. Manin

The set of all vertical lines corresponds to
taking the fibers of the natural ’structural
morphism’ : π : spec(Z[t]) → spec(Z)
coming from the inclusion Z ⊂ Z[t].

That is, we consider the intersection P ∩Z
of a prime ideal P ⊂ Z[t] with the subring
of constants. Two options arise : either P ∩
Z 6= 0, in which case the intersection is a
principal prime ideal (p) for some prime
number p (and hence P itself is bigger or
equal to pZ[t] whence its geometric object
is contained in the vertical line V((p)), the
fiber π−1((p)) of the structural morphism
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over (p)), or, the intersection P ∩Z[t] = 0
reduces to the zero ideal (in which case the
extended prime ideal PQ[x] = (q(x)) is a

principal ideal of the rational polynomial algebra Q[x], and hence the geometric object
corresponding to P is a horizontal curve in Mumford’s drawing, or is the whole arithmetic
plane itself if P = 0).

Because we know already that any ’point’ in Mumford’s drawing corresponds to a maxi-
mal ideal of the form m = (p, f(x)) (see [last time][1]), we see that every point lies on
precisely one of the set of all vertical coordinate axes corresponding to the prime numbers
V((p)) = spec(Fp[x]) = π−1((p)) . In particular, two different vertical lines do not in-

tersect (or, in ringtheoretic lingo, the ’vertical’ prime ideals pZ[x] and qZ[x] are comaximal
for different prime numbers p 6= q).

That is, the structural morphism is a projection onto the ”arithmetic axis” (which is
spec(Z)) and we get the above picture. The extra vertical line to the right of the picture is
there because in arithmetic geometry it is customary to include also the archimedean valu-
ations and hence to consider the ’compactification’ of the arithmetic axis spec(Z) which
is spec(Z) = spec(Z) ∪ vR.

Yuri I. Manin is advocating for years the point that we should take the terminology ’arith-
metic surface’ for spec(Z[x]) a lot more seriously. That is, there ought to be, apart from
the projection onto the ’z-axis’ (that is, the arithmetic axis spec(Z)) also a projection onto
the ’x-axis’ which he calls the ’geometric axis’.

But then, what are the ’points’ of this geometric axis and what are their fibers under this
second projection?

We have seen above that the vertical coordinate line over the prime number (p) coincides
with spec(Fp[x]), the affine line over the finite field Fp. But all of these different lines, for
varying primes p, should project down onto the same geometric axis. Manin’s idea was to
take therefore as the geometric axis the affine line spec(F1[x]), over the virtual field with
one element, which should be thought of as being the limit of the finite fields Fp when p
goes to one!

How many points does spec(F1[x]) have? Over a virtual object one can postulate whatever
one wants and hope for an a posteriori explanation. F1-gurus tell us that there should be
exactly one point of size n on the affine line over F1, corresponding to the unique degree n
field extension F1n . However, it is difficult to explain this from the limiting perspective...

http://en.wikipedia.org/wiki/Valuation_(algebra)
http://en.wikipedia.org/wiki/Valuation_(algebra)
http://en.wikipedia.org/wiki/Yuri_I._Manin
http://matrix.cmi.ua.ac.be/fun/
http://matrix.cmi.ua.ac.be/fun/
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Over a genuine finite field Fp, the num-
ber of points of thickness n (that is, those
for which the residue field is isomorphic to
the degree n extension Fpn ) is equal to the
number of monic irreducible polynomials
of degree n over Fp. This number is known
to be 1

n

∑
d|n µ(nd )pd where µ(k) is the

Moebius function. But then, the limiting
number should be 1

n

∑
d|n µ(nd ) = δn1,

that is, there can only be one point of size
one...

Alternatively, one might consider the zeta
function counting the number Nn of ide-
als having a quotient consisting of pre-
cisely pn elements. Then, we have for
genuine finite fields Fp that ζ(Fp[x]) =∑∞
n=0Nnt

n = 1 + pt+ p2t2 + p3t3 + . . .,
whence in the limit it should become 1+t+
t2+t3+. . . and there is exactly one ideal in
F1[x] having a quotient of cardinality n and
one argues that this unique quotient should
be the unique point with residue field F1n

(though it might make more sense to view
this as the unique n-fold extension of the
unique size-one point F1 corresponding to
the quotient F1[x]/(xn)...)

A perhaps more convincing reasoning goes
as follows. If Fp is an algebraic closure of the finite field Fp, then the points of the affine
line over Fp are in one-to-one correspondence with the maximal ideals of Fp[x] which are
all of the form (x − λ) for λ ∈ Fp. Hence, we get the points of the affine line over the
basefield Fp as the orbits of points over the algebraic closure under the action of the Galois
group Gal(Fp/Fp).

’Common wisdom’ has it that one should identify the algebraic closure of the field with
one element F1 with the group of all roots of unity µ∞ and the corresponding Galois group
Gal(F1/F1) as being generated by the power-maps λ → λn on the roots of unity. But
then there is exactly one orbit of length n given by the n-th roots of unity µn, so there
should be exactly one point of thickness n in spec(F1[x]) and we should then identity the
corresponding residue field as F1n = µn.

Whatever convinces you, let us assume that we can identify the non-generic points of
spec(F1[x]) with the set of positive natural numbers 1, 2, 3, . . . with n denoting the unique
size n point with residue field F1n . Then, what are the fibers of the projection onto the
geometric axis φ : spec(Z[x])→ spec(F1[x]) = 1, 2, 3, . . .?

These fibers should correspond to ’horizontal’ principal prime ideals of Z[x]. Manin pro-
poses to consider φ−1(n) = V((Φn(x))) where Φn(x) is the n-th cyclotomic polynomial.
The nice thing about this proposal is that all closed points of spec(Z[x]) lie on one of these
fibers!

Indeed, the residue field at such a point (corresponding to a maximal ideal m = (p, f(x)))
is the finite field Fpn and as all its elements are either zero or an pn − 1-th root of unity, it
does lie on the curve determined by Φpn−1(x).

As a consequence, the localization Z[x]cycl of the integral polynomial ring Z[x] at the
multiplicative system generated by all cyclotomic polynomials is a principal ideal domain

http://mathworld.wolfram.com/IrreduciblePolynomial.html
http://mathworld.wolfram.com/MoebiusFunction.html
http://en.wikipedia.org/wiki/Hasse-Weil_zeta_function
http://en.wikipedia.org/wiki/Hasse-Weil_zeta_function
http://en.wikipedia.org/wiki/Galois_group
http://en.wikipedia.org/wiki/Galois_group
http://en.wikipedia.org/wiki/Cyclotomic_polynomial
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(as all height two primes evaporate in the localization), and, the fiber over the generic point
of spec(F1[x]) is spec(Z[x]cycl), which should be compared to the fact that the fiber of
the generic point in the projection onto the arithmetic axis is spec(Q[x]) and Q[x] is the
localization of Z[x] at the multiplicative system generated by all prime numbers).

Hence, both the vertical coordinate lines and the horizontal ’lines’ contain all closed points
of the arithmetic plane. Further, any such closed point m = (p, f(x)) lies on the inter-
section of a vertical line V((p)) and a horizontal one V((Φpn−1(x))) (if deg(f(x)) = n).
That is, these horizontal and vertical lines form a coordinate system, at least for the closed
points of spec(Z[x]).

Still, there is a noticeable difference between the two sets of coordinate lines. The vertical
lines do not intersect meaning that pZ[x] + qZ[x] = Z[x] for different prime numbers p
and q. However, in general the principal prime ideals corresponding to the horizontal lines
(Φn(x)) and (Φm(x)) are not comaximal when n 6= m, that is, these ’lines’ may have
points in common! This will lead to an exotic new topology on the roots of unity... (to be
continued).

1.4 Mazur’s knotty dictionary

In the previous posts, we have depicted the ’arithmetic line’, that is the prime numbers, as
a ’line’ and individual primes as ’points’.

Fig. 1.6: B. Mazur

However, sometime in the roaring 60-ties,
Barry Mazur launched the crazy idea of
viewing the affine spectrum of the integers,
spec(Z), as a 3-dimensional manifold and
prime numbers themselves as knots in this
3-manifold...

After a long silence, this idea was taken up
recently by Mikhail Kapranov and Alexan-
der Reznikov (1960-2003) in a talk at the
MPI-Bonn in august 1996. Pieter Moree
tells the story in his recollections about
Alexander (Sacha) Reznikov in Sipping
Tea with Sacha :

”Sasha’s paper is closely related to his pa-
per where the analogy of covers of three-
manifolds and class field theory plays a big
role (an analogy that was apparently first

noticed by B. Mazur). Sasha and Mikhail Kapranov (at the time also at the institute) were
both very interested in this analogy. Eventually, in August 1996, Kapranov and Reznikov
both lectured on this (and I explained in about 10 minutes my contribution to Reznikov’s
proof). I was pleased to learn some time ago that this lecture series even made it into the
literature, see Morishita’s ’On certain analogies between knots and primes’ J. reine angew.
Math 550 (2002) 141-167.”

Here’s a part of what is now called the Kapranov-Reznikov-Mazur dictionary :

http://www.math.toronto.edu/kapranov/
http://books.google.com/books?id=nLaWI8Rc9RYC&dq=Alexander+Reznikov&printsec=frontcover&source=bl&ots=GoAknn2TfZ&sig=eHgN5X04za1PgSfIq2_zhM-D-LQ&hl=en&sa=X&oi=book_result&resnum=3&ct=result
http://books.google.com/books?id=nLaWI8Rc9RYC&dq=Alexander+Reznikov&printsec=frontcover&source=bl&ots=GoAknn2TfZ&sig=eHgN5X04za1PgSfIq2_zhM-D-LQ&hl=en&sa=X&oi=book_result&resnum=3&ct=result
http://guests.mpim-bonn.mpg.de/moree/
http://books.google.com/books?id=nLaWI8Rc9RYC&dq=Alexander+Reznikov&printsec=frontcover&source=bl&ots=GoAknn2TfZ&sig=eHgN5X04za1PgSfIq2_zhM-D-LQ&hl=en&sa=X&oi=book_result&resnum=3&ct=result#PPR24,M1
http://books.google.com/books?id=nLaWI8Rc9RYC&dq=Alexander+Reznikov&printsec=frontcover&source=bl&ots=GoAknn2TfZ&sig=eHgN5X04za1PgSfIq2_zhM-D-LQ&hl=en&sa=X&oi=book_result&resnum=3&ct=result#PPR24,M1
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What is the rationale behind this dictionary? Well, it all has to do with trying to make sense
of the (algebraic) fundamental group πalg1 (X) of a general scheme X . Recall that for a
manifold M there are two different ways to define its fundamental group π1(M) : either as
the closed loops in a given basepoint upto homotopy or as the automorphism group of the
universal cover M̃ of M .

For an arbitrary scheme the first definition doesn’t make sense but we can use the second
one as we have a good notion of a (finite) cover : an etale morphism Y → X of the scheme
X . As they form an inverse system, we can take their finite automorphism groupsAutX(Y )
and take their projective limit along the system and call this the algebraic fundamental
group πalg1 (X).

Hendrik Lenstra has written beautiful course notes on ’Galois theory for schemes’ on all
of this starting from scratch. Besides, there are also two video-lectures available on this at
the MSRI-website : Etale fundamental groups 1 by H.W. Lenstra and Etale fundamental
groups 2 by F. Pop.

But, what is the connection with the ’usual’ fundamental group in case both of them can be
defined? Well, by construction the algebraic fundamental group is always a profinite group
and in the case of manifolds it coincides with the profinite completion of the standard
fundamental group, that is, πalg1 (M) ' π̂1(M) (recall that the cofinite completion is the
projective limit of all finite group quotients).

http://en.wikipedia.org/wiki/\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 e\egroup \spacefactor \accent@spacefactor tale_morphism
http://www.math.leidenuniv.nl/~hwl/
http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf
http://www.msri.org/publications/ln/msri/1999/vonneumann/lenstra/1/
http://www.msri.org/communications/ln/msri/1999/vonneumann/pop/1/index.html
http://www.msri.org/communications/ln/msri/1999/vonneumann/pop/1/index.html
http://www.neverendingbooks.org/index.php/profinite-groups-survival-guide.html
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Right, so all we have to do to find a topological equivalent of an algebraic scheme is to
compute its algebraic fundamental group and find an existing topological space of which
the profinite completion of its standard fundamental group coincides with our algebraic
fundamental group. An example : a prime number p (as a ’point’ in spec(Z)) is the closed
subscheme spec(Fp) corresponding to the finite field Fp = Z/pZ. For any affine scheme
of a field K, the algebraic fundamental group coincides with the absolute Galois group
Gal(K/K). In the case of Fp we all know that this absolute Galois group is isomorphic
with the profinite integers Ẑ. Now, what is the first topological space coming to mind
having the integers as its fundamental group? Right, the circle S1. Hence, in arithmetic
topology we view prime numbers as topological circles, that is, as knots in some bigger
space.

But then, what is this bigger space? That is, what is the topological equivalent of spec(Z)?
For this we have to go back to Mazur’s original paper Notes on etale cohomology of num-
ber fields in which he gives an Artin-Verdier type duality theorem for the affine spectrum
X = spec(D) of the ring of integers D in a number field. More precisely, there is a
non-degenerate pairing Hr

et(X,F )× Ext3−rX (F,Gm)→ H3
et(X,F ) ' Q/Z for any con-

structible abelian sheaf F . This may not tell you much, but it is a ’sort of’ Poincare-duality
result one would have for a compact three dimensional manifold.

Ok, so in particular spec(Z) should be thought of as a 3-dimensional compact manifold,
but which one? For this we have to compute the algebraic fundamental group. Fortunately,
this group is trivial as there are no (non-split) etale covers of spec(Z), so the corresponding
3-manifold should be simple connected... but we now know that this has to imply that the
manifold must be S3, the 3-sphere! Summarizing : in arithmetic topology, prime numbers
are knots in the 3-sphere!

More generally (by the same arguments) the affine spectrum spec(D) of a ring of integers
can be thought of as corresponding to a closed oriented 3-dimensional manifold M (which
is a cover of S3) and a prime ideal p / D corresponds to a knot in M .

But then, what is an ideal a /D? Well, we have unique factorization of ideals in D, that is,
a = pn1

1 . . . pnkk and therefore a corresponds to a link in M of which the constituent knots
are the ones corresponding to the prime ideals pi.

And we can go on like this. What should be an element w ∈ D? Well, it will be an
embedded surface S → M , possibly with a boundary, the boundary being the link corre-
sponding to the ideal a = Dw and Seifert’s algorithm tells us how we can produce surfaces
having any prescribed link as its boundary. But then, in particular, a unit w ∈ D∗ should
correspond to a closed surface in M .

And all these analogies carry much further : for example the class group of the ring of
integers Cl(D) then corresponds to the torsion part H1(M,Z)tor because principal ideals
Dw are trivial in the class group, just as boundaries of surfaces ∂S vanish in H1(M,Z).
Similarly, one may identify the unit group D∗ with H2(M,Z)... and so on, and on, and
on...

More links to papers on arithmetic topology can be found in John Baez’ week 257 or via
here.

1.5 Conway’s big picture

Conway and Norton showed that there are exactly 171 moonshine functions and associ-
ated two arithmetic subgroups to them. We want a tool to describe these and here’s where
Conway’s big picture comes in very handy. All moonshine groups are arithmetic groups,

http://sbseminar.wordpress.com/2007/06/21/more-talks-gukov-on-arithmetic-topology-and-gauge-theory/
http://sbseminar.wordpress.com/2007/06/21/more-talks-gukov-on-arithmetic-topology-and-gauge-theory/
http://www.numdam.org/numdam-bin/fitem?id=ASENS_1973_4_6_4_521_0
http://www.numdam.org/numdam-bin/fitem?id=ASENS_1973_4_6_4_521_0
http://en.wikipedia.org/wiki/Seifert_surface
http://en.wikipedia.org/wiki/Ideal_class_group
http://math.ucr.edu/home/baez/week257.html
http://golem.ph.utexas.edu/category/2007/10/this_weeks_finds_in_mathematic_18.html
http://golem.ph.utexas.edu/category/2007/10/this_weeks_finds_in_mathematic_18.html
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that is, they are commensurable with the modular group. Conway’s idea is to view sev-
eral of these groups as point- or set-wise stabilizer subgroups of finite sets of (projective)
commensurable 2-dimensional lattices.

Fig. 1.7: J.H. Conway, S. Norton

Expanding (and partially explaining) the original
moonshine observation of McKay and Thompson,
John Conway and Simon Norton formulated mon-
strous moonshine :

To every cyclic subgroup 〈m〉 of the Monster M is
associated a function

fm(τ) = 1
q + a1q + a2q

2 + . . . with q = e2πiτ and
all coefficients ai ∈ Z are characters at m of a rep-
resentation of M. These representations are the ho-
mogeneous components of the so called Moonshine
module.

Each fm is a principal modulus for a certain genus
zero congruence group commensurable with the
modular group Γ = PSL2(Z). These groups are
called the moonshine groups.

Conway and Norton showed that there are exactly
171 different functions fm and associated two arith-
metic subgroups F (m) ⊂ E(m) ⊂ PSL2(R) to
them (in most cases, but not all, these two groups
coincide).

Whereas there is an extensive literature on sub-
groups of the modular group (see for instance the se-
ries of posts starting here), most moonshine groups
are not contained in the modular group. So, we need

a tool to describe them and here’s where Conway’s big picture comes in very handy.

All moonshine groups are arithmetic groups, that is, they are subgroups G of PSL2(R)
which are commensurable with the modular group Γ = PSL2(Z) meaning that the inter-
section G ∩ Γ is of finite index in both G and in Γ. Conway’s idea is to view several of
these groups as point- or set-wise stabilizer subgroups of finite sets of (projective) com-
mensurable 2-dimensional lattices.

Start with a fixed two dimensional lattice L1 = Ze1 +Ze2 = 〈e1, e2〉 and we want to name
all lattices of the form L = 〈v1 = ae1 + be2, v2 = ce1 + de2〉 that are commensurable to
L1. Again this means that the intersection L ∩ L1 is of finite index in both lattices. From
this it follows immediately that all coefficients a, b, c, d are rational numbers.

It simplifies matters enormously if we do not look at lattices individually but rather at
projective equivalence classes, that is L = 〈v1, v2〉 ∼ L′ = 〈v′1, v′2〉 if there is a rational
number λ ∈ Q such that λv1 = v′1, λv2 = v′2. Further, we are of course allowed to
choose a different ’basis’ for our lattices, that is, L = 〈v1, v2〉 = 〈w1, w2〉 whenever
(w1, w2) = (v1, v2).γ for some γ ∈ PSL2(Z). Using both operations we can get any
lattice in a specific form. For example,

〈 12e1+3e2, e1− 1
3e2

(1)
= 〈3e1+18e2, 6e1−2e2〉

(2)
= 〈3e1+18e2, 38e2〉

(3)
= 〈 3

38e1+ 9
19e2, e2〉

Here, identities (1) and (3) follow from projective equivalence and identity (2) from a base-
change. In general, any lattice L commensurable to the standard lattice L1 can be rewritten
uniquely asL = 〈Me1+ g

he2, e2〉whereM a positive rational number and with 0 ≤ g
h < 1.

http://www.neverendingbooks.org/index.php/the-mckay-thompson-series.html
http://en.wikipedia.org/wiki/John_Horton_Conway
http://en.wikipedia.org/wiki/Simon_P._Norton
http://en.wikipedia.org/wiki/Monstrous_moonshine
http://en.wikipedia.org/wiki/Monstrous_moonshine
http://www.neverendingbooks.org/index.php/modular-quilts-and-cuboid-tree-diagrams.html
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Another major feature is that one can define a symmetric hyper-distance between (equiva-
lence classes of) such lattices. Take L = 〈Me1 + g

he2, e2〉 and L′ = 〈Ne1 + i
j e2, e2〉 and

consider the matrix

DLL′ =

[
M g

h
0 1

] [
N i

j

0 1

]−1

and let α be the smallest positive rational number such that

all entries of the matrix α.DLL′ are integers, then

δ(L,L′) = det(α.DLL′) ∈ N defines a symmetric hyperdistance which depends only of
the equivalence classes of lattices (**hyper**distance because the log of it behaves like an
ordinary distance).

Conway’s big picture is the graph obtained by taking as its vertices the equivalence classes
of lattices commensurable with L1 and with edges connecting any two lattices separated
by a prime number hyperdistance. Here’s part of the 2-picture, that is, only depicting the
edges of hyperdistance 2.

The 2-picture is an infinite 3-valent tree as there are precisely 3 classes of lattices at
hyperdistance 2 from any lattice L = 〈v1, v2〉 namely (the equivalence classes of)
〈 12v1, v2〉 , 〈v1,

1
2v2〉 and 〈 12 (v1 + v2), v2〉.

Similarly, for any prime hyperdistance p, the p-picture is an infinite p+1-valent tree and
the big picture is the product over all these prime trees. That is, two lattices at square-
free hyperdistance N = p1p2 . . . pk are two corners of a k-cell in the big picture! (Astute
readers of this blog (if such people exist...) may observe that Conway’s big picture did
already appear here prominently, though in disguise. More on this another time).

The big picture presents a simple way to look at arithmetic groups and makes many facts
about them visually immediate. For example, the point-stabilizer subgroup of L1 clearly is
the modular group PSL2(Z). The point-stabilizer of any other lattice is a certain conjugate
of the modular group inside PSL2(R). For example, the stabilizer subgroup of the lattice
LN = 〈Ne1, e2〉 (at hyperdistance N from L1) is the subgroup
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[
a b

N
Nc d

]
|
[
a b
c d

]
∈ PSL2(Z)

Fig. 1.8: the 4-ball

Now the intersection of these two groups is the mod-
ular subgroup Γ0(N) (consisting of those modular
group element whose lower left-hand entry is divis-
ible by N). That is, the proper way to look at this
arithmetic group is as the joint stabilizer of the two
lattices L1, LN . The picture makes it trivial to com-
pute the index of this subgroup.

Consider the ball B(L1, N) with center L1 and
hyper-radius N (on the left, the ball with hyper-
radius 4). Then, it is easy to show that the mod-
ular group acts transitively on the boundary lat-
tices (including the lattice LN ), whence the index
[Γ : Γ0(N)] is just the number of these bound-
ary lattices. For N=4 the picture shows that there
are exactly 6 of them. In general, it follows from
our knowledge of all the p-trees the number of
all lattices at hyperdistance N from L1 is equal to
N
∏
p|N (1+ 1

p ), in accordance with the well-known
index formula for these modular subgroups!

But, there are many other applications of the big picture giving a simple interpretation for
the Hecke operators, an elegant proof of the Atkin-Lehner theorem on the normalizer of
Γ0(N) (the whimsical source of appearances of the number 24) and of Helling’s theorem
characterizing maximal arithmetical groups inside PSL2(C) as conjugates of the normal-
izers of Γ0(N) for square-free N. J.H. Conway’s paper ”Understanding groups like Γ0(N)”
containing all this material is a must-read! Unfortunately, I do not know of an online ver-
sion.

1.6 Langlands versus Connes

This is a belated response to a Math-Overflow exchange between Thomas Riepe and Chan-
dan Singh Dalawat asking for a possible connection between Connes’ noncommutative
geometry approach to the Riemann hypothesis and the Langlands program.

Here’s the punchline : a large chunk of the Connes-Marcolli book Noncommutative Ge-
ometry, Quantum Fields and Motives can be read as an exploration of the noncommutative
boundary to the Langlands program (at least for GL1 and GL2 over the rationals Q).

Recall that Langlands for GL1 over the rationals is the correspondence, given by the Artin
reciprocity law, between on the one hand the abelianized absolute Galois group

Gal(Q/Q)ab = Gal(Q(µ∞)/Q) ' Ẑ∗

and on the other hand the connected components of the idele classes

A∗Q/Q∗ = R∗+ × Ẑ∗

The locally compact Abelian group of idele classes can be viewed as the nice locus of the
horrible quotient space of adele classes AQ/Q∗. There is a well-defined map

A′Q/Q∗ → R+ (x∞, x2, x3, . . .) 7→ |x∞|
∏
|xp|p

from the subset A′Q consisting of adeles of which almost all terms belong to Z∗p. The inverse
image of this map over R∗+ are precisely the idele classes A∗Q/Q∗. In this way one can view
the adele classes as a closure, or ’compactification’, of the idele classes.

http://en.wikipedia.org/wiki/Hecke_operator
http://mathoverflow.net/questions/41296/lun-des-problemes-fondamentaux-de-la-theorie-des-nombres
http://www.alainconnes.org/docs/bookwebfinal.pdf
http://www.alainconnes.org/docs/bookwebfinal.pdf
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This is somewhat reminiscent of extending the nice action of the modular group on the
upper-half plane to its badly behaved action on the boundary as in the Manin-Marcolli cave
post.

The topological properties of the fiber over zero, and indeed of the total space of adele
classes, are horrible in the sense that the discrete group Q∗ acts ergodic on it, due to the
irrationality of log(p1)/log(p2) for primes pi. All this is explained well (in the semi-local
case, that is using A′Q above) in the Connes-Marcolli book (section 2.7).

In much the same spirit as non-free actions of reductive groups on algebraic varieties are
best handled using stacks, such ergodic actions are best handled by the tools of noncom-
mutative geometry. That is, one tries to get at the geometry of AQ/Q∗ by studying an asso-
ciated non-commutative algebra, the skew-ring extension of the group-ring of the adeles by
the action of Q∗ on it. This algebra is known to be Morita equivalent to the Bost-Connes
algebra which is the algebra featuring in Connes’ approach to the Riemann hypothesis.

It shouldn’t thus come as a major surprise that one is able to recover the other side of
the Langlands correspondence, that is the Galois group Gal(Q(µ∞)/Q), from the Bost-
Connes algebra as the symmetries of certain states.

In a similar vein one can read the Connes-Marcolli GL2-system (section 3.7 of
their book) as an exploration of the noncommutative closure of the Langlands-space
GL2(AQ)/GL2(Q).

http://www.neverendingbooks.org/index.php/the-manin-marcolli-cave.html
http://www.neverendingbooks.org/index.php/the-manin-marcolli-cave.html
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THE ABSOLUTE POINT

2.1 Ceci n’est pas un corps

To Gavin Wraiht a mathematical phantom is a ”nonexistent entity which ought to be there
but apparently is not; but nevertheless obtrudes its effects so convincingly that one is forced
to concede a broader notion of existence”. Mathematics’ history is filled with phantoms
getting the kiss of life.

Nobody will deny the ancient Greek were pretty good at maths, but still they were ex-
tremely unsure about the status of zero as a number. They asked themselves, ”How can
nothing be something?”, and, paradoxes such as of Zeno’s depend in large part on that
uncertain interpretation of zero. It lasted until the 9th century before Indian scholars were
comfortable enough to treat 0 just as any other number.

Italian gamblers/equation-solvers of the early 16th century were baffled by the fact that the
number of solutions to quartic equations could vary, seemingly arbitrary, from zero to four
until Cardano invented ’imaginary numbers’ and showed that there were invariably four
solutions provided one allows these imaginary or ’phantom’ numbers.

Similar paradigm shifts occurred in math-
ematics much more recently, for exam-
ple the discovery of the quaternions by
William Hamilton. This object had all the
telltale signs of a field-extension of the
complex numbers, apart from the fact that
the multiplication of two of its numbers a.b
did not necessarily give you the same result
as multiplying the other way around b.a.

Hamilton was so shaken by this discovery
(which he made while walking along the
Royal canal in Dublin with his wife on oc-
tober 16th 1843) that he carved the equa-
tions using his penknife into the side of the

nearby Broom Bridge (which Hamilton called Brougham Bridge), for fear he would forget
it. Today, no trace of the carving remains, though a stone plaque does commemorate the
discovery. It reads :

” Here as he walked by, on the 16th of October 1843 , Sir William Rowan Hamilton ,in a
flash of genius discovered , the fundamental formula for , quaternion multiplication i2 =
j2 = k2 = ijk = −1 & cut it on a stone of this bridge”

The fact that this seems to be the least visited tourist attraction in Dublin tells a lot about the
standing of mathematics in society. Fortunately, some of us go to extreme lengths making
a pilgrimage to Hamilton’s bridge...

http://www.wra1th.plus.com/gcw/rants/math/MathPhant.html
http://en.wikipedia.org/wiki/Zeno_of_Elea#Zeno.27s_paradoxes
http://en.wikipedia.org/wiki/Gerolamo_Cardano
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/William_Rowan_Hamilton
http://www.everything2.com/index.pl?node_id=718162
http://math.ucr.edu/home/baez/octonions/node24.html
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In short, the discovery of mathematical
objects such as 0, the square root of -1,
quaternions or octonions, often allow us to
make great progress in mathematics at the
price of having to bend the existing rules
slightly.

But, to suggest seriously that an unob-
served object should exist when even the
most basic arguments rule against its exis-
tence is a different matter entirely.

Probably, you have to be brought up in the
surrealistic tradition of artists such as Re-
nee Magritte, a guy who added below a
drawing of a pipe a sentence saying ”This

is not a pipe” (Ceci n’est pas une pipe). In short, you have to be Belgian...

Jacques Tits was a Belgian (today he is a citizen of a far less surrealistic country : France).
He is the ’man from Uccle’ (in Mark Ronan’s bestselling Symmetry and the Monster), the
guy making finite size replicas of infinite Lie groups. But also the guy who didn’t want to
stop there.

Fig. 2.1: J. Tits

He managed to replace the field of complex
numbers C by a finite field Fq , consisting
of precisely q = pn a prime-power ele-
ments, but wondered what this group might
become if q were to go down to size 1, even
though everyone knew that there couldn’t
be a field F1 having just one element as
0 6= 1 and these two numbers have to be
in any fields DNA.

Tits convinced himself that this elusive
field had to exists because his limit-groups
had all the characteristics of a finite group
co-existing with a Lie group, its compan-
ion the Weyl group. Moreover, he was
dead sure that the finite geometry associ-
ated to his versions of Lie groups would
also survive the limit process and give an
entirely new combinatorial geometry, fea-
turing objects called ’buildings’ contain-
ing ’appartments’ glued along ’walls’ and
more terms a real-estate agent might use, but surely not a mathematician...

At the time he was a researcher with the Belgian national science foundation and, having
served that agency twenty years myself, I know he had to tread carefully not to infuriate the
more traditional committee-members that have to decide on your grant-application every
other year. So, when he put his thoughts in writing

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Ren\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 e\egroup \spacefactor \accent@spacefactor _Magritte
http://en.wikipedia.org/wiki/Ren\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {e\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 e\egroup \spacefactor \accent@spacefactor _Magritte
http://en.wikipedia.org/wiki/Jacques_Tits
http://www.maa.org/reviews/SymmetryMonster.html
http://en.wikipedia.org/wiki/Lie_group
http://en.wikipedia.org/wiki/Weyl_group
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he added a footnote saying : ”K1 isn’t generally considered a field”. I’m certain he was
doing a Magritte :

F1 (as we call today his elusive field K1 ) ceci n’est pas un corps

2.2 Looking for F1

There are only a handful of human activities where one goes to extraordinary lengths to
keep a dream alive, in spite of overwhelming evidence : religion, theoretical physics, sup-
porting the Belgian football team and ... mathematics.

In recent years several people spend a lot of energy looking for properties of an elusive
object : the field with one element F1, or in French : ”F-un”. The topic must have reached a
level of maturity as there was a conference dedicated entirely to it : NONCOMMUTATIVE
GEOMETRY AND GEOMETRY OVER THE FIELD WITH ONE ELEMENT.

Fig. 2.2: B. Riemann

In this series I’d like to find out what the fuss is all about,
why people would like it to exist and what it has to do with
noncommutative geometry. However, before we start two re-
marks :

The field F1 does not exist, so don’t try to make sense of sen-
tences such as ”The field with one element is the free alge-
braic monad generated by one constant (p.26), or the univer-
sal generalized ring with zero (p.33)” in the wikipedia-entry.
The simplest proof is that in any (unitary) ring we have 0 6= 1
so any ring must contain at least two elements. A more high-
brow version : the ring of integers Z is the initial object in
the category of unitary rings, so it cannot be an algebra over
anything else.

The second remark is that several people have already writ-
ten blog-posts about F1. Here are a few I know of : David

http://www.math.vanderbilt.edu/~ncgoa/workshop2008.html
http://www.math.vanderbilt.edu/~ncgoa/workshop2008.html
http://en.wikipedia.org/wiki/Field_with_one_element
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Corfield at the n-category cafe and at his old blog, Noah Sny-
der at the secret blogging seminar, Kea at the Arcadian functor, AC and K. Consani at
Noncommutative geometry and John Baez wrote about it in his weekly finds.

The dream we like to keep alive is that we will prove the Riemann hypothesis one fine day
by lifting Weil’s proof of it in the case of curves over finite fields to rings of integers.

Even if you don’t know a word about Weil’s method, if you think about it for a couple of
minutes, there are two immediate formidable problems with this strategy.

For most people this would be evidence enough to discard the approach, but, we mathe-
maticians have found extremely clever ways for going into denial.

The first problem is that if we want to think of spec(Z) (or rather its completion adding
the infinite place) as a curve over some field, then Z must be an algebra over this field.
However, no such field can exist...

Fig. 2.3: Ch. Soulé

No problem! If there is no such field, let us invent one, and
call it F1. But, it is a bit hard to do geometry over an illusory
field. Christophe Soule succeeded in defining varieties over
F1 in a talk at the 1999 Arbeitstagung and in a more recent
write-up of it : Les varietes sur le corps a un element.

We will come back to this in more detail later, but for now,
here’s the main idea. Consider an existent field k and an al-
gebra k → R over it. Now study the properties of the functor
(extension of scalars) from k-schemes to R-schemes. Even
if there is no morphism F1 → Z, let us assume it exists and
define F1-varieties by requiring that these guys should sat-
isfy the properties found before for extension of scalars on
schemes defined over a field by going to schemes over an
algebra (in this case, Z-schemes). Roughly speaking this de-
fines F1-schemes as subsets of points of suitable Z-schemes.

But, this is just one half of the story. He adds to such an
F1-variety extra topological data ’at infinity’, an idea he at-
tributes to J.-B. Bost. This added feature is a C-algebra AX ,
which does not necessarily have to be commutative. He only
writes : ”Par ignorance, nous resterons tres evasifs sur les proprietes requises sur cette
C-algebre.”

Fig. 2.4: A. Connes

The algebra AX originates from trying to bypass the second
major obstacle with the Weil-Riemann-strategy. On a smooth
projective curve all points look similar as is clear for example
by noting that the completions of all local rings are isomor-
phic to the formal power series k[[x]] over the basefield, in
particular there is no distinction between ’finite’ points and
those lying at ’infinity’.

The completions of the local rings of points in spec(Z) on
the other hand are completely different, for example, they
have residue fields of different characteristics... Still, local
class field theory asserts that their quotient fields have sev-
eral common features. For example, their Brauer groups are
all isomorphic to Q/Z. However, as Br(R) = Z/2Z and
Br(C) = 0, even then there would be a clear distinction
between the finite primes and the place at infinity... Alain
Connes came up with an extremely elegant solution to bypass
this problem in Noncommutative geometry and the Riemann

http://golem.ph.utexas.edu/category/2007/04/the_field_with_one_element.html
http://www.dcorfield.pwp.blueyonder.co.uk/2005/11/november-1-12.html
http://sbseminar.wordpress.com/2007/08/14/the-field-with-one-element/
http://kea-monad.blogspot.com/2008/06/m-theory-lesson-193.html
http://noncommutativegeometry.blogspot.com/2008/05/ncg-and-fun.html
http://math.ucr.edu/home/baez/week259.html
http://en.wikipedia.org/wiki/Riemann_hypothesis
http://www.ihes.fr/~soule/
http://www.mpim-bonn.mpg.de/digitalAssets/456_MPI-1999-50-m.ps
http://www.alainconnes.org/docs/soule.pdf
http://en.wikipedia.org/wiki/Brauer_group
http://www.alainconnes.org/en/
http://www.alainconnes.org/en/
http://www.alainconnes.org/docs/imufinal.pdf
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zeta function. He proposes to replace finite dimensional cen-
tral simple algebras in the definition of the Brauer group by

AF (for Approximately Finite dimensional)-central simple algebras over C. This is the
origin and the importance of the Bost-Connes algebra.

We will come back to most of this in more detail later, but for the impatient, Connes has
written a paper together with Caterina Consani and Matilde Marcolli Fun with F1 relating
the Bost-Connes algebra to the field with one element.

2.3 The F1 folklore

All esoteric subjects have their own secret (sacred) texts. If you opened the Da Vinci
Code (or even better, the original The Holy blood and the Holy grail) you will known
about a mysterious collection of documents, known as the ”Dossiers secrets”, deposited in
the Bibliothèque nationale de France on 27 April 1967, which is rumored to contain the
mysteries of the Priory of Sion, a secret society founded in the middle ages and still active
today...

Fig. 2.5: Yu. I. Manin

The followers of F-un, for F1 the field of one element, have
their own collection of semi-secret texts, surrounded by whis-
pers, of which they try to decode every single line in search
of enlightenment. Fortunately, you do not have to search the
shelves of the Bibliotheque National in Paris, but the depths
of the internet to find them as huge, bandwidth-unfriendly,
scanned documents.

The first are the lecture notes ”Lectures on zeta functions and
motives” by Yuri I. Manin based on a course given in 1991.

One can download a scanned version of the paper from the
homepage of Katia Consani as a huge 23.1 Mb file. Of F-un
relevance is the first section ”Absolute Motives?” in which
”...we describe a highly speculative picture of analogies be-
tween arithmetics over Fq and over Z, cast in the language
reminiscent of Grothendieck’s motives. We postulate the ex-
istence of a category with tensor product × whose objects
correspond not only to the divisors of the Hasse-Weil zeta
functions of schemes over Z, but also to Kurokawa’s tensor
divisors. This neatly leads to the introduction of an ”absolute
Tate motive” T, whose zeta function is s−1

2π , and whose ze-
roth power is ”the absolute point” which is the base for Kurokawa’s direct products. We
add some speculations about the role of T in the ”algebraic geometry over a one-element
field”, and in clarifying the structure of the gamma factors at infinity.” (loc.cit. p 1-2)

I’d welcome links to material explaining this section to people knowing no motives.

The second one is the unpublished paper ”Cohomology determinants and reciprocity laws :
number field case” by Mikhail Kapranov and A. Smirnov. This paper features in blog-posts
at the Arcadian Functor, in John Baez’ Weekly Finds and in yesterday’s post at Noncom-
mutative Geometry.

You can download every single page (of 15) as a separate file from here. But, in order to
help spreading the Fun-gospel, I’ve made these scans into a single PDF-file which you can
download as a 2.6 Mb PDF. In the introduction they say :

http://www.alainconnes.org/docs/imufinal.pdf
http://www.alainconnes.org/docs/imufinal.pdf
http://www.neverendingbooks.org/index.php/the-bost-connes-hecke-algebra.html
http://www.alainconnes.org/docs/funBC.pdf
http://en.wikipedia.org/wiki/The_Da_Vinci_Code
http://en.wikipedia.org/wiki/The_Da_Vinci_Code
http://en.wikipedia.org/wiki/The_Holy_Blood_and_the_Holy_Grail
http://en.wikipedia.org/wiki/Dossiers_Secrets
http://en.wikipedia.org/wiki/Priory_of_Sion
http://en.wikipedia.org/wiki/Yuri_Manin
http://www.math.jhu.edu/~kc/
http://www.math.jhu.edu/~kc/manin.pdf
http://www.math.toronto.edu/kapranov/
http://kea-monad.blogspot.com/2007/12/motive-madness-ii.html
http://math.ucr.edu/home/baez/week259.html
http://noncommutativegeometry.blogspot.com/2008/06/fun-day-two.html
http://noncommutativegeometry.blogspot.com/2008/06/fun-day-two.html
http://wwwhomes.uni-bielefeld.de/triepe/F1.html
http://www.neverendingbooks.org/DATA/KapranovSmirnov.pdf
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Fig. 2.6: M. Kapranov

”First of all, it is an old idea to interpret
combinatorics of finite sets as the q → 1
limit of linear algebra over the finite field
Fq . This had lead to frequent considera-
tion of the folklore object F1, the ”field
with one element”, whose vector spaces
are just sets. One can postulate, of course,
that spec(F1) is the absolute point, but the
real problem is to develop non-trivial con-
sequences of this point of view.”

They manage to deduce higher reciprocity
laws in class field theory within the theory
of F1 and its field extensions F1n . But first,
let us explain how they define linear alge-
bra over these absolute fields.

Here is a first principle : in doing linear al-
gebra over these fields, there is no additive
structure but only scalar multiplication by field elements.

So, what are vector spaces over the field with one element? Well, as scalar multiplication
with 1 is just the identity map, we have that a vector space is just a set. Linear maps
are just set-maps and in particular, a linear isomorphism of a vector space onto itself is
a permutation of the set. That is, linear algebra over F1 is the same as combinatorics of
(finite) sets.

A vector space over F1 is just a set; the dimension of such a vector space is the cardinality
of the set. The general linear group GLn(F1) is the symmetric group Sn, the identification
via permutation matrices (having exactly one 1 in every row and column).

Some people prefer to view an F1 vector space as a pointed set, the special element being
the ’origin’ 0 but as F1 does not have a zero, there is also no zero-vector. Still, in later
applications (such as defining exact sequences and quotient spaces) it is helpful to have an
origin. So, let us denote for any set S by S• = S ∪ 0. Clearly, linear maps between such
’extended’ spaces must be maps of pointed sets, that is, sending 0→ 0.

The field with one element F1 has a field extension of degree n for any natural number n
which we denote by F1n and using the above notation we will define this field as :

F1n = µ•n with µn the group of all n-th roots of unity. Note that if we choose a primitive
n-th root εn, then µn ' Cn is the cyclic group of order n.

Now what is a vector space over F1n? Recall that we only demand units of the field to act
by scalar multiplication, so each ’vector’ ~v determines an n-set of linear dependent vectors
εin~v. In other words, any F1n -vector space is of the form V • with V a set of which the
group µn acts freely. Hence, V has N = d.n elements and there are exactly d orbits for
the action of µn by scalar multiplication. We call d the dimension of the vectorspace and a
basis consists in choosing one representant for every orbits. That is, B = b1, . . . , bd is a
basis if (and only if) V = εjnbi : 1 ≤ i ≤ d, 1 ≤ j ≤ n.

So, vectorspaces are free µn-sets and hence linear maps V • → W • is a µn-map V → W .
In particular, a linear isomorphism of V , that is an element of GLd(F1n) is a µn bijection
sending any basis element bi → ε

j(i)
n bσ(i) for a permutation σ ∈ Sd.

An F1n -vectorspace V • is a free µn-set V of N = n.d elements. The dimension
dimF1n

(V •) = d and the general linear group GLd(F1n) is the wreath product of Sd
with µ×dn , the identification as matrices with exactly one non-zero entry (being an n-th root
of unity) in every row and every column. This may appear as a rather sterile theory, so
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let us give an extremely important example, which will lead us to our second principle for
developing absolute linear algebra.

Let q = pk be a prime power and let Fq be the finite field with q elements. Assume that
q ∼= 1 mod(n). It is well known that the group of units F∗q is cyclic of order q− 1 so by the
assumption we can identify µn with a subgroup of F∗q .

Then, Fq = (F∗q)• is an F1n -vectorspace of dimension d = q−1
n . In other words, Fq

is an F1n -algebra. But then, any ordinary Fq-vectorspace of dimension e becomes (via
restriction of scalars) an F1n -vector space of dimension e(q−1)

n .

Next time we will introduce more linear algebra definitions (including determinants, exact
sequences, direct sums and tensor products) in the realm the absolute fields F1n and remark
that we have to alter the known definitions as we can only use the scalar-multiplication. To
guide us, we have the second principle : all traditional results of linear algebra over Fq
must be recovered from the new definitions under the vector-space identification Fq =
(F∗q)• = F1n when n = q − 1. (to be continued)

2.4 Absolute linear algebra

Today we will define some basic linear algebra over the absolute fields F1n following the
Kapranov-Smirnov document. Recall from last time (see post 2.3) that F1n = µ•n and that
a d-dimensional vectorspace over this field is a pointed set V • where V is a free µn-set
consisting of n.d elements. Note that in absolute linear algebra we are not allowed to have
addition of vectors and have to define everything in terms of scalar multiplication (or if
you want, the µn-action). In the hope of keeping you awake, we will include an F-un
interpretation of the power residue symbol.

Direct sums of vectorspaces are defined via V • ⊕W • = (V
⊔
W )•, that is, correspond

to the disjoint union of free µn-sets. Consequently we have that dim(V • ⊕ W •) =
dim(V •) + dim(W •).

For tensor-product we start with V • ×W • = (V ×W )• the vectorspace corresponding
to the Cartesian product of free µn-sets. If the dimensions of V • and W • are respectively
d and e, then V ×W consists of n.d.n.e elements, so is of dimension n.d.e. In order to
have a sensible notion of tensor-products we have to eliminate the n-factor. We do this by
identifying (x, y) with (εnx, ε

−1y) and call the corresponding vectorspace V • ⊗W •. If
we denote the image of (x, y) by x ⊗ w then the identification merely says we can pull
the µn-action through the tensor-sign, as we’d like to do. With this definition we do indeed
have that dim(V • ⊗W •) = dim(V •)dim(W •).

Fig. 2.7: Gauss

Recall that any linear automorphismA of an F1n vectorspace
V • with basis b1, . . . , bd (representants of the different µn-
orbits) is of the formA(bi) = εkin bσ(i) for some powers of the
primitive n-th root of unity εn and some permutation σ ∈ Sd.
We define the determinant det(A) =

∏d
i=1 ε

ki
n . One verifies

that the determinant is multiplicative and independent of the
choice of basis.

For example, scalar-multiplication by εn gives an automor-
phism on any d-dimensional F1n -vectorspace V • and the cor-
responding determinant clearly equals det = εdn. That is, the
det-functor remembers the dimension modulo n. These mod-
n features are a recurrent theme in absolute linear algebra.
Another example, which will become relevant when we come
to reciprocity laws :

http://www.neverendingbooks.org/DATA/KapranovSmirnov.pdf
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Take n = 2. Then, a F12 vectorspace V • of dimension d
is a set consisting of 2d elements V equipped with a free
involution. Any linear automorphism A : V • → V • is

represented by a d × d matrix having one nonzero entry in every row and column being
equal to +1 or -1. Hence, the determinant det(A) ∈ {+1,−1}.

On the other hand, by definition, the linear automorphismA determines a permutation σA ∈
S2d on the 2d non-zero elements of V •. The connection between these two interpretations
is that det(A) = sgn(σA) the determinant gives the sign of the permutation!

For a prime power q = pk with q ≡ 1 mod(n), [we have seen][2] that the roots of unity
µn ⊂ F∗q and hence that Fq is a vectorspace over F1n . For any field-unit a ∈ F∗q we have
the power residue symbol(
a
Fq

)
n

= a
q−1
n ∈ µn

On the other hand, multiplication by a is a linear automorphism on the F1n -vectorspace
Fq and hence we can look at its F-un determinant det(a×). The F-un interpretation of a
classical lemma by Gauss asserts that the power residue symbol equals det(a×).

An F1n -subspace W • of a vectorspace V • is a subset W ⊂ V consisting of full µn-orbits.
Normally, in defining a quotient space we would say that two V-vectors are equivalent
when their difference belongs to W and take equivalence classes. However, in absolute
linear algebra we are not allowed to take linear combinations of vectors...

The only way out is to define (V/W )• to correspond to the free µn-set (V/W ) obtained
by identifying all elements of W with the zero-element in V •. But... this will screw-up
things if we want to interpret Fq-vectorspaces as F1n -spaces whenever q ≡ 1 mod(n).

For this reason, Kapranov and Smirnov invent the notion of an equivalence f : X• → Y •

between F1n -spaces to be a linear map (note that this means a set-theoretic map X → Y •

such that the inverse image of 0 consists of full µn-orbits and is a µn-map elsewhere)
satisfying the properties that f−1(0) = 0 and for every element y ∈ Y we have that
the number of pre-images f−1(y) is congruent to 1 modulo n. Observe that under an
equivalence f : X• → Y • we have that dim(X•) ≡ dim(Y •) mod(n).

This then allows us to define an exact sequence of F1n -vectorspaces to be

0 // V •1
α // V •

β // V •2 // 0

with α a set-theoretic inclusion, the composition β ◦ α to be the zero-map and with the
additional assumption that the map induced by β

(V/V1)• → V •2

is an equivalence. For an exact sequence of spaces as above we have the congruence rela-
tion on their dimensions dim(V1) + dim(V2) ≡ dim(V ) mod(n).

More importantly, if as before q ≡ 1 mod(n) and we use the embedding µn ⊂ F∗q to
turn usual Fq-vectorspaces into absolute F1n -spaces, then an ordinary exact sequence of
Fq-vectorspaces remains exact in the above definition.

2.5 Andre Weil on the Riemann hypothesis

Don’t be fooled by introductory remarks to the effect that ’the field with one element was
conceived by Jacques Tits half a century ago, etc. etc.’

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Gauss.html
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While this is a historic fact, and, Jacques Tits cannot be given enough credit for bringing a
touch of surrealism into mathematics, but this is not the main drive for people getting into
F1, today.

There is a much deeper and older motivation behind most papers published recently on F1.
Few of the authors will be willing to let you in on the secret, though, because if they did, it
would sound much too presumptuous...

So, let’s have it out into the open : F1-mathematics’ goal is no less than proving the Rie-
mann Hypothesis.

And even then, authors hide behind a smoke screen. The ’official’ explanation being ”we
would like to copy Weil’s proof of the Riemann hypothesis in the case of function fields of
curves over finite fields, by considering spec(Z) as a ’curve’ over an algebra ’dessous’ Z
namely F1”. Alas, at this moment, none of the geometric approaches over the field with
one element can make this stick.

Believe me for once, the main Jugendtraum of most authors is to get a grip on cyclotomy
over F1. It is no accident that Connes makes a dramatic pause in his YouTubeVideo to let
the viewer see this equation on the backboard

F1n ⊗F1 Z = Z[x]/(xn − 1)

But, what is the basis of all this childlike enthusiasm? A somewhat concealed clue is given
in the introduction of the Kapranov-Smirnov paper. They write :

”In [?] the affine line over F1 was considered; it consists formally of 0 and all the roots of
unity. Put slightly differently, this leads to the consideration of ”algebraic extensions” of
F1. By analogy with genuine finite fields we would like to think that there is exactly one
such extension of any given degree n, denote it by F1n .

Of course, F1n does not exist in a rigorous sense, but we can think if a scheme X contains
n-th roots of unity, then it is defined over F1n , so that there is a morphism

pX : X → spec(F1n)

The point of view that adjoining roots of unity is analogous to the extension of the base field
goes back, at least to Weil (Lettre a Artin, Ouvres, vol 1) and Iwasawa...”

Fig. 2.8: A. Weil

Okay, so rush down to your library, pick out the first
of three volumes of Andre Weil’s collected works,
look up his letter to Emil Artin written on July 10th
1942 (19 printed pages!), and head for the final sec-
tion. Weil writes :

”Our proof of the Riemann hypothesis (in the func-
tion field case, red.) depended upon the extension
of the function-fields by roots of unity, i.e. by con-
stants; the way in which the Galois group of such
extensions operates on the classes of divisors in the
original field and its extensions gives a linear oper-
ator, the characteristic roots (i.e. the eigenvalues) of
which are the roots of the zeta-function.

On a number field, the nearest we can get to this is
by adjunction of ln-th roots of unity, l being fixed;
the Galois group of this infinite extension is cyclic,
and defines a linear operator on the projective limit
of the (absolute) class groups of those successive fi-
nite extensions; this should have something to do

http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Riemann_hypothesis
http://planetmath.org/encyclopedia/KroneckersJugendtraum.html
http://matrix.cmi.ua.ac.be/fun/index.php/connes-on-youtube.html
http://matrix.cmi.ua.ac.be/fun/index.php/kapranovsmirnov.html
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with the roots of the zeta-function of the field. How-
ever, our extensions are ramified (but only at a finite

number of places, viz. the prime divisors of l). Thus a preliminary study of similar prob-
lems in function-fields might enable one to guess what will happen in number-fields.”

A few years later, in 1947, he makes this a bit more explicit in his marvelous essay ”L’avenir
des mathematiques” (The future of mathematics). Weil is still in shell-shock after the events
of the second WW, and writes in beautiful archaic French sentences lasting forever :

”L’hypothèse de Riemann, après qu’on eu perdu l’espoir de la démontrer par les méthodes
de la théorie des fonctions, nous apparaı̂t aujourd’hui sous un jour nouveau, qui la montre
inséparable de la conjecture d’Artin sur les fonctions L, ces deux problèmes étant deux
aspects d’une mme question arithmético-algébrique, o l’étude simultanée de toutes les ex-
tensions cyclotomiques d’un corps de nombres donné jouera sans doute le rle décisif.

L’arithmétique gausienne gravitait autour de la loi de réciprocité quadratique; nous savons
maintenant que celle-ci n’est qu’un premier example, ou pour mieux dire le paradigme,
des lois dites ”du corps de classe”, qui gouvernent les extensions abéliennes des corps de
nobres algébriques; nous savons formuler ces lois de manière à leur donner l’aspect d’un
ensemble cohérent; mais, si plaisante à l’il que soit cette faade, nous ne savons si elle ne
masque pas des symmétries plus cachées.

Les automorphismes induits sur les groupes de classes par les automorphismes du corps, les
propriétés des restes de normes dans les cas non cycliques, le passage à la limite (inductive
ou projective) quand on remplace le corps de base par des extensions, par example cy-
clotomiques, de degré indéfiniment croissant, sont autant de questions sur lesquelles notre
ignorance est à peu près complète, et dont l’étude contient peut-tre la clef de l’hypothese
de Riemann; étroitement liée à celles-ci est l’étude du conducteur d’Artin, et en particulier,
dans le cas local, la recherche de la représentation dont la trace s’exprime au moyen des
caractères simples avec des coefficients égaux aux exposants de leurs conducteurs.

Ce sont là quelques-unes des directions qu’on peut et qu’on doit songer à suivre afin de
pénétrer dans le mystère des extensions non abéliennes; il n’est pas impossible que nous
touchions là à des principes d’une fécondité extraordinaire, et que le premier pas décisif
une fois fait dans cette voie doive nous ouvrir l’accès à de vastes domaines dont nous
souponnons à peine l’existence; car jusqu’ici, pour amples que soient nos généralisations
des résultats de Gauss, on ne peut dire que nus les ayons vraiment dépassés.”

2.6 Connes-Consani F1-geometry (1)

Fig. 2.9: K. Consani

A couple of weeks ago, Alain Connes and Katia
Consani arXived their paper ”On the notion of ge-
ometry over F1”. Their subtle definition is phrased
entirely in Grothendieck’s scheme-theoretic lan-
guage of representable functors and may be some-
what hard to get through if you only had a few years
of mathematics.

I’ll try to give the essence of their definition of an
affine scheme over F1 (and illustrate it with an ex-
ample) in a couple of posts. All you need to know
is what a finite Abelian group is (if you know what
a cyclic group is that’ll be enough) and what a com-
mutative algebra is. If you already know what a
functor and a natural transformation is, that would

http://www.alainconnes.org/en/
http://www.math.jhu.edu/~kc/
http://www.math.jhu.edu/~kc/
http://arxiv.org/abs/0809.2926
http://en.wikipedia.org/wiki/Alexander_Grothendieck
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be great, but we’ll deal with all that abstract non-
sense when we’ll need it.

So take two finite Abelian groups A and B, then a group-morphism is just a map f : A→
B preserving the group-data. That is, f sends the unit element of A to that of B and f sends
a product of two elements in A to the product of their images in B. For example, ifA = Cn
is a cyclic group of order n with generator g and B = Cm is a cyclic group of order m with
generator h, then every groupmorphism from A to B is entirely determined by the image of
g let’s say that this image is hi. But, as gn = 1 and the conditions on a group-morphism
we must have that hin = (hi)n = 1 and therefore m must divide i.n. This gives you all
possible group-morphisms from A to B.

They are plenty of finite abelian groups and many group-morphisms between any pair of
them and all this stuff we put into one giant sack and label it abelian. There is another,
even bigger sack, which is even simpler to describe. It is labeled sets and contains all sets
as well as all maps between two sets.

Right! Now what might be a map F : abelian → sets between these two sacks? Well,
F should map any abelian group A to a set F(A) and any group-morphism f : A→ B to a
map between the corresponding sets F (f) : F (A)→ F (B) and do all of this nicely. That
is, F should send compositions of group-morphisms to compositions of the corresponding
maps, and so on. If you take a pen and a piece of paper, you’re bound to come up with the
exact definition of a functor (that’s what F is called).

You want an example? Well, lets take F to be the map sending an Abelian group A to its
set of elements (also called A) and which sends a groupmorphism A→ B to the same map
from A to B. All F does is ’forget’ the extra group-conditions on the sets and maps. For
this reason F is called the forgetful functor. We will denote this particular functor by Gm,
merely to show off.

Luckily, there are lots of other and more interesting examples of such functors. Our first
class we will call maxi-functors and they are defined using a finitely generated C-algebra
R. That is, R can be written as the quotient of a polynomial algebra

R = C[x1,...,xd]
(f1,...,fe)

by setting all the polynomials fi to be zero. For example, take R to be the ring of Laurent
polynomials

R = C[x, x−1] = C[x,y]
(xy−1)

Other, and easier, examples of C-algebras is the group-algebra CA of a finite Abelian
group A. This group-algebra is a finite dimensional vectorspace with basis ea, one for each
element a ∈ A with multiplication rule induced by the relations ea.eb = ea.b where on the
left-hand side the multiplication . is in the group-algebra whereas on the right hand side
the multiplication in the index is that of the group A. By choosing a different basis one can
show that the group-algebra is really just the direct sum of copies of C with component-
wise addition and multiplication

CA = C⊕ . . .⊕ C

with as many copies as there are elements in the group A. For example, for the cyclic group
Cn we have

CCn = C[x]
(xn−1) = C[x]

(x−1) ⊕
C[x]

(x−ζ) ⊕
C[x]

(x−ζ2) ⊕ . . .⊕
C[x]

(x−ζn−1) = C⊕ C⊕ C⊕ . . .⊕ C

The maxi-functor associated to a C-algebra R is the functor

maxi(R) : abelian→ sets

which assigns to a finite Abelian group A the set of all algebra-morphism R → CA from
R to the group-algebra of A. But wait, you say (i hope), we also needed a functor to do
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something on groupmorphisms f : A→ B. Exactly, so to f we have an algebra-morphism
f ′ : CA→ CB so the functor on morphisms is defined via composition

maxi(R)(f) : maxi(R)(A) → maxi(R)(B) φ : R → CA 7→ f ′ ◦ φ : R →
CA→ CB

So, what is the maxi-functor maxi(C[x, x−1]? Well, any C-algebra morphism
C[x, x−1] → CA is fully determined by the image of x which must be a unit in
CA = C ⊕ . . . ⊕ C. That is, all components of the image of x must be non-zero com-
plex numbers, that is

maxi(C[x, x−1])(A) = C∗ ⊕ . . .⊕ C∗

where there are as many components as there are elements in A. Thus, the sets
maxi(R)(A) are typically huge which is the reason for the maxi-terminology.

Next, let us turn to mini-functors. They are defined similarly but this time using finitely
generated Z-algebras such as S = Z[x, x−1] and the integral group-rings ZA for finite
Abelian groups A. The structure of these integral group-rings is a lot more delicate than in
the complex case. Let’s consider them for the smallest cyclic groups (the ’isos’ below are
only approximations!)

ZC2 = Z[x]
(x2−1) = Z[x]

(x−1) ⊕
Z[x]

(x+1) = Z⊕ Z

ZC3 = Z[x]
(x3−1) = Z[x]

(x−1) ⊕
Z[x]

(x2+x+1) = Z⊕ Z[ρ]

ZC4 = Z[x]
(x4−1) = Z[x]

(x−1) ⊕
Z[x]

(x+1) ⊕
Z[x]

(x2+1) = Z⊕ Z⊕ Z[i]

For a Z-algebra S we can define its mini-functor to be the functor

mini(S) : abelian→ sets

which assigns to an Abelian group A the set of all Z-algebra morphisms S → ZA. For
example, for the algebra Z[x, x−1] we have that

mini(Z[x, x−1] (A) = (ZA)∗

the set of all invertible elements in the integral group-algebra. To study these sets one
has to study the units of cyclotomic integers. From the above decompositions it is easy to
verify that for the first few cyclic groups, the corresponding sets are ±C2,±C3 and ±C4.
However, in general this set doesn’t have to be finite. It is a well-known result that the
group of units of an integral group-ring of a finite Abelian group is of the form

(ZA)∗ = ±A× Z⊕r

where r = 1
2 (o(A) + 1 + n2 − 2c) where o(A) is the number of elements of A, n2 is the

number of elements of order 2 and c is the number of cyclic subgroups of A. So, these sets
can still be infinite but at least they are a lot more manageable, explaining the **mini**-
terminology.

Now, we would love to go one step deeper and define nano-functors by the same procedure,
this time using finitely generated algebras over F1, the field with one element. But as we
do not really know what we might mean by this, we simply define a nano-functor to be
a subfunctor of a mini-functor, that is, a nano-functor N has an associated mini-functor
mini(S) such that for all finite Abelian groups A we have that N(A) ⊂mini(S)(A).

For example, the forgetful functor at the beginning, which we pompously denoted Gm is a
nano-functor as it is a subfunctor of the mini-functor mini(Z[x, x−1]).

Now we are almost done : an affine F1-scheme in the sense of Connes and Consani is a pair
consisting of a nano-functor N and a maxi-functor maxi(R) such that two rather strong
conditions are satisfied :

http://en.wikipedia.org/wiki/Field_with_one_element
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• there is an evaluation ’map’ of functors e : N →maxi(R)

• this pair determines uniquely a ’minimal’ mini-functor mini(S) of which N is a
subfunctor

of course we still have to turn this into proper definitions but that will have to await another
post. For now, suffice it to say that the pair (Gm,maxi(C[x, x−1])) is a F1-scheme with
corresponding uniquely determined mini-functor mini(Z[x, x−1]), called the multiplica-
tive group scheme.

2.7 Connes-Consani F1-geometry (2)

In the foregoing section we have seen how an affine C-algebra R gives us a maxi-functor
(because the associated sets are typically huge)

maxi(R) : abelian→ sets A 7→ HomC−alg(R,CA)

Substantially smaller sets are produced from finitely generated Z-algebras S (therefore
called mini-functors)

mini(S) : abelian→ sets A 7→ HomZ−alg(S,ZA)

Both these functors are ’represented’ by existing geometrical objects, for a maxi-functor
by the complex affine variety XR = max(R) (the set of maximal ideals of the algebra
R) with complex coordinate ring R and for a mini-functor by the integral affine scheme
XS = spec(S) (the set of all prime ideals of the algebra S).

The ’philosophy’ of F1-mathematics is that an object over this virtual field with one element
F1 records the essence of possibly complicated complex- or integral- objects in a small
combinatorial thing.

For example, an n-dimensional complex vectorspace Cn has as its integral form a lattice
of rank n Z⊕n. The corresponding F1-objects only records the dimension n, so it is a finite
set consisting of n elements (think of them as the set of base-vectors of the vectorspace).

Similarly, all base-changes of the complex vectorspace Cn are given by invertible matri-
ces with complex coefficients GLn(C). Of these base-changes, the only ones leaving the
integral lattice Z⊕n intact are the matrices having all their entries integers and their deter-
minant equal to ±1, that is the group GLn(Z). Of these integral matrices, the only ones
that shuffle the base-vectors around are the permutation matrices, that is the group Sn of
all possible ways to permute the n base-vectors. In fact, this example also illustrates Tits’
original motivation to introduce F1 : the finite group Sn is the Weyl-group of the complex
Lie group GLn(C).

So, we expect a geometric F1-object to determine a much smaller functor from finite
abelian groups to sets, and, therefore we call it a nano-functor

nano(N) : abelian→ sets A 7→ N(A)

but as we do not know yet what the correct geometric object might be we will only assume
for the moment that it is a subfunctor of some mini-functor mini(S). That is, for every
finite abelian group A we have an inclusion of sets N(A) ⊂ HomZ−alg(S,ZA) in such a
way that these inclusions are compatible with morphisms. Again, take pen and paper and
you are bound to discover the correct definition of what is called a natural transformation,
that is, a ’map’ between the two functors nano(N)→mini(S).

Right, now to make sense of our virtual F1-geometrical object nano(N) we have to con-
nect it to properly existing complex- and/or integral-geometrical objects.
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Let us define a gadget to be a couple (nano(N),maxi(R)) consisting of a nano- and a
maxi-functor together with a ’map’ (that is, a natural transformation) between them

e : nano(N)→maxi(R)

The idea of this map is that it visualizes the elements of the set N(A) as CA-points of
the complex variety XR (that is, as a collection of o(A) points of XR, where o(A) is the
number of elements of A).

In the example we used before(the forgetful functor) with N(A) = A any group-element
a ∈ A is mapped to the algebra map C[x, x−1]→ CA , x 7→ ea in maxi(C[x, x−1]). On
the geometry side, the points of the variety associated to CA are all algebra maps CA→ C,
that is, the o(A) characters χ1, . . . , χo(A). Therefore, a group-element a ∈ A is mapped
to the CA-point of the complex variety C∗ = XC[x,x−1] consisting of all character-values
at a : χ1(a), . . . , χo(A)(g).

In mathematics we do not merely consider objects (such as the gadgets defined just now),
but also the morphisms between these objects. So, what might be a morphism between two
gadgets

(nano(N),maxi(R))→ (nano(N ′),maxi(R′))

Well, naturally it should be a ’map’ (that is, a natural transformation) between the nano-
functors φ : nano(N) → nano(N ′) together with a morphism between the complex
varieties XR → XR′ (or equivalently, an algebra morphism ψ : R′ → R) such that the
extra gadget-structure (the evaluation maps) are preserved.

That is, for every finite Abelian group A we should have a commuting diagram of maps

N(A)
φ(A) //

eN (A)

��

N ′(A)

eN′ (A)

��
HomC−alg(R,CA)

−◦ψ // HomC−alg(R
′,CA)

Not every gadget is a F1-variety though, for those should also have an integral form, that
is, define a mini-functor. In fact, as we will see next time, an affine F1-variety is a gadget
determining a unique mini-functor mini(S).

2.8 Connes-Consani F1-geometry (3)

A quick recap of the previous sections. We are trying to make sense of affine varieties over
the elusive field with one element F1, which by Grothendieck’s scheme-philosophy should
determine a functor

nano(N) : abelian→ sets A 7→ N(A)

from finite Abelian groups to sets, typically giving pretty small sets N(A). Using the F1-
mantra that Z should be an algebra over F1 any F1-variety determines an integral scheme
by extension of scalars, as well as a complex variety (by extending further to C). We have
already connected the complex variety with the original functor into a **gadget** that is a
couple (nano(N),maxi(R)) where R is the coordinate ring of a complex affine variety
XR having the property that every element of N(A) can be realized as a CA-point of XR.
Ringtheoretically this simply means that to every element x ∈ N(A) there is an algebra
map Nx : R→ CA.

Today we will determine which gadgets determine an integral scheme, and do so uniquely,
and call them the sought for affine schemes over F1.
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Let’s begin with our example : nano(N) = Gm being the forgetful functor, that is
N(A) = A for every finite Abelian group, then the complex algebra R = C[x, x−1]
partners up to form a gadget because to every element a ∈ N(A) = A there is a natural
algebra map Na : C[x, x−1] → CA defined by sending x 7→ ea. Clearly, there is an
obvious integral form of this complex algebra, namely Z[x, x−1] but we have already seen
that this algebra represents the mini-functor

min(Z[x, x−1]) : abelian→ sets A 7→ (ZA)∗

and that the group of units (ZA)∗ of the integral group ring ZA usually is a lot bigger than
N(A) = A. So, perhaps there is another less obvious Z-algebra S doing a much better job
at approximating N? That is, if we can formulate this more precisely...

In general, every Z-algebra S defines a gadget gadget(S) = (mini(S),maxi(S ⊗Z C))
with the obvious (that is, extension of scalars) evaluation map

mini(S)(A) = HomZ−alg(S,ZA)→ HomC−alg(S ⊗Z C,CA) = maxi(S ⊗Z C)(A)

Right, so how might one express the fact that the integral affine scheme XT with integral
algebra T is the ’best’ integral approximation of a gadget (nano(N),maxi(R)). Well,
to begin its representing functor should at least contain the information given by N , that is,
nano(N) is a **sub-functor** of mini(T ) (meaning that for every finite Abelian groupA
we have a natural inclusion N(A) ⊂ HomZ−alg(T,ZA)). As to the ”best”-part, we must
express that all other candidates factor through T . That is, suppose we have an integral
algebra S and a morphism of gadgets (as defined last time)

f : (nano(N),maxi(R))→ gadget(S) = (mini(S),maxi(S ⊗Z C))

then there ought to be Z-algebra morphism T → S such that the above map f factors
through an induced gadget-map gadget(T )→ gadget(S).

Fine, but is this definition good enough in our trivial example? In other words, is the
”obvious” integral ring Z[x, x−1] the best integral choice for approximating the forgetful
functor N = Gm? Well, take any finitely generated integral algebra S, then saying that
there is a morphism of gadgets from (Gm,maxi(C[x, x−1]) to gadget(S) means that
there is a C-algebra map ψ : S⊗ZC→ C[x, x−1] such that for every finite Abelian group
A we have a commuting diagram

A //

e

��

HomZ−alg(S,ZA)

��
HomC−alg(C[x, x−1],CA)

−◦ψ // HomC−alg(S ⊗Z C,CA)

Here, e is the natural evaluation map defined before sending a group-element a ∈ A to the
algebra map defined by x 7→ ea and the vertical map on the right-hand side is extensions
by scalars. From this data we must be able to show that the image of the algebra map

S
i // S ⊗Z C

ψ // C[x, x−1]

is contained in the integral subalgebra Z[x, x−1]. So, take any generator z of S then its
image ψ(z) ∈ C[x, x−1] is a Laurent polynomial of degree say d (that is, ψ(z) = c−dx

−d+
. . . c−1x

−1 + c0 + c1x+ . . .+ cdx
d with all coefficients a priori in C and we need to talk

them into Z).

Now comes the basic **trick** : take a cyclic group A = CN of order N > d, then
the above commuting diagram applied to the generator of CN (the evaluation of which is
the natural projection map π : C[x.x−1] → C[x, x−1]/(xN − 1) = CCN ) gives us the
commuting diagram
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S //

��

S ⊗Z C
ψ // C[x, x−1]

π
��

ZCn =
Z[x, x−1]

(xN − 1)

j // C[x, x−1]

(xN − 1)

where the horizontal map j is the natural inclusion map. Tracing z ∈ S along the diagram
we see that indeed all coefficients of ψ(z) have to be integers! Applying the same argument
to the other generators of S (possibly for varying values of N) we see that , indeed, ψ(S) ⊂
Z[x, x−1] and hence that Z[x, x−1] is the best integral approximation for Gm.

That is, we have our first example of an affine variety over the field with one element F1 :
(Gm,maxi(C[x, x−1])→ gadget(Z[x, x−1]).

What makes this example work is that the infinite group Z (of which the complex group-
algebra is the algebra C[x, x−1]) has enough finite Abelian group-quotients. In other words,
F1 doesn’t see Z but rather its profinite completion Ẑ = lim

←
Z/NZ... (to be continued when

we’ll consider noncommutative F1-schemes)

In general, an affine F1-scheme is a gadget with morphism of gadgets
(nano(N),maxi(R)) → gadget(S) provided that the integral algebra S is the
best integral approximation in the sense made explicit before. This rounds up our first
attempt to understand the Connes-Consani approach to define geometry over F1 apart from
one important omission : we have only considered functors to sets, whereas it is crucial in
the Connes-Consani paper to consider more generally functors to **graded** sets. In the
final part of this series we’ll explain what that’s all about.
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NONCOMMUTATIVE GEOMETRY

3.1 The Bost-Connes coset space

By now, everyone remotely interested in Connes’ approach to the Riemann hypothesis,
knows the one line mantra

one can use noncommutative geometry to extend Weil’s proof of the Riemann-hypothesis in
the function field case to that of number fields

But, can one go beyond this sound-bite in a series of blog posts? A few days ago, I was
rather optimistic, but now, after reading-up on the Connes-Consani-Marcolli project, I feel
overwhelmed by the sheer volume of their work (and by my own ignorance of key tools
in the approach). The most recent account takes up half of the 700+ pages of the book
Noncommutative Geometry, Quantum Fields and Motives by Alain Connes and Matilde
Marcolli...

So let us set a more modest goal and try to understand one of the first papers Alain Connes
wrote about the RH : Noncommutative geometry and the Riemann zeta function. It is only
24 pages long and relatively readable. But even then, the reader needs to know about class
field theory, the classification of AF-algebras, Hecke algebras, etc. etc. Most of these
theories take a book to explain. For example, the first result he mentions is the main result
of local class field theory which appears only towards the end of the 200+ pages of Jean-
Pierre Serre’s Local Fields, itself a somewhat harder read than the average blogpost...

Anyway, we will see how far we can get. Here’s the plan : I’ll take the heart-bit of their
approach : the **Bost-Connes system**, and will try to understand it from an algebraist’s
viewpoint. Today we will introduce the groups involved and describe their cosets.

For any commutative ring R let us consider the group of triangular 2 × 2 matrices of the
form

PR =

[
1 b
0 a

]
| b ∈ R, a ∈ R∗

(that is, a in an invertible element in the ring R). This is really an affine group scheme
defined over the integers, that is, the coordinate ring

Z[P ] = Z[x, x−1, y] becomes a Hopf algebra with comultiplication encoding the group-
multiplication. Because[
1 b1
0 a1

] [
1 b2
0 a2

]
=

[
1 1× b2 + b1 × a2

0 a1 × a2

]
we have ∆(x) = x ⊗ x and ∆(y) = 1 ⊗ y + y ⊗ x, or x is a group-like element whereas
y is a skew-primitive. If R ⊂ R is a subring of the real numbers, we denote by P+

R the
subgroup of PR consisting of all matrices with a > 0. For example,

http://www.alainconnes.org/docs/bookwebfinal.pdf
http://www.alainconnes.org/docs/imufinal.pdf
http://www.amazon.com/Local-Fields-Graduate-Texts-Mathematics/dp/0387904247
http://noncommutativegeometry.blogspot.com/2007/10/heart-bit-1.html
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Γ0 = P+
Z =

[
1 n
0 1

]
| n ∈ Z

which is a subgroup of Γ = P+
Q and our first job is to describe the cosets.

Fig. 3.1: double cosets

The left cosets Γ/Γ0 are the subsets γΓ0

with γ ∈ Γ. But,[
1 b
0 a

] [
1 n
0 1

]
=

[
1 b+ n
0 a

]
so if we represent the matrix γ =

[
1 b
0 a

]
by the point (a, b) in the right halfplane,
then for a given positive rational number a
the different cosets are represented by all
b ∈ [0, 1) ∩ Q = Q/Z. Hence, the left
cosets are all the rational points in the re-
gion between the red and green horizontal
lines. For fixed a the cosets correspond
to the rational points in the green interval
(such as over 2

3 in the picture on the left.

Similarly, the right cosets Γ0\Γ are the
subsets Γ0γ and as[
1 n
0 1

] [
1 b
0 a

]
=

[
1 b+ na
0 a

]
we see similarly that the different cosets
are precisely the rational points in the re-
gion between the lower red horizontal and
the blue diagonal line. So, for fixed a they
correspond to rational points in the blue
interval (such as over 3

2 ) [0, a) ∩ Q. But
now, let us look at the double coset space
Γ0\Γ/Γ0. That is, we want to study the or-
bits of the action of Γ0, acting on the right,
on the left-cosets Γ/Γ0, or equivalently, of
the action of Γ0 acting on the left on the
right-cosets Γ0\Γ. The crucial observation
to make is that these actions have **finite
orbits**, or equivalently, that Γ0 is an al-
most normal subgroup of Γ meaning that
Γ0 ∩ γΓ0γ

−1 has finite index in Γ0 for all
γ ∈ Γ. This follows from[
1 n
0 1

] [
1 b
0 a

] [
1 m
0 1

]
=

[
1 b+m+ an
0 a

]
and if n varies then an takes only finitely many values modulo Z and their number depends
only on the denominator of a. In the picture above, the blue dots lying on the line over 2

3
represent the double coset

Γ0

[
1 2

3
0 2

3

]
and we see that these dots split the left-cosets with fixed value a = 2

3 (that

is, the green line-segment) into three chunks (3 being the denominator of a) and split the
right-cosets (the line-segment under the blue diagonal) into two subsegments (2 being the
numerator of a). Similarly, the blue dots on the line over 3

2 divide the left-cosets in two
parts and the right cosets into three parts.
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This shows that the Γ0-orbits of the right action on the left cosets Γ/Γ0 for each matrix
γ ∈ Γ with a = 2

3 consist of exactly three points, and we denote this by writing L(γ) = 3.
Similarly, all Γ0-orbits of the left action on the right cosets Γ0\Γ with this value of a consist
of two points, and we write this as R(γ) = 2.

For example, on the above picture, the black dots on the line over 2
3 give the matrices in the

double coset of the matrix

γ =

[
1 1

7
0 2

3

]
and the gray dots on the line over 3

2 determine the elements of the double coset of

γ−1 =

[
1 − 3

14
0 3

2

]
and one notices (in general) that L(γ) = R(γ−1). But then, the double cosets with a = 2

3
are represented by the rational b’s in the interval [0, 1

3 ) and those with a = 3
2 by the

rational b’s in the interval 1
2 . In general, the double cosets of matrices with fixed a = r

s
with (r, s) = 1 are the rational points in the line-segment over a with b ∈ [0, 1

s ).

That is, the **Bost-Connes double coset space** Γ0\Γ/Γ0 are the rational points in a
horrible **fractal comb**. Below we have drawn only the part of the dyadic values, that is
when a = r

2t in the unit interval

and of course we have to super-impose on it similar pictures for rationals with other powers
as their denominators. Fortunately, NCG excels in describing such fractal beasts...

Here is a slightly better picture of the coset space, drawing the part over all rational numbers
contained in the 15-th Farey sequence. The blue segments of length one are at 1,2,3,...

3.2 The Bost-Connes algebra

As before, Γ is the subgroup of the rational linear groupGL2(Q) consisting of the matrices[
1 b
0 a

]
with a ∈ Q+ and Γ0 the subgroup of all matrices

[
1 n
0 1

]
with n ∈ N. Above,

we have seen that the double coset space Γ0\Γ/Γ0 can be identified with the set of all
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rational points in the fractal comb consisting of all couples (a, b) with a = m
n ∈ Q+ and

b ∈ [0, 1
n ) ∩Q

The blue spikes are at the positive natural numbers a = 1, 2, 3, . . .. Over a = 1 they

correspond to the matrices
[
1 γ
0 1

]
with γ ∈ [0, 1) ∩ Q and as matrix-multiplication of

such matrices corresponds to addition of the γ we see that these cosets can be identified
with the additive group Q/Z (which will reappear at a later stage as the multiplicative group
of all roots of unity).

The Bost-Connes Hecke algebra H = H(Γ,Γ0) is the convolution algebra of all complex
valued functions with finite support on the double coset space Γ0\Γ/Γ0. That is, as a
vector space the algebra has as basis the functions eX with X ∈ Γ0\Γ/Γ0 (that is, X is a
point of the fractal comb) and such that eX(X) = 1 and eX(Y ) = 0 for all other double
cosets Y 6= X . The algebra product on H is the convolution-product meaning that if f, f ′

are complex functions with finite support on the Bost-Connes space, then they can also be
interpreted as Γ0-bi-invariant functions on the group Γ (for this just means that the function
is constant on double cosets) and then f ∗ f ′ is the function defined for all γ ∈ Γ by

f ∗ f ′(γ) =
∑
µ∈Γ/Γ0

f(µ)f ′(µ−1γ)

Last time we have seen that the coset-space Γ/Γ0 can be represented by all rational points
(a, b) with b < 1. At first sight, the sum above seems to be infinite, but, f and f’ are non-
zero only at finitely many double cosets and we have see last time that Γ0 acts on one-sided
cosets with finite orbits. Therefore, f ∗ f is a well-defined Γ0-bi-invariant function with
finite support on the fractal comb Γ0\Γ/Γ0. Further, observe that the unit element of H is
the function corresponding to the identity matrix in Γ.

Looking at fractal-comb picture it is obvious that the Bost-Connes Hecke algebra H is a
huge object. Today, we will prove the surprising result that it can be generated by the
functions corresponding to the tiny portion of the comb, shown below.
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That is, we will show thatH is generated by the functions e(γ) corresponding to the double-

cosetXγ =

[
1 γ
0 1

]
(the rational points of the blue line-segment over 1, or equivalently, the

elements of the group Q/Z), together with the functions φn corresponding to the double-

coset Xn =

[
1 0
0 n

]
for all n ∈ N+ (the blue dots to the right in the picture) and the

functions φ∗n corresponding to the double cosets X1/n =

[
1 0
0 1

n

]
(the red dots to the left).

Take a point in the fractal comb X =

[
1 γ
0 m

n

]
with (m,n) = 1 and γ ∈ [0, 1

n ) ∩ Q ⊂

[0, 1) ∩ Q. Note that as γ < 1
n we have that nγ < 1 and hence e(nγ) is one of the

(supposedly) generating functions described above.

Because X =

[
1 γ
0 m

n

]
=

[
1 0
0 m

] [
1 nγ
0 1

] [
1 0
0 1

n

]
= XmXnγX1/n we are aiming for

a relation in the Hecke algebra φm ∗ e(nγ) ∗ φ∗n = eX . This is ’almost’ true, except from
a coefficient.

Let us prove first the equality of functions eX ∗ φn = nφm ∗ e(nγ). To do this we have to
show that they have the same value for all points Y ∈ Γ0\Γ/Γ0 in the fractal comb. Let us
first study the function on the right hand side.

φm ∗ e(nγ) =
∑
g∈Γ/Γ0

φm(g)e(nγ)(g−1Y ). Because XmΓ0 is already a double coset
(over m we have a comb-spike of length one, so all rational points on it determine at the
same time a one-sided and a double coset. Therefore, φm(g) is zero unless g = Xm and
then the value is one. Next, let us consider the function on the left-hand side. eX ∗φn(Y ) =∑
g∈Γ/Γ0

eX(g)φm(g−1Y ). We have to be a bit careful here as the double cosets over
a = m

n are different from the left cosets. Recall from last time that the left-cosets over a
are given by all rational points of the form (a, b) with b < 1 whereas the double-cosets
over a are represented by the rational points of the form (a, b) with b < 1

n and hence
the Γ0-orbits over a all consist of precisely n elements g. That is, eX(g) is zero for all
g ∈ Γ/Γ0 except when g is one of the following matrices

g ∈
[
1 γ
0 m

n

]
,

[
1 γ + 1

n
0 m

n

]
,

[
1 γ + 2

n
0 m

n

]
, . . . ,

[
1 γ + n−1

n
0 m

n

]
Further, φn(g−1Y ) is zero unless g−1Y ∈ Γ0

[
1 0
0 n

]
Γ0, or equivalently, that Y ∈

Γ0gΓ0

[
1 0
0 n

]
Γ0 = Γ0g

[
1 0
0 n

]
Γ0 and for each of the choices for g we have that[

1 γ + k
n

0 m
n

] [
1 0
0 n

]
=

[
1 nγ + k
0 m

]
∼
[
1 nγ
0 m

]
Therefore, the function eX ∗φn is zero at every point of the fractal comb unless at

[
1 nγ
0 m

]
where it is equal to n. This proves the claimed identity of functions and as one verifies
easily that φ∗n ∗ φn = 1, it follows that all base vectors eX of H can be expressed in the
claimed generators

eX = nφm ∗ e(nγ) ∗ φ∗n
Bost and Connes use slightly different generators, namely with µn = 1√

n
φn and µ∗n =

√
nφ∗n in order to have all relations among the generators being defined over Q (as we will

see another time). This will be important later on to have an action of the cyclotomic Galois
group Gal(Qcycl/Q) on certain representations ofH.
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3.3 Bost-Connes for ringtheorists

Over the last days I’ve been staring at the Bost-Connes algebra to find a ringtheoretic way
into it. I have had some chats about it with the resident graded-guru but all we came up
with so far is that it seems to be an extension of Fred’s definition of a ’crystalline’ graded
algebra. Knowing that several excellent ringtheorists keep an eye on my stumblings here,
let me launch an appeal for help :

What is the most elegant ringtheoretic framework in which the Bost-Connes Hecke algebra
is a motivating example?

Let us review what we know so far and extend upon it with a couple of observations that
may (or may not) be helpful to you. The algebra H is the algebra of Q-valued functions
(under the convolution product) on the double coset-space Γ0\Γ/Γ0 where

Γ =

[
1 b
0 a

]
: a, b ∈ Q, a > 0 and Γ0 =

[
1 n
0 1

]
: n ∈ N+

We have seen that a Q-basis is given by the characteristic functions Xγ (that is, such that
Xγ(γ′) = δγ,γ′ ) with γ a rational point represented by the couple (a, b) (the entries in the
matrix definition of a representant of γ in Γ) lying in the fractal comb defined by the rule
that b < 1

n if a = m
n with m,n ∈ N, (m,n) = 1. Last time we have seen that the algebra

H is generated as a Q-algebra by the following elements (changing notation)

Xm = Xαm with αm =

[
1 0

0 m

]
∀m ∈ N+

X∗n = Xβn with βn =

[
1 0

0 1
n

]
∀n ∈ N+

Yγ = Xγ with γ =

[
1 γ

0 1

]
∀λ ∈ Q/Z

Using the tricks of last time (that is, figuring out what functions convolution products repre-
sent, knowing all double-cosets) it is not too difficult to prove the defining relations among
these generators to be the following (( if someone wants the details, tell me and I’ll include
a ’technical post’ or consult the Bost-Connes original paper but note that this scanned ver-
sion needs 26.8Mb ))

(1) : X∗nXn = 1,∀n ∈ N+ (

2) : XnXm = Xnm,∀m,n ∈ N+ (

3) : XnX
∗
m = X∗mXn,whenever (m,n) = 1 (

4) : YγYµ = Yγ+µ,∀γ,mu ∈ Q/Z

(5) : YγXn = XnYnγ , ∀n ∈ N+, γ ∈ Q/Z

(6) : XnYλX
∗
n = 1

n

∑
nδ=γ Yδ, ∀n ∈ N+, γ ∈ Q/Z

Simple as these equations may seem, they bring us into rather uncharted ringtheoretic ter-
ritories. Here a few fairly obvious ringtheoretic ingredients of the Bost-Connes Hecke
algebraH

the group-algebra of Q/Z

The equations (4) can be rephrased by saying that the subalgebra generated by the Yγ is
the rational groupalgebra Q[Q/Z] of the (additive) group Q/Z. Note however that Q/Z is
a torsion group (that is, for all γ = m

n we have that n.γ = (γ + γ + . . .+ γ) = 0). Hence,
the groupalgebra has LOTS of zero-divisors. In fact, this group-algebra doesn’t have any

http://www.alainconnes.org/docs/bostconnesscan.pdf 
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good ringtheoretic properties except for the fact that it can be realized as a limit of finite
groupalgebras (semi-simple algebras)

Q[Q/Z] = lim
→

Q[Z/nZ]

and hence is a quasi-free (or formally smooth) algebra, BUT far from being finitely gener-
ated...

the grading group Q+
×

The multiplicative group of all positive rational numbers Q+
× is a torsion-free Abelian or-

dered group and it follows from the above defining relations thatH is graded by this group
if we give

deg(Yγ) = 1, deg(Xm) = m, deg(X∗n) = 1
n

Now, graded algebras have been studied extensively in case the grading group is torsion-
free abelian ordered AND finitely generated, HOWEVER Q+

× is infinitely generated and
not much is known about such graded algebras. Still, the ordering should allow us to use
some tricks such as taking leading coefficients etc.

the endomorphisms of Q[Q/Z]

We would like to view the equations (5) and (6) (the latter after multiplying both sides
on the left with X∗n and using (1)) as saying that Xn and X∗n are normalizing elements.
Unfortunately, the algebra morphisms they induce on the group algebra Q[Q/Z] are NOT
isomorphisms, BUT endomorphisms. One source of algebra morphisms on the group-
algebra comes from group-morphisms from Q/Z to itself. Now, it is known that

Homgrp(Q/Z,Q/Z) ' Ẑ, the profinite completion of Z. A class of group-morphisms of
interest to us are the maps given by multiplication by n on Q/Z. Observe that these maps
are epimorphisms with a cyclic order n kernel. On the group-algebra level they give us the
epimorphisms

Q[Q/Z] −→φn Q[Q/Z]

such that φn(Yλ) = Ynλ whence equation (5) can be rewritten as YλXn = Xnφn(Yλ),
which looks good until you think that φn is not an automorphism...

There are even other (non-unital) algebra endomorphisms such as the map Q[Q/Z] →ψn

Rn defined by ψn(Yλ) = 1
n (Y λ

n
+Yλ+1

n
+ . . .+Yλ+n−1

n
) and then, we can rewrite equation

(6) as YλX∗n = X∗nψn(Yλ), but again, note that ψn is NOT an automorphism.

almost strongly graded, but not quite...

Recall from last time that the characteristic function Xa for any double-coset-class a ∈

Γ0\Γ/Γ0 represented by the matrix a =

[
1 λ
0 m

n

]
could be written in the Hecke algebra as

Xa = nXmYnλX
∗
n = nYλXmX

∗
n. That is, we can write the Bost-Connes Hecke algebra

as

H = ⊕m
n ∈Q

+
×
Q[Q/Z]XmX

∗
n

Hence, if only the morphisms φn and ψm would be automorphisms, this would say that H
is a strongly Q+

×-algebra with part of degree one the groupalgebra of Q/Z.

However, they are not. But there is an extension of the notion of strongly graded algebras
which Fred has dubbed crystalline graded algebras in which it is sufficient that the algebra
maps are all epimorphisms. (maybe I’ll post about these algebras, another time). However,
this is not the case for the ψm...

So, what is the most elegant ringtheoretic framework in which the algebraH fits??? Surely,
you can do better than generalized crystalline graded algebra...

http://www.neverendingbooks.org/index.php/profinite-groups-survival-guide.html
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3.4 BC stands for bi-crystalline graded

Towards the end of the last section, I freaked-out because I realized that the commutation
morphisms with the X∗n were given by non-unital algebra maps. I failed to notice the
obvious, that algebras such as Q[Q/Z] have plenty of idempotents and that this mysterious
’non-unital’ morphism was nothing else but multiplication with an idempotent...

Here a sketch of a ringtheoretic framework in which the Bost-Connes Hecke algebraH is a
motivating example (the details should be worked out by an eager 20-something). Start with
a suitable semi-group S, by which I mean that one must be able to invert the elements of
S and obtain a group G of which all elements have a canonical form g = s1s

−1
2 . Probably

semi-groupies have a name for these things, so if you know please drop a comment.

The next ingredient is a suitable ring R. Here, suitable means that we have a semi-group
morphism φ : S → End(R) where End(R) is the semi-group of all ring-endomorphisms
of R satisfying the following two (usually strong) conditions :

1. Every φ(s) has a right-inverse, meaning that there is an ring-endomorphism ψ(s) such
that φ(s) ◦ ψ(s) = idR (this implies that all φ(s) are in fact epi-morphisms (surjective)),
and

2. The composition ψ(s) ◦ φ(s) usually is NOT the identity morphism idR (because it
is zero on the kernel of the epimorphism φ(s)) but we require that there is an idempotent
Es ∈ R (that is, E2

s = Es) such that ψ(s) ◦ φ(s) = idREs

The point of the first condition is that the S-semi-group graded ring A = ⊕s∈SXsR is
**crystalline** graded (crystalline group graded rings were introduced by Fred Van Oys-
taeyen and Erna Nauwelaarts) meaning that for every s ∈ S we have in the ring A the
equality XsR = RXs where this is a free right R-module of rank one. One verifies that
this is equivalent to the existence of an epimorphism φ(s) such that for all r ∈ R we have
rXs = Xsφ(s)(r).

The point of the second condition is that this semi-graded ringA can be naturally embedded
in aG-graded ringB = ⊕g=s1s−1

2 ∈G
Xs1RX

∗
s2 which is bi-crystalline graded meaning that

for all r ∈ R we have that rX∗s = X∗sψ(s)(r)Es.

It is clear from the construction that under the given conditions (and probably some minor
extra ones making everything stand) the group graded ring B is determined fully by the
semi-group graded ring A.

what does this general ringtheoretic mumbo-jumbo have to do with the BC- (or Bost-
Connes) algebraH?

In this particular case, the semi-group S is the multiplicative semi-group of positive integers
N+
× and the corresponding group G is the multiplicative group Q+

× of all positive rational
numbers.

The ring R is the rational group-ring Q[Q/Z] of the torsion-group Q/Z. Recall that the
elements of Q/Z are the rational numbers 0 ≤ λ < 1 and the group-law is ordinary addition
and forgetting the integral part (so merely focussing on the ’after the comma’ part). The
group-ring is then

Q[Q/Z] = ⊕0≤λ<1QYλ with multiplication linearly induced by the multiplication on the
base-elements Yλ.Yµ = Yλ+µ.

The epimorphism determined by the semi-group map φ : N+
× → End(Q[Q/Z]) are

given by the algebra maps defined by linearly extending the map on the base elements
φ(n)(Yλ) = Ynλ (observe that this is indeed an epimorphism as every base element Yλ =
φ(n)(Y λ

n
).
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The right-inverses ψ(n) are the ring morphisms defined by linearly extending the map on
the base elements ψ(n)(Yλ) = 1

n (Y λ
n

+Yλ+1
n

+ . . .+Yλ+n−1
n

) (check that these are indeed
ring maps, that is that ψ(n)(Yλ).ψ(n)(Yµ) = ψ(n)(Yλ+µ).

These are indeed right-inverses satisfying the idempotent condition for clearly φ(n) ◦
ψ(n)(Yλ) = 1

n (Yλ + . . .+ Yλ) = Yλ and

ψ(n) ◦ φ(n)(Yλ) = ψ(n)(Ynλ) = 1
n (Yλ + Yλ+ 1

n
+ . . .+ Yλ+n−1

n
) (3.1)

= Yλ.(
1
n (Y0 + Y 1

n
+ . . .+ Yn−1

n
)) = YλEn (3.2)

and one verifies that En = 1
n (Y0 + Y 1

n
+ . . .+ Yn−1

n
) is indeed an idempotent in Q[Q/Z].

In the previous posts in this series we have already seen that with these definitions we have
indeed that the BC-algebra is the bi-crystalline graded ring

B = H = ⊕m
n ∈Q

+
×
XmQ[Q/Z]X∗n

and hence is naturally constructed from the skew semi-group graded algebra A =
⊕m∈N+

×
XmQ[Q/Z].

This (probably) explains why the BC-algebra H is itself usually called and denoted in
C∗-algebra papers the skew semigroup-algebra Q[Q/Z] ./ N+

× as this subalgebra (our
crystalline semi-group graded algebra A) determines the Hecke algebra completely.

Finally, the bi-crystalline idempotents-condition works well in the settings of von Neu-
mann regular algebras (such as all limits of finite dimensional semi-simples, for example
Q[Q/Z]) because such algebras excel at idempotents galore...

3.5 Adeles and Ideles

Before we can even attempt to describe the adelic description of the Bost-Connes Hecke
algebra and its symmetries, we’d probably better recall the construction and properties of
adeles and ideles. Let’s start with the p-adic numbers Ẑp and its field of fractions Q̂p. For
p a prime number we can look at the finite rings Z/pnZ of all integer classes modulo pn. If
two numbers define the same element in Z/pnZ (meaning that their difference is a multiple
of pn), then they certainly define the same class in any Z/pkZ when k ≤ n, so we have a
sequence of ringmorphisms between finite rings

. . .→φn+1 Z/pnZ→φn Z/pn−1Z→φn−1 . . .→φ3 Z/p2Z→φ2 Z/pZ

The ring of p-adic integers Ẑp can now be defined as the collection of all (infinite) se-
quences of elements (. . . , xn, xn−1, . . . , x2, x1) with xi ∈ Z/piZ **such that** φi(xi) =
xi−1 for all natural numbers i. Addition and multiplication are defined componentwise and
as all the maps φi are ringmorphisms, this produces no compatibility problems.

One can put a topology on Ẑp making it into a compact ring. Here’s the trick : all com-
ponents Z/pnZ are finite so they are compact if we equip these sets with the discrete
topology (all subsets are opens). But then, Tychonov’s product theorem asserts that the
product-space

∏
n Z/nZ with the product topology is again a compact topological space.

As Ẑp is a closed subset, it is compact too.

By construction, the ring Ẑp is a domain and hence has a field of fraction which we will
denote by Q̂p. These rings give the p-local information of the rational numbers Q. We
will now ’glue together’ these local data over all possible prime numbers p into adeles.

http://amadeus.inria.fr/gaubert/papers.html
http://en.wikipedia.org/wiki/Tychonoff's_theorem
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So, forget the above infinite product used to define the p-adics, below we will work with
another infinite product, one factor for each prime number.

The adeles A are the restricted product of the Q̂p over Ẑp for all prime numbers p.
By ’restricted’ we mean that elements of A are exactly those infinite vectors a =
(a2, a3, a5, a7, a11, . . .) = (ap)p ∈

∏
p Q̂p such that all but finitely of the components

ap ∈ Ẑp. Addition and multiplication are defined component-wise and the restriction con-
dition is compatible with both addition and multiplication. So, A is the adele ring. Note
that most people call this A the finite Adeles as we didn’t consider infinite places, i will
distinguish between the two notions by writing adeles resp. Adeles for the finite resp. the
full blown version. The adele ring A has as a subring the infinite product R =

∏
p Ẑp. If

you think of A as a version of Q then R corresponds to Z (and next time we will see that
there is a lot more to this analogy).

The ideles are the group of invertible elements of the ring A, that is, I = A∗. That s, an
element is an infinite vector i = (i2, i3, i5, . . .) = (ip)p with all ip ∈ Q̂∗p and for all but
finitely many primes we have that ip ∈ Ẑ∗p.

As we will have to do explicit calculations with ideles and adeles we need to recall some
facts about the structure of the unit groups Ẑ∗p and Q̂∗p. If we denote U = Ẑ∗p, then project-
ing it to the unit group of each of its components we get for each natural number n an exact
sequence of groups

1 → Un → U → (Z/pnZ)∗ → 1. In particular, we have that U/U1 ' (Z/pZ)∗ '
Z/(p − 1)Z as the group of units of the finite field Fp is cyclic of order p-1. But then, the
induced exact sequence of finite abelian groups below splits

1 → U1/Un → U/Un → F∗p → 1 and as the unit group U = lim
←
U/Un we deduce

that U = U1 × V where F∗p ' V = x ∈ U |xp−1 = 1 is the specified unique subgroup
of U of order p-1. All that remains is to determine the structure of U1. If p 6= 2, take
α = 1 + p ∈ U1 − U2 and let αn ∈ U1/Un denote the image of α, then one verifies that
αn is a cyclic generator of order pn−1 of U1/Un.

But then, if we denote the isomorphism θn : Z/pn−1Z→ U1/Un between the ADDITIVE
group Z/pn−1Z and the MULTIPLICATIVE group U1/Un by the map z 7→ αzn, then we
have a compatible commutative diagram

[tex] Z/pnZ
θn+1 //

��

U1/Un+1

��
Z/pn−1Z θn // U1/Un

[/tex]

and as U1 = lim
←

U1/Un this gives an isomorphism between the multiplicative group U1

and the additive group of Ẑp. In case p = 2 we have to start with an element α ∈ U2 − U3

and repeat the above trick. Summarizing we have the following structural information
about the unit group of p-adic integers

Ẑ∗p '

{
Ẑp,+ × Z/(p− 1)Z (p 6= 2)

Ẑ2,+ × Z/2Z (p = 2)

Because every unit in Q̂∗p can be written as pnu with u ∈ Ẑ∗p we deduce from this also the
structure of the unit group of the p-adic field

Q̂∗p '

{
Z× Ẑp,+ × Z/(p− 1)Z (p 6= 2)

Z× Ẑ2,+ × Z/2Z (p = 2)
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Right, now let us start to make the connection with the apparently abstract ringtheoretical
post from last time where we introduced **semigroup crystalline graded** rings without
explaining why we wanted that level of generality.

Consider the semigroup I ∩ R, that is all ideles i = (ip)p with all ip = pnpup with
up ∈ Ẑ∗p and np ∈ N with np = 0 for all but finitely many primes p. Then, we have an
exact sequence of semigroups

1 → G → I ∩ R →π N+
× → 1 where the map is defined (with above notation) π(i) =∏

p p
np and exactness follows from the above structural results when we take G =

∏
p Ẑ∗p.

This gives a glimpse of where we are heading. Last time we identified the Bost-Connes
Hecke algebra H as a bi-crystalline group graded algebra determined by a N+

×-semigroup
crystalline graded algebra over the group algebra Q[Q/Z]. Next, we will extend this con-
struction starting from a I ∩ R-semigroup crystalline graded algebra over the same group
algebra. The upshot is that we will have a natural action by automorphisms of the group
G on the Bost-Connes algebra. And... the group G =

∏
p Ẑ∗p is the Galois group of the

cyclotomic field extension Qcyc!

But, in order to begin to understand this, we will need to brush up our rusty knowledge of
algebraic number theory...

3.6 Chinese remainders and adele-classes

Oystein Ore mentions the following puzzle from Brahma-Sphuta-Siddhanta (Brahma’s
Correct System) by Brahmagupta :

”An old woman goes to market and a horse steps on her basket and crashes the eggs. The
rider offers to pay for the damages and asks her how many eggs she had brought. She does
not remember the exact number, but when she had taken them out two at a time, there was
one egg left. The same happened when she picked them out three, four, five, and six at a
time, but when she took them seven at a time they came out even. What is the smallest
number of eggs she could have had?”

Here’s a similar problem from ”Advanced Number
Theory” by Harvey Cohn (always, i wonder how
one might ’discreetly request’ these remainders... )
:

Exercise 5 : In a game for guessing a person’s age x,
one discreetly requests three remainders : r1 when
x is divided by 3, r2 when x is divided by 4, and r3
when x is divided by 5. Then x=40 r1 + 45 r2 + 36
r3 modulo 60.

Clearly, these problems are all examples of the Chi-
nese Remainder Theorem.

Chinese because one of the first such problems was
posed by Sunzi (4th century AD) in the book Sunzi
Suanjing. ( according to ChinaPage the answer is

contained in the song on the left hand side. )

There are certain things whose number is unknown.
Repeatedly divided by 3, the remainder is 2;
by 5 the remainder is 3;
and by 7 the remainder is 2.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Ore.html
http://en.wikipedia.org/wiki/Brahmagupta
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://www.chinapage.com/math/crt.html
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What will be the number?

The Chinese Remainder Theorem asserts that when N = n1n2 . . . nk with the ni pairwise
coprime, then there is an isomorphism of abelian groups Z/NZ ' Z/n1Z × Z/n2Z ×
. . .× Z/nkZ. Equivalently, given coprime numbers ni one can always solve the system of
congruence identities
x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...
x ≡ ak (mod nk)

and all integer solutions are congruent to each other modulo N = n1n2 . . . nk.

We will need this classical result to prove that Q/Z ' A/R where (as before) A is the
additive group of all adeles and where R is the subgroup

∏
p Zp (i’ll drop all ’hats’ from

now on, so the p-adic numbers are Qp = Q̂p and the p-adic integers are denoted Zp = Ẑp).

As we will have to do calculations with p-adic numbers, it is best to have them in a
canonical form using **digits**. A system of digits D of Qp consists of zero and a sys-
tem of representatives of units of Z∗p modulo pZp. The most obvious choice of digits is
D = 0, 1, 2, . . . , p− 1 which we will use today. (( later we will use another system of
digits, the Teichmuller digits using p − 1-th root of unities in Qp. )) Fixing a set of digits
D, any p-adic number ap ∈ Qp can be expressed uniquely in the form

ap =
∑∞
n=deg(ap) ap(n)pn with all ’coefficients’ ap(n) ∈ D and deg(ap) being the lowest

p-power occurring in the description of ap.

Recall that an adele is an element a = (a2, a3, a5, . . .) ∈
∏
pQp such that for almost all

prime numbers p ap ∈ Zp (that is deg(ap) ≥ 0). Denote the finite set of primes p such that
deg(ap) < 0 with P = p1, . . . , pk and let di = −deg(api). Then, withN = pd11 p

d2
2 . . . pdkk

we have that Napi ∈ Zpi . Observe that for all other prime numbers q /∈ P we have
(N, q) = 1 and therefore N is invertible in Zq .

Also N = pdii Ki with Ki ∈ Z∗pi . With respect to the system of digits D = 0, 1, . . . , p− 1
we have

Napi = Ki

di−1∑
j=0

api(−di + j)pji︸ ︷︷ ︸
=αi

+Ki

∑
j≥di api(−di + j)pji ∈ Zpi

Note that αi ∈ Z and the Chinese Remainder Theorem asserts the existence of an integral
solution M ∈ Z to the system of congruences
M ≡ α1 modulo pd11

M ≡ α2 modulo pd22
...
M ≡ αk modulo pdkk

But then, for all 1 ≤ i ≤ k we have Napi −M = pdii
∑∞
j=0 bi(j)p

j (with the bi(j) ∈ D)
and therefore

api − M
N = 1

Ki

∑∞
j=0 bi(j)p

j ∈ Zpi
But for all other primes q /∈ P we have that αq ∈ Zq and that N ∈ Z∗q whence for those
primes we also have that αq − M

N ∈ Zq .
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Finally, observe that the diagonal embedding of Q in
∏
pQp lies entirely in the adele ring

A as a rational number has only finitely many primes appearing in its denominator. Hence,
identifying Q ⊂ A via the diagonal embedding we can rephrase the above as

a− M
N ∈ R =

∏
p Zp

That is, any adele class A/R has as a representant a rational number. But then, A/R '
Q/Z which will allow us to give an adelic version of the Bost-Connes algebra!

Btw. there were 301 eggs.

3.7 ABC on Adelic Bost-Connes

The adelic interpretation of the Bost-Connes Hecke algebraH is based on three facts we’ve
learned in the previous sections :

1. The diagonal embedding of the rational numbers δ : Q →
∏
pQp has its image in

the adele ring A.

2. There is an exact sequence of semigroups 1 → G → I ∩ R → N+
× → 1 where I is

the idele group, that is the units of A, where R =
∏
p Zp and where G is the group

(!)
∏
p Z∗p.

3. There is an isomorphism of additive groups Q/Z ' A/R.

BecauseR is a ring we have that aR ⊂ R for any a = (ap)p ∈ I ∩R. Therefore, we have
an induced ’multiplication by a’ morphism on the additive group A/R →a. A/R which
is an epimorphism for all a ∈ I ∩R.

In fact, it is easy to see that the equation a.x = y for y ∈ A/R has precisely na =
∏
p p

d(a)

solutions. In particular, for any a ∈ G =
∏
p Z∗p, multiplication by a is an isomorphism on

A/R = Q/Z.

But then, we can form the [crystalline semigroup graded][3] skew-group algebra
Q(Q/Z) ./ (I ∩ R). It is the graded vectorspace ⊕a∈I∩RXaQ[Q/Z] with commuta-
tion relation YλXa = XaYaλ for the base-vectors Yλ with λ ∈ Q/Z. Recall from the
bi-crystalline section we need to use approximation (or the Chinese remainder theorem) to
determine the class of aλ in Q/Z.

We can also extend it to a bi-crystalline graded algebra because multiplication by
a ∈ I ∩ R has a left-inverse which determines the commutation relations YλX∗a =
X∗a( 1

na
)(
∑
a.µ=λ Yµ). Let us call this bi-crystalline graded algebra Hbig , then we have

the following facts

1. For every a ∈ G, the element Xa is a unit in Hbig and X−1
a = X∗a . Conjugation by

Xa induces on the subalgebra Q[Q/Z] the map Yλ → Yaλ.

2. Using the diagonal embedding δ restricted to N+
× we get an embedding of algebras

H ⊂ Hbig and conjugation by Xa for any a ∈ G sends H to itself. However, as the
Xa /∈ H, the induced automorphisms are now outer!

Summarizing : the Bost-Connes Hecke algebraH encodes a lot of number-theoretic infor-
mation :

• the additive structure is encoded in the sub-algebra which is the group-algebra
Q[Q/Z]
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• the multiplicative structure in encoded in the epimorphisms given by multiplication
with a positive natural number (the commutation relation with the Xm

• the automorphism group of Q/Z extends to outer automorphisms ofH

That is, the Bost-Connes algebra can be seen as a **giant mashup** of number-theory of
Q. So, if one can prove something specific about this algebra, it is bound to have interesting
number-theoretic consequences.

But how will we studyH? Well, the bi-crystalline structure of it tells us thatH is a ’good’-
graded algebra with part of degree one the group-algebra Q[Q/Z]. This group-algebra is a
formally smooth algebra and we study such algebras by studying their finite dimensional
representations.

Hence, we should study ’good’-graded formally smooth algebras (such as H) by looking
at their graded representations. This will then lead us to Connes’ ”fabulous states”...

3.8 God given time

If you ever sat through a lecture by Alain Connes you will know about his insistence on the
’canonical dynamic nature of noncommutative manifolds’. If you haven’t, he did write a
blog post Heart bit 1 about it.

”I’ll try to explain here that there is a definite ”supplément d’me” obtained in the transition
from classical (commutative) spaces to the noncommutative ones. The main new feature is
that ”noncommutative spaces generate their own time” and moreover can undergo thermo-
dynamical operations such as cooling, distillation etc... ”

Here a section from his paper A view of mathematics:

”Indeed even at the coarsest level of understanding of a space provided by measure theory,
which in essence only cares about the quantity of points in a space, one nds unexpected
completely new features in the noncommutative case. While it had been long known by
operator algebraists that the theory of von-Neumann algebras represents a far reaching
extension of measure theory, the main surprise which occurred at the beginning of the
seventies is that such an algebra M inherits from its noncommutativity a god-given time
evolution:

δ : R→ Out(M)

where OutM = AutM/IntM is the quotient of the group of automorphisms of M by
the normal subgroup of inner automorphisms. This led in my thesis to the reduction from
type III to type II and their automorphisms and eventually to the classification of injective
factors. ”

Even a commutative manifold has a kind of dynamics associated to it. Take a suitable vec-
torfield, consider the flow determined by it and there’s your ’dynamics’, or a one-parameter
group of automorphisms on the functions. Further, other classes of noncommutative al-
gebras have similar features. For example, Cuntz and Quillen showed that also formally
smooth algebras (the noncommutative manifolds in the algebraic world) have natural Yang-
Mills flows associated to them, giving a one-parameter subgroup of automorphisms.

Let us try to keep far from mysticism and let us agree that by ’time’ (let alone ’god given
time’) we mean a one-parameter subgroup of algebra automorphisms of the noncommuta-
tive algebra. In nice cases, such as some von-Neumann algebras this canonical subgroup is
canonical in the sense that it is unique upto inner automorphisms.

http://noncommutativegeometry.blogspot.com/2007/10/heart-bit-1.html
http://www.irem.uhp-nancy.fr/Lomb/maths.pdf
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In the special case of the Bost-Connes algebra these automorphisms σt are given by
σt(Xn) = nitXn and σt(Yλ) = Yλ.

This one-parameter subgroup is crucial in the definition of the so called KMS-states (for
Kubo-Martin and Schwinger) which is our next goal.

3.9 KMS, Gibbs and the zeta-function

Time to wrap up this series on the Bost-Connes algebra. Here’s what we have learned so
far : the convolution product on double cosets[
1 Z
0 1

]
\
[
1 Q
0 Q>0

]
/

[
1 Z
0 1

]
is a noncommutative algebra, the Bost-Connes Hecke algebra H, which is a bi-crystalline
graded algebra (somewhat weaker than ’strongly graded’) with part of degree one the
group-algebra Q[Q/Z]. Further, H has a natural one-parameter family of algebra auto-
morphisms σt defined by σt(Xn) = nitXn and σt(Yλ) = Yλ.

For any algebra A together with a one-parameter family of automorphisms σt one is in-
terested in KMS-states or Kubo-Martin-Schwinger states with parameter β, KMSβ (this
parameter is often called the ’inverse temperature’ of the system) as these are suitable equi-
libria states. Recall that a **state** is a special linear functional φ on A (in particular it
must have norm one) and it belongs to KMSβ if the following commutation relation holds
for all elements a, b ∈ A

φ(aσiβ(b)) = φ(ba)

Let us work out the special case when A is the matrix-algebra Mn(C). To begin, all
algebra-automorphisms are inner in this case, so any one-parameter family of automor-
phisms is of the form

σt(a) = eitHae−itH

where eitH is the matrix-exponential of the n×n matrix H . For any parameter β we claim
that the linear functional

φ(a) = 1
tr(e−βH)

tr(ae−βH)

is a KMS-state.Indeed, we have for all matrices a, b ∈Mn(C) that

φ(aσiβ(b)) = 1
tr(e−βH)

tr(ae−βHbeβHe−βH)

= 1
tr(e−βH)

tr(ae−βHb) = 1
tr(e−βH)

tr(bae−βH) = φ(ba)

(the next to last equality follows from cyclic-invariance of the trace map). These states
are usually called Gibbs states and the normalization factor 1

tr(e−βH)
(needed because a

state must have norm one) is called the partition function of the system. Gibbs states have
arisen from the study of ideal gases and the place to read up on all of this are the first two
chapters of the second volume of ”Operator algebras and quantum statistical mechanics”
by Ola Bratelli and Derek Robinson.

This gives us a method to construct KMS-states for an arbitrary algebra A with one-
parameter automorphisms σt : take a simple n-dimensional representation π : A 7→
Mn(C), find the matrix H determining the image of the automorphisms π(σt) and take the
Gibbs states as defined before.

Let us return now to the Bost-Connes algebra H. We don’t know any finite dimensional
simple representations of H but, sure enough, have plenty of **graded** simple represen-
tations. By the usual strongly-graded-yoga they should correspond to simple finite dimen-
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sional representations of the part of degree one Q[Q/Z] (all of them being one-dimensional
and corresponding to characters of Q/Z).

Hence, for any u ∈ G =
∏
p Ẑ∗p we have a graded simple H-representation Su =

⊕n∈N+
Cen with action defined by{

πu(Xn)(em) = enm

πu(Yλ)(em) = e2πinu.λem

Here, u.λ is computed using the ’chinese-remainder-identification’ A/R = Q/Z.

Even when the representations Su are not finite dimensional, we can mimic the above
strategy : we should find a linear operator H determining the images of the automorphisms
πu(σt). We claim that the operator is defined by H(en) = log(n)en for all n ∈ N+. That
is, we claim that for elements a ∈ H we have

πu(σt(a)) = eitHπu(a)e−itH

So let us compute the action of both sides on em when a = Xn. The left hand side gives
πu(nitXn)(em) = nitemn whereas the right-hand side becomes

eitHπu(Xn)e−itH(em) = eitHπu(Xn)m−item =

eitHm−itemn = (mn)itm−itemn = nitemn

proving the claim. For any parameter β this then gives us a KMS-state for the Bost-Connes
algebra by

φu(a) = 1
Tr(e−βH)

Tr(πu(a)e−βH)

Finally, let us calculate the normalization factor (or partition function) 1
Tr(e−βH)

. Because
e−βH(en) = n−βen we have for that the trace

Tr(e−βH) =
∑
n∈N+

1
nβ

= ζ(β)

is equal to the Riemann zeta-value ζ(β) (at least when β > 1).

Summarizing, we started with the definition of the Bost-Connes algebraH, found a canon-
ical one-parameter subgroup of algebra automorphisms σt and computed that the natural
equilibria states with respect to this ’time evolution’ have as their partition function the
Riemann zeta-function. Voila!
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THE ABSOLUTE POINT REVISITED

4.1 The absolute point, coming of age at 25?

For years now some people whisper that geometry over ’the absolute
point’, or ’the field with one element’, will soon lead to a proof of the
most enigmatic of all millennium one-million-dollar questions : the
Riemann hypothesis.

Even child prodigies have to deliver something verifiable by the age
of 25, or face being remembered as yet another unfulfilled promise.
Hopefully, 2010 will be the year we see the absolute point finally ma-
ture, at 25.

But, isn’t the ’field with one element’-idea much older? Wasn’t
Jacques Tits the one who thought of it first, way back in 1957? Well,
technically, he didn’t call it the field with one element, but rather the
’field of characteristic one’, and, his interest was in the relation be-
tween (finite) Lie groups and their associated Weyl groups. He surely
never claimed a possible application to the Riemann hypothesis.

What is this Riemann-idea all about, and when was it first uttered?
Well, given the analogy between integers and polynomials over fi-
nite fields, one might hope that spec(Z) would be a kind of curve
over this ’absolute point’ spec(F1). As a consequence, the product

spec(Z) ×spec(F1) spec(Z) would not only make sense, but be a surface bearing some
kind of intersection theory, so one could then perhaps mimic Weils proof of the Riemann
hypothesis over function fields.

James Borger writes in a footnote to his recent paper Lambda-rings and the field with one
element : ”The origins of this idea are unknown to me. Manin (in his paper Lectures on zeta
functions and motives) mentions it explicitly. According to Smirnov (letter to Yuri Manin,
September 29th 2003), the idea occurred to him in 1985 and he mentioned it explicitly in a
talk in Shafarevich’s seminar in 1990. It may well be that a number of people have had the
idea independently since the appearance of Weil’s proof.”

I’ve glanced through Manin’s paper and didn’t find an explicit mention of the Riemann-
idea. Sure, on page one he mentions ’Descartes’ products of spec(Z), and the paper is all
about motives and the connection with zeta-functions and at several times he makes a point
to the effect that a further study of the geometry over the absolute point spec(F1) might
be interesting, but I didn’t find the claimed quote.

The Smirnov letterS (there is one dated September 29th and one November 29th) are men-
tioned in Manin’s paper The notion of dimension in geometry and algebra. In the body
of the paper, they are only referenced once : ”Answer 3: dim Spec Z = ∞ ? This guess

http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Jacques_Tits
http://www.neverendingbooks.org/index.php/ceci-nest-pas-un-corps.html
http://en.wikipedia.org/wiki/Andr�_Weil
http://wwwmaths.anu.edu.au/~borger
http://wwwmaths.anu.edu.au/~borger/papers/06/paper06.html
http://wwwmaths.anu.edu.au/~borger/papers/06/paper06.html
http://matrix.cmi.ua.ac.be/fun/library/Manin1995.pdf
http://matrix.cmi.ua.ac.be/fun/library/Manin1995.pdf
http://matrix.cmi.ua.ac.be/fun/library/Manin2006.pdf
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involves the conjectural existence of a geometrical world defined over an absolute point
Spec F1 where F1 is a mythical field with one element. For some insights about this world,
see [Ti], [Sm1], [Sm2] (the letters), [KapSm], [Ma2], [Sou].”

Evidently, Borger’s information is based on a private conversation with Yuri I. Manin, and
I’d love to hear the full story. Anyway, we can safely date the Riemann-absolute-point idea
back as far back as 1985!

4.2 Art and the absolute point (1)

In his paper Cyclotomy and analytic geometry over F1 Yuri I. Manin sketches and compares
four approaches to the definition of a geometry over F1, the elusive field with one element.
He writes : ”Preparing a colloquium talk in Paris, I have succumbed to the temptation to
associate them with some dominant trends in the history of art.”

Remember that the search for the absolute point specspecspec(F1) originates from the observation
that specspecspec(Z), the set of all prime numbers together with 0, is too large to serve as the
terminal object in Grothendieck’s theory of commutative schemes. The last couple of years
have seen a booming industry of proposals, to the extent that Javier Lopez Pena and Oliver
Lorscheid decided they had to draw a map of F1-land.

Manin only discusses the colored proposals (TV=Toen-Vaquie, M=Deitmar, S=Soule and
Λ=Borger) and compares them to these art-history trends.

http://arxiv.org/abs/0809.1564
http://arxiv.org/abs/0909.0069
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Toen and Vaquie : Abstract Expressionism

In Under specspecspec(Z) Bertrand Toen and Michel Vaquie argue that geometry over F1 is a spe-
cial case of algebraic geometry over a symmetric monoidal category, taking the simplest
example namely sets and direct products. Probably because of its richness and abstract na-
ture, Manin associates this approach to Abstract Expressionism (a.o. Karel Appel, Jackson
Pollock, Mark Rothko, Willem de Kooning).

Deitmar : Minimalism

Because monoids are the ’commutative algebras’ in sets with direct products, an equivalent
proposal is that of Anton Deitmar in Schemes over F1 in which the basic affine building
blocks are spectra of monoids, topological spaces whose points are submonoids satisfying
a primeness property. Because Deitmar himself calls this approach a ’minimalistic’ one it
is only natural to associate to it Minimalism where the work is stripped down to its most
fundamental features. Prominent artists associated with this movement include Donald
Judd, John McLaughlin, Agnes Martin, Dan Flavin, Robert Morris, Anne Truitt, and Frank
Stella.

http://arxiv.org/abs/math/0509684
http://en.wikipedia.org/wiki/Abstract_expressionism
http://arxiv.org/abs/math/0404185
http://en.wikipedia.org/wiki/Minimalism
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Soule : Critical Realism

in Les varietes sur le corps a un element Christophe Soule defines varieties over F1 to be
specific schemesX over Z together with a form of ’descent data’ as well as an additional C-
algebra, morally the algebra of functions on the real place. Because of this Manin associates
to it Critical Realism in philosophy. There are also ’realism’ movements in art such as
American Realism (o.a. Edward Hopper and John Sloan).

Borger : Futurism

James Borger’s paper Lambda-rings and the field with one element offers a totally new
conception of the descent data from Z to F1, namely that of a λ-ring in the sense of
Grothendieck. Because Manin expects this approach to lead to progress in the field, he
connects it to Futurism, an artistic and social movement that originated in Italy in the early
20th century.

4.3 Art and the absolute point (2)

In the previous section, we did recall Manin’s comparisons between some approaches to
geometry over the absolute point specspecspec(F1) and trends in the history of art.

http://matrix.cmi.ua.ac.be/fun/library/Soule2004.pdf
http://en.wikipedia.org/wiki/Critical_realism
http://en.wikipedia.org/wiki/American_realism
http://arxiv.org/abs/0906.3146
http://en.wikipedia.org/wiki/Futurism
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In the comments to that post, Javier Lopez-Pena wrote that he and Oliver Lorscheid briefly
contemplated the idea of extending Manin’s artsy-dictionary to all approaches they did
draw on their Map of F1-land.

So this time, we will include here Javier’s and Oliver’s insights on the colored pieces below
in their map : CC=Connes-Consani, Generalized torified schemes=Lopez Pena-Lorscheid,
Generalized schemes with 0=Durov and, this time, Λ=Manin-Marcolli.

Durov : romanticism

In his 568 page long Ph.D. thesis New Approach to Arakelov Geometry Nikolai Durov
introduces a vast generalization of classical algebraic geometry in which both Arakelov
geometry and a more exotic geometry over F1 fit naturally. Because there were great
hopes and expectations it would lead to a big extension of algebraic geometry, Javier and
Oliver associate this approach to romantism. From wikipedia : ”The modern sense of a
romantic character may be expressed in Byronic ideals of a gifted, perhaps misunderstood
loner, creatively following the dictates of his inspiration rather than the standard ways of
contemporary society.”

http://www.ucl.ac.uk/~ucahjlo/
http://www.sci.ccny.cuny.edu/~lorscheid/
http://arxiv.org/abs/0909.0069
http://arxiv.org/abs/0704.2030
http://en.wikipedia.org/wiki/Romanticism
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Manin and Marcolli : impressionism

Yuri I. Manin in Cyclotomy and analytic geometry over F1 and Matilde Marcolli in Cy-
clotomy and endomotives develop a theory of analytic geometry over F1 based on analytic
functions ’leaking out of roots of unity’. Javier and Oliver depict such functions as ’thin,
but visible brush strokes at roots of 1’ and therefore associate this approach to impression-
ism. Frow wikipedia : ’Characteristics of Impressionist paintings include: relatively small,
thin, yet visible brush strokes; open composition; emphasis on accurate depiction of light in
its changing qualities (often accentuating the effects of the passage of time); common, or-
dinary subject matter; the inclusion of movement as a crucial element of human perception
and experience; and unusual visual angles.’

Connes and Consani : cubism

In On the notion of geometry over F1 Alain Connes and Katia Consani develop their ex-
tension of Soule’s approach. A while ago I’ve done a couple of posts on this. Javier and
Oliver associate this approach to cubism (a.o. Pablo Picasso and Georges Braque) because
of the weird juxtapositions of the simple monoidal pieces in this approach.

http://arxiv.org/abs/0809.1564
http://arxiv.org/abs/0901.3167
http://arxiv.org/abs/0901.3167
http://en.wikipedia.org/wiki/Impressionism
http://en.wikipedia.org/wiki/Impressionism
http://arxiv.org/abs/0809.2926
http://en.wikipedia.org/wiki/Cubism
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Lopez-Pena and Lorscheid : deconstructivism

Torified varieties and schemes were introduced by Javier Lopez-Pena and Oliver Lorscheid
in Torified varieties and their geometries over F1 to get lots of examples of varieties over
the absolute point in the sense of both Soule and Connes-Consani. Because they were
fragmenting schemes into their ”fundamental pieces” they associate their approach to de-
constructivism.

4.4 Art and the absolute point (3)

We have recalled comparisons between approaches to define a geometry over the absolute
point and art-historical movements, first those due to Yuri I. Manin, subsequently some
extra ones due to Javier Lopez Pena and Oliver Lorscheid.

In these comparisons, the art trend appears to have been chosen more to illustrate a key
feature of the approach or an appreciation of its importance, rather than giving a visual
illustration of the varieties over F1 the approach proposes.

Some time ago, we’ve had a couple of posts trying to depict noncommutative varieties,
first the illustrations used by Shahn Majid and Matilde Marcolli, and next my own mental
picture of it.

In this post, we’ll try to do something similar for affine varieties over the absolute point.
To simplify things drastically, I’ll divide the islands in the Lopez Pena-Lorscheid map of
F1 land in two subsets : the former approaches (all but the Λ-schemes) and the current
approach (the Λ-scheme approach due to James Borger).

http://arxiv.org/abs/0903.2173
http://en.wikipedia.org/wiki/Deconstructivism
http://en.wikipedia.org/wiki/Deconstructivism
http://www.neverendingbooks.org/index.php/views-of-noncommutative-spaces.html
http://www.neverendingbooks.org/index.php/pollock-your-own-noncommutative-space.html
http://arxiv.org/abs/0909.0069
http://arxiv.org/abs/0909.0069
http://arxiv.org/abs/0906.3146
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The former approaches : Francis Bacon ”The Pope” (1953)

The general consensus here was that in going from Z to F 1 one looses the additive struc-
ture and retains only the multiplicative one. Hence, ’commutative algebras’ over F 1 are
(commutative) monoids, and mimicking Grothendieck’s functor of points approach to al-
gebraic geometry, a scheme over F1 would then correspond to a functor

hZ : monoids −→ sets

Such functors are described largely by combinatorial data (see for example the recent
blueprint-paper by Oliver Lorscheid), and, if the story would stop here, any Rothko painting
could be used as illustration.

Most of the former approaches add something though (buzzwords include ’Arakelov’,
’completion at∞’, ’real place’ etc.) in order to connect the virtual geometric object over
F 1 with existing real, complex or integral schemes. For example, one can make the virtual
object visible via an evaluation map h Z → h X which is a natural transformation, where
X is a complex variety with its usual functor of points h X and to connect both we asso-
ciate to a monoid M its complex monoid-algebra CM . An integral scheme Y can then be
said to be ’defined over F 1’, if h Z becomes a subfunctor of its usual functor of points hY
(again, assigning to a monoid its integral monoid algebra ZM ) and Y is the ’best’ integral
scheme approximation of the complex evaluation map.

To illustrate this, consider the painting Study after Velzquez’s Portrait of Pope Innocent X
by Francis Bacon (right-hand painting above) which is a distorted version of the left-hand
painting Portrait of Innocent X by Diego Velzquez.

Here, Velzquez’ painting plays the role of the complex variety which makes the combina-
torial gadget hZ visible, and, Bacon’s painting depicts the integral scheme, build up from
this combinatorial data, which approximates the evaluation map best.

All of the former approaches more or less give the same very small list of integral schemes
defined over F1, none of them motivic interesting.

http://www.neverendingbooks.org/index.php/grothendiecks-functor-of-points.html
http://arxiv.org/abs/1103.1745
http://www.google.com/search?q=Rothko&hl=en&client=safari&rls=en&prmd=ivns&source=lnms&tbm=isch&ei=yNDUTcTcDIyVOuK7xIIM&sa=X&oi=mode_link&ct=mode&cd=2&ved=0CBsQ_AUoAQ&biw=1362&bih=734
http://en.wikipedia.org/wiki/Study_after_Vel�zquez's_Portrait_of_Pope_Innocent_X
http://en.wikipedia.org/wiki/Francis_Bacon_(painter)
http://en.wikipedia.org/wiki/Portrait_of_Innocent_X
http://en.wikipedia.org/wiki/Diego_Vel�zquez
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The current approach : Jackson Pollock ”No. 8” (1949)

An entirely different approach was proposed by James Borger in [Λ-rings and the field with
one element][6]. He proposes another definition for commutative F 1-algebras, namely λ-
rings (in the sense of Grothendieck’s Riemann-Roch) and he argues that the λ-ring structure
(which amounts in the sensible cases to a family of endomorphisms of the integral ring
lifting the Frobenius morphisms) can be viewed as descent data from Z to F 1.

The list of integral schemes of finite type with a λ-structure coincides roughly with the
list of integral schemes defined over F 1 in the other approaches, but Borger’s theory
really shines in that it proposes long sought for mystery-objects such as spec(Z) ×
spec(F 1)spec(Z). If one accepts Borger’s premise, then this object should be the ge-

ometric object corresponding to the Witt-ring W (Z). Recall that the role of Witt-rings in
F 1-geometry was anticipated by Manin in Cyclotomy and analytic geometry over F1.

But, Witt-rings and their associated Witt-spaces are huge objects, so one needs to extend
arithmetic geometry drastically to include such ’integral schemes of infinite type’. Borger
has made a couple of steps in this direction in The basic geometry of Witt vectors, II:
Spaces.

To depict these new infinite dimensional geometric objects I’ve chosen for Jackson Pol-
lock’s painting No. 8. It is no coincidence that Pollock-paintings also appeared in the
depiction of noncommutative spaces. In fact, Matilde Marcolli has made the connection
between λ-rings and noncommutative geometry in Cyclotomy and endomotives by show-
ing that the Bost-Connes endomotives are universal for λ-rings.

4.5 Big Witt rings for everybody

Next time you visit your math-library, please have a look whether these books are still
on the shelves : Michiel Hazewinkel’s Formal groups and applications, William Fulton’s
and Serge Lange’s Riemann-Roch algebra and Donald Knutson’s lambda-rings and the
representation theory of the symmetric group.

I wouldn’t be surprised if one or more of these books are borrowed out, probably all of
them to the same person. I’m afraid I’m that person in Antwerp...

Lately, there’s been a renewed interest in λ-rings and the endo-functor W assigning to a
commutative algebra its ring of big Witt vectors, following Borger’s new proposal for a
geometry over the absolute point.

http://arxiv.org/abs/0809.1564
http://arxiv.org/abs/1006.0092
http://arxiv.org/abs/1006.0092
http://en.wikipedia.org/wiki/Jackson_Pollock
http://en.wikipedia.org/wiki/Jackson_Pollock
http://arxiv.org/abs/0901.3167
http://homepages.cwi.nl/~mich/
http://books.google.com/books?id=f_s0-lTw7EIC&pg=PR8&lpg=PR8&dq=Formal+groups+and+applications&source=bl&ots=HO1WUf1C8T&sig=6E2h4g8Nc8-WrpZIfgZVzj8ffac&hl=en&ei=5htkS_bqAsfc-QbtytCqBw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CA4Q6AEwAA#v=onepage&q=&f=false
http://books.google.com/books?id=OD3q3C-Wi-oC&printsec=frontcover&dq=Riemann-Roch+algebra&source=bl&ots=XsbxX6BTOh&sig=Z1-EDxUrxPNRV-2gtiF-An_X_bY&hl=en&ei=NhxkS_vkBYPI-QbOsNSjBw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CAkQ6AEwAA#v=onepage&q=&f=false
http://www.flipkart.com/lambda-rings-representation-theory-symmetric/3540061843-abz3f99zlb
http://www.flipkart.com/lambda-rings-representation-theory-symmetric/3540061843-abz3f99zlb
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Fig. 4.1: H.W. Lenstra

However, as Hendrik Lenstra writes in his 2002
course-notes on the subject Construction of the ring
of Witt vectors : ”The literature on the functor W is
in a somewhat unsatisfactory state: nobody seems
to have any interest in Witt vectors beyond apply-
ing them for a purpose, and they are often treated
in appendices to papers devoting to something else;
also, the construction usually depends on a set of
implicit or unintelligible formulae. Apparently, any-
body who wishes to understand Witt vectors needs
to construct them personally. That is what is now
happening to myself.”

Before doing a series on Borger’s paper, we’d bet-
ter run through Lenstra’s elegant construction in a
couple of posts. Let A be a commutative ring and
consider the multiplicative group of all ’one-power
series’ over it Λ(A) = 1 + tA[[t]]. Our aim is to

define a commutative ring structure on Λ(A) taking as its ADDITION the MULTIPLICA-
TION of power series.

That is, if u(t), v(t) ∈ Λ(A), then we define our addition u(t)⊕ v(t) = u(t)× v(t). This
may be slightly confusing as the ZERO-element in Λ(A),⊕ will then turn be the constant
power series 1...

We are now going to define a multiplication⊗ on Λ(A) which is distributively with respect
to ⊕ and turns Λ(A) into a commutative ring with ONE-element the series (1 − t)−1 =
1 + t+ t2 + t3 + . . ..

We will do this inductively, so consider Λn(A) the (classes of) one-power series truncated
at term n, that is, the kernel of the natural augmentation map between the multiplicative
group-units A[t]/(tn+1)∗ → A∗. Again, taking multiplication in A[t]/(tn+1) as a new
addition rule ⊕, we see that (Λn(A),⊕) is an Abelian group, whence a Z-module.

For all elements a ∈ A we have a scaling operator φa (sending t → at) which is an A-
ring endomorphism of A[t]/(tn+1), in particular multiplicative wrt. ×. But then, φa is
an additive endomorphism of (Λn(A),⊕), so is an element of the endomorphism-RING
EndZ(Λn(A)). Because composition (being the multiplication in this endomorphism ring)
of scaling operators is clearly commutative (φa ◦ φb = φab) we can define a commutative
RING E being the subring of EndZ(Λn(A)) generated by the operators φa.

The action turns (Λn(A),⊕) into an E-module and we define an E-module morphism
E → Λn(A) by φa 7→ φa((1− t)−1) = (1− at)−a.

All of this looks pretty harmless, but the upshot is that we have now equipped the image
of this E-module morphism, say Ln(A) (which is the additive subgroup of (Λn(A),⊕)
generated by the elements (1 − at)−1) with a commutative multiplication ⊗ induced by
the rule (1− at)−1 ⊗ (1− bt)−1 = (1− abt)−1.

Explicitly, Ln(A) is the set of one-truncated polynomials u(t) with coefficients in A such
that one can find elements a1, . . . , ak ∈ A such that u(t) ≡ (1 − a1t)

−1 × . . . × (1 −
ak)−1 mod tn+1. We multiply u(t) with another such truncated one-polynomial v(t) (tak-
ing elements b1, b2, . . . , bl ∈ A) via

u(t)⊗ v(t) = ((1− a1t)
−1 ⊕ . . .⊕ (1− ak)−1)⊗ ((1− b1t)−1 ⊕ . . .⊕ (1− bl)−1)

and using distributivity and the multiplication rule this gives the element
∏
i,j(1 −

aibjt)
−1 mod tn+1 ∈ Ln(A). Being a ring-quotient of E we have that (Ln(A),⊕,⊗)

is a commutative ring, and, from the construction it is clear that Ln behaves functorially.

http://www.math.leidenuniv.nl/~hwl/
http://math.berkeley.edu/~hwl/papers/witt.pdf
http://math.berkeley.edu/~hwl/papers/witt.pdf


series 4. The absolute point revisited 61

For rings A such that Ln(A) = Λn(A) we are done, but in general Ln(A) may be strictly
smaller. The idea is to use functoriality and do the relevant calculations in a larger ring
A ⊂ B where we can multiply the two truncated one-polynomials and observe that the
resulting truncated polynomial still has all its coefficients in A.

Here’s how we would do this over Z : take two irreducible one-polynomials u(t) and v(t)
of degrees r resp. s smaller or equal to n. Then over the complex numbers we have u(t) =
(1 − α1t) . . . (1 − αrt) and v(t) = (1 − β1) . . . (1 − βst). Then, over the field K =
Q(α1, . . . , αr, β1, . . . , βs) we have that u(t), v(t) ∈ Ln(K) and hence we can compute
their product u(t) ⊗ v(t) as before to be

∏
i,j(1 − αiβjt)

−1 mod tn+1. But then, all
coefficients of this truncated K-polynomial are invariant under all permutations of the roots
αi and the roots βj and so is invariant under all elements of the Galois group. But then,
these coefficients are algebraic numbers in Q whence integers. That is, u(t) ⊗ v(t) ∈
Λn(Z). It should already be clear from this that the rings Λn(Z) contain a lot of arithmetic
information!

For a general commutative ringA we will copy this argument by considering a free overing
A(∞) (with 1 as one of the base elements) by formally adjoining roots. At level 1, consider
M0 to be the set of all non-constant one-polynomials over A and consider the ring

A(1) =
⊗

f∈M0
A[X]/(f) = A[Xf , f ∈M0]/(f(Xf ), f ∈M0)

The idea being that every one-polynomial f ∈ M0 now has one root, namely αf = Xf in
A(1). Further, A(1) is a free A-module with basis elements all αif with 0 ≤ i < deg(f).

Good! We now have at least one root, but we can continue this process. At level 2, M1 will
be the set of all non-constant one-polynomials over A(1) and we use them to construct the
free overing A(2) (which now has the property that every f ∈ M0 has at least two roots in
A(2)). And, again, we repeat this process and obtain in succession the rings A(3), A(4), . . ..
Finally, we define A(∞) = lim

→
A(i) having the property that every one-polynomial over A

splits entirely in linear factors over A(∞).

But then, for all u(t), v(t) ∈ Λn(A) we can compute u(t)⊗v(t) ∈ Λn(A(∞)). Remains to
show that the resulting truncated one-polynomial has all its entries in A. The ringA(∞)⊗A
A(∞) contains two copies of A(∞) namely A(∞) ⊗ 1 and 1⊗A(∞) and the intersection of
these two rings in exactly A (here we use the freeness property and the additional fact that
1 is one of the base elements). But then, by functoriality of Ln, the element u(t)⊗ v(t) ∈
Ln(A(∞) ⊗A A(∞)) lies in the intersection Λn(A(∞) ⊗ 1) ∩ Λn(1 ⊗ A(∞)) = Λn(A).
Done!

Hence, we have endo-functors Λn in the category of all commutative rings, for every num-
ber n. Reviewing the construction of Ln one observes that there are natural transforma-
tions Ln+1 → Ln and therefore also natural transformations Λn+1 → Λn. Taking the
inverse limits Λ(A) = lim

←
Λn(A) we therefore have the ’one-power series’ endo-functor

Λ : comm → comm which is ’almost’ the functor W of big Witt vectors. Next time
we’ll take you through the identification using ’ghost variables’ and how the functor Λ can
be used to define the category of λ-rings.

4.6 Lambda-rings for formula-phobics

In 1956, Alexander Grothendieck (middle) introduced λ-rings in an algebraic-geometric
context to be commutative rings A equipped with a bunch of operations λi (for all numbers
i ∈ N+) satisfying a list of rather obscure identities.

http://en.wikipedia.org/wiki/Alexander_Grothendieck
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Fig. 4.2: A. Grothendieck

From the easier ones, such as

λ0(x) = 1, λ1(x) = x, λn(x + y) =∑
i λ

i(x)λn−i(y)

to those expressing λn(x.y) and λm(λn(x)) via
specific universal polynomials. An attempt to cap-
ture the essence of λ-rings without formulas?

Lenstra’s elegant construction (see post 4.5) of the
1-power series rings (Λ(A),⊕,⊗) requires only
one identity to remember

(1− at)−1 ⊗ (1− bt)−1 = (1− abt)−1.

Still, one can use it to show the existence of ring-
morphisms γn : Λ(A) → A, for all numbers
n ∈ N+. Consider the formal ’logarithmic deriva-
tive’

γ = tu(t)′

u(t) =
∑∞
i=1 γi(u(t))ti : Λ(A)→ A[[t]]

where u(t)′ is the usual formal derivative of a power
series. As this derivative satisfies the chain rule, we have

γ(u(t)⊕ v(t)) = t(u(t)v(t))′

u(t)v(t) = t(u(t)′v(t)+u(t)v(t)′

u(t)v(t)) = tu(t)′

u(t) + tv(t)′

v(t) = γ(u(t)) + γ(v(t))

and so all the maps γn : Λ(A)→ A are additive. To show that they are also multiplicative,
it suffices by functoriality to verify this on the special 1-series (1 − at)−1 for all a ∈ A.
But,

γ((1− at)−1) =
t a
(1−at)2

(1−at) = at
(1−at) = at+ a2t2 + a3t3 + . . .

That is, γn((1−at)−1) = an and Lenstra’s identity implies that γn is indeed multiplicative!
A first attempt :

hassle-free definition 1 : a commutative ring A is a λ-ring if and only if there is a ringmor-
phism sA : A→ Λ(A) splitting γ1, that is, such that γ1 ◦ sA = idA.

In particular, a λ-ring comes equipped with a multiplicative set of ring-endomorphisms
sn = γn ◦sA : A→ A satisfying sm ◦sm = smn. One can then define a λ-ringmorphism
to be a ringmorphism commuting with these endo-morphisms.

The motivation being that λ-rings are known to form a subcategory of commutative rings
for which the 1-power series functor is the right adjoint to the functor forgetting the λ-
structure. In particular, ifA is a λ-ring, we have a ringmorphismA→ Λ(A) corresponding
to the identity morphism.

But then, what is the connection to the usual one involving all the operations λi? Well, one
ought to recover those from sA(a) = (1− λ1(a)t+ λ2(a)t2 − λ3(a)t3 + ...)−1.

For sA to be a ringmorphism will require identities among the λi. I hope an expert will
correct me on this one, but I’d guess we won’t yet obtain all identities required. By the
very definition of an adjoint we must have that sA is a morphism of λ-rings, and, this
would require defining a λ-ring structure on Λ(A), that is a ringmorphism sAH : Λ(A)→
Λ(Λ(A)), the so called Artin-Hasse exponential, to which I’d like to return later.

For now, we can define a multiplicative set of ring-endomorphisms fn : Λ(A) → Λ(A)
from requiring that fn((1− at)−1) = (1− ant)−1 for all a ∈ A. Another try?

hassle-free definition 2 : A is a λ-ring if and only if there is splitting sA to γ1 satisfying the
compatibility relations fn ◦ sA = sA ◦ sn.
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But even then, checking that a map sA : A → Λ(A) is a ringmorphism is as hard as
verifying the lists of identities among the λi. Fortunately, we get such a ringmorphism for
free in the important case when A is of ’characteristic zero’, that is, has no additive torsion.
Then, a ringmorphism A → Λ(A) exists whenever we have a multiplicative set of ring
endomorphisms Fn : A → A for all n ∈ N+ such that for every prime number p the
morphism Fp is a lift of the Frobenius, that is, Fp(a) ∈ ap + pA.

Perhaps this captures the essence of λ-rings best (without the risk of getting an headache)
: in characteristic zero, they are the (commutative) rings having a multiplicative set of
endomorphisms, generated by lifts of the Frobenius maps.



series 5

SMIRNOV’S APPROACHT TO THE
ABC-CONJECTURE

5.1 Smirnov’s letters

In the paper The notion of dimension in geometry and algebra, Yuri I. Manin writes :

”This guess involves the conjectural existence of a geometrical world defined over an abso-
lute point Spec F 1 where F 1 is a mythical field with one element. For some insights about
this world, see J. Tits, Sur les analogues algebriques des groupes semisimples complexes,
A. Smirnov, Hurwitz inequalities for number fields, A. Smirnov, Letters to Yu. Manin of
Sept. 29 and Nov. 29, 2003, M. Kapranov, A. Smirnov, Cohomology determinants and
reciprocity laws: number field case, Yu. Manin, Threedimensional hyperbolic geometry as
∞adic Arakelov geometry, C. Soule, Les varietes sur le corps a un element.”

The first of two letters from Alexandr Smirnov to Manin also appears in the paper Lambda-
rings and the field with one element by James Borger :

”The second purpose is to prove the Riemann hypothesis. With the analogy between in-
tegers and polynomials in mind, we might hope that Spec Z would be a kind of curve
over Spec F1 , that Spec Z × Spec Z would not only make sense but be a surface bear-
ing some kind of intersection theory, and that we could then mimic over Z Weils proof
of the Riemann hypothesis over function fields. The origins of this idea are unknown to
me. Manin Yuri Manin, Lectures on zeta functions and motives (according to Deninger
and Kurokawa) mentions it explicitly. According to Smirnov (Alexandr L. Smirnov, Letter
to Y. Manin. September 29, 2003), the idea occurred to him in 1985 and he mentioned it
explicitly in a talk in Shafarevichs seminar in 1990. It may well be that a number of people
have had the idea independently since the appearance of Weils proof.”

I thank Yuri I. Manin and James Borger for providing me with copies of these letters. Some
of their content is crucial to understand the genesis of Smirnov’s paper A. Smirnov, Hurwitz
inequalities for number fields, which is the first paper we will study in the seminar.

From Smirnov’s letter to Yu. I. Manin, dated september 29th 2003 (links added):

http://matrix.cmi.ua.ac.be/fun/library/Manin2006.pdf
http://en.wikipedia.org/wiki/Yuri_I._Manin
http://matrix.cmi.ua.ac.be/fun/library/Tits1957.pdf
http://matrix.cmi.ua.ac.be/ngeometry/library/Smirnov1991.pdf
http://matrix.cmi.ua.ac.be/fun/library/KapranovSmirnov.pdf
http://matrix.cmi.ua.ac.be/fun/library/KapranovSmirnov.pdf
http://matrix.cmi.ua.ac.be/ngeometry/library/Manin1991.pdf
http://matrix.cmi.ua.ac.be/ngeometry/library/Manin1991.pdf
http://matrix.cmi.ua.ac.be/fun/library/Soule2004.pdf
http://www.pdmi.ras.ru/eng/perso/smirnov.php
http://arxiv.org/pdf/0906.3146v1
http://arxiv.org/pdf/0906.3146v1
http://maths.anu.edu.au/~borger/
http://matrix.cmi.ua.ac.be/fun/library/Manin1995.pdf
http://matrix.cmi.ua.ac.be/fun/library/Manin1995.pdf
http://matrix.cmi.ua.ac.be/ngeometry/library/Smirnov1991.pdf
http://matrix.cmi.ua.ac.be/ngeometry/library/Smirnov1991.pdf
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”As to my investigations, I work on the topic since 1985. Till then the subject has been
paid next to no attention, with the exception of a paper by J. Tits (1957) and the idea (due
to D. Quillen?) to interpret the Barrat-Priddy-Quillen Theorem as the equality K(F1) =
πst(S0). ”

”My initial goal was (and still is) to construct a ”world” which contains algebraic geome-
try as well as arithmetic, and where all constructions from algebraic geometry (including
Spec Z×Spec Z) would be available. From the beginning I believed that this could give an
approach to the Riemann hypothesis (similar to Weil’s approach). I started with the idea,
known for me from a seminar (early 80-s), that sets can be considered as vectorspaces over
F1. I believed that this idea was promising in view of the mentioned interpretation of the
Barrat-Priddy-Quillen Theorem. ”

”Since I couldn’t invent Spec Z× Spec Z, I worked out a strategy which I have adhered: ”

• ”If we can’t develop the whole desired theory, we should invent as many objects over
F1 as possible and establish connections between them.”

• ”Since the situation is extremely rigid, any flexibility of constructions would lead to
essential progress.”

”The idea to construct finite extensions of F 1 (thus getting the missing flexibility) and
the suggestion to consider the monoids 0 ∩ µµµ as a naive technical approximation to these
extensions arose precisely from this strategy. Having on hand the extensions, I discovered
I could effectively work with a number of new objects over F 1, for instance with Pn. Thus
I decided to handle intersection theory (which is part of Weil’s approach to the Riemann
hypothesis) on the surface

P1/F1 × Spec Z

instead of the more complicated Spec Z × Spec Z. The Hurwitz genus formula for a map
of curves f : X → Y can be viewed as an example of using intersection theory on the
surface X × Y , and I started with it.”

” I succeeded in stating a certain approximation to the Hurwitz formula for the ”map”

f : Spec Z→ P1/F1 where f ∈ Q

It was somewhat surprising (and confirming the importance of the approach) that this ap-
proximation gave very profound assertions like the ABC-conjecture and others. An impulse
to publish these results was given to me by M. Kapranov after he and V. Voevodsky learned
about them (1988 or 1989).”

5.2 Curves

Fix a perfect field k (say a finite field) with algebraic closure k and absolute Galois group
G = Gal(k/k).

Our aim is to study smooth projective k-curves via their function fields. This will allow us
later to associate ’curves’ to number fields. We need two categories:

Curves/k

The objects are smooth projective algebraic curves defined over k (that is, a smooth closed
subvariety C of dimension one of some projective space Pn(k) defined by a set of homoge-
neous polynomials all of their coefficients belonging to k). We will call such objects curves
defined over k.

http://matrix.cmi.ua.ac.be/fun/library/Tits1957.pdf
http://en.wikipedia.org/wiki/Jacques_Tits
http://en.wikipedia.org/wiki/Daniel_Quillen
[15]: http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Riemann�Hurwitz_formula
http://en.wikipedia.org/wiki/Abc_conjecture
http://directory.math.yale.edu/public_html/People/mk486.html
http://en.wikipedia.org/wiki/Vladimir_Voevodsky
http://en.wikipedia.org/wiki/Category_(mathematics) The 
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The morphisms will be surjective algebraic maps C → C ′ defined over k (that is, all
coordinate functions have their coefficients in k). Remember that any non-constant rational
map between two curves is automatically surjective. We will call such morphisms covers.

1Fields/k

The objects are field extensions K of k of transcendence degree one with k as their ’field
of constants’. That is, K ∩ k = k.

The morphisms will be field inclusions K ↪→ K ′ fixing k.

Main result: These categories are (anti)-equivalent to each other. Details are in section I.6
of Robin Hartshorne’s Algebraic Geometry when k = k and modifications for the general
case are in section II.2 of Joseph Silverman’s The Arithmetic of Elliptic Curves.

Sketch of proof: The direction from curves to fields is straightforward. The contravariant
functor Curves/k −→ 1Fields/k assigns to a curve C its function field k(C) (the field
consisting of all rational functions f : C → k defined over k). This functor associates to a
cover φ : C 7→ C ′ the field-inclusion φ∗ : k(C ′) → k(C) obtained by composition (that
is, φ∗(f) = f ◦ φ : C → k for all f ∈ k(C ′)).

Conversely, the contravariant functor 1Fields/k −→ Curves/k assigns to a field K of
transcendence degree one

• the geometric points C(k) of the curve C, which is the set of all discrete valuations
rings in K ⊗ k with residue field k. The Galois group G acts on this set, and,

• the schematic points of C are the G-orbits of this action. Equivalently, these are the
discrete valuation rings of K with residue field a finite field extension L of k. The
degree of such a scheme-point is the size of the G-orbit (or the k-dimension of the
residue field L of the discrete valuation ring).

Example: Under this equivalence, the purely transcendental field k(x) corresponds to the
projective line P1 over k. Its geometric points P1(k) are the points

{[α : 1] : α ∈ k} ∪ {∞ = [1 : 0]}

The discrete valuation ring of k(x) corresponding to [α : 1] has uniformizing parameter
x − α and the one corresponding to ∞ has uniformising parameter 1

x . The Galois group
fixes∞ and acts on the point [α : 1] as it does on α ∈ k. Hence, the schematic points of
P1 are∞ together with all irreducible monic polynomials in k[x].

Under the equivalence, the set of all non-constant maps C 7→ P1 corresponds to the set of
all k-field morphisms k(x) ↪→ k(C) and as these are determined by the image of x they
are determined by f ∈ k(C). The cover corresponding to f

C(k) 7→ P1(k) maps P 7→ [f(P ) : 1]

if f is regular in P and to∞ otherwise.

5.3 What is P1 over F1?

The short answer : The geometric points of the projective line P1 over the ’field with one
element’ F1 form the set {0,∞} ∪ µµµ with µµµ the group of all roots of unity. Its schematic
points form the set {∞, 0} ∪ {[1], [2], [3], [4], · · · } and the degree of the point [n] equals
φ(n).

http://www.amazon.co.uk/Algebraic-Geometry-Graduate-Texts-Mathematics/dp/1441928073/
http://www.amazon.co.uk/Arithmetic-Elliptic-Curves-Graduate-Mathematics/dp/1441918582/
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The longer answer : We have seen in the previous section that the geometric points of P1

over the finite field Fp form the set

{0 = [0 : 1], ∞ = [1 : 0]} ∪ {α = [α : 1] : α ∈ F∗p}

Claim : the multiplicative group of the non-zero elements of the algebraic closure F∗p is
isomorphic as group to the group µµµ(p) of all roots of unity of order prime to p.

Clearly, any element α ∈ F∗ pn has order some divisor of pn − 1 and hence is prime to
p. Conversely, if (m, p) = 1 then p is a unit in Z/mZ and therefore for some n we have
pn ∼= 1 mod(m). But then, m|pn − 1 and there are primitive m-th roots of unity in F pn.

However, describing this correspondence explicitly from a given construction of Fp is very
challenging. For example, John Conway proved in ONAG that F2 can be identified with
all ordinals smaller than ωω

ω

equipped with nim-addition and multiplication.

Finding the correspondence between small ordinals and odd roots of unity is the topic of
the post The odd knights of the round table (and follow-up posts here and here).

Below is the correpondence between F∗24 (identified with the ordinals from 1 to 15) and
the 15-th roots of unity (nim-addition and nim-multiplication tables on the left). The lines
describe the involution x 7→ x+ 1.

The schematic points of P1 over F p is the set of all Gal(F p/Fp) = Ẑ-orbits on the
geometric points, and the degree of a scheme-point is the number of geometric points in
the orbit.

Assigning to such a Galois-orbit O the polynomial
∏

α ∈ O(x − α) identifies the
schematic points of P1/F p with all irreducible polynomials in Fp[x] (together with ∞)
and the point-degree coincides with the degree of the polynomial.

Concretely : say we have an explicit identification of F pn∗ with all pn − 1-th roots of
unity, then we can find all irreducible polynomials in F p[x] of degree a divisor of n by
studying the orbits of these roots of unity under the power-map z 7→ zp.

In the picture above, we have indicated the different orbits of F24 with different colors.
There are two orbits of length one : {0} corresponding to x and {1} corresponding to
x+1. One orbit of length two {2, 3} corresponding to the irreducible polynomial x2+x+1
(check the tables to verfify that this is indeed (x−2)(x−3)) and three orbits of length four

http://en.wikipedia.org/wiki/John_Horton_Conway
http://en.wikipedia.org/wiki/On_Numbers_and_Games
http://www.neverendingbooks.org/index.php/the-odd-knights-of-the-round-table.html
http://www.neverendingbooks.org/index.php/seating-the-first-few-thousand-knights.html
http://www.neverendingbooks.org/index.php/seating-the-first-few-billion-knights.html
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{4, 6, 5, 7} ↔ x4+x+1 {11, 12, 9, 15} ↔ x4+x3+1 {14, 8, 13, 10} ↔ x4+x3+x2+x+1

By analogy we can now define the geometric points of P1 over the field with one element
F 1 to be the set

{0,∞} ∪µµµ(1)

where µµµ(1) are all roots of unity of order prime to 1, that is just all of them : µµµ. The
schematic points of P1/F 1 are then the orbits of this set under the action of the Galois
group Gal(Q(µµµ)/Q).

One checks that these orbits correspond to {0,∞} and {[1], [2], [3], [4], · · · } where [n] is
the orbit consisting of all primitive n-th roots of unity. Consequently, the degree of the
scheme-point [n] is equal to φ(n) with φ the Euler function.

5.4 The genus of a curve

We are working towards the proof of the Riemann-Hurwitz genus formula. We want to use
only fields and their discrete valuations so that we can port some of this later to number
fields.

Above we have seen that any field K of transcendence degree 1 over k with K ∩ k = k is
really the function field K = k(C) of a smooth projective curve C defined over k.

A geometric point P ∈ C is a discrete valuation ring OP in the extended field Ke =
K ⊗ k = k(C).

Aim: To determine the genus of C from Ke and the discrete valuation rings OP .

Divisors: For f ∈ Ke and P ∈ C we denote the valuation of f in the discrete valuation
ringO P by ord P (f) (that is, f = utord P (f) for t is a uniformizer and u a unit inO P ).
We **claim** that there are only finitely many P ∈ C such that ord P (f) 6= 0 and that∑

P ∈ C ordP (f) = 0.

We can assume that f /∈ k and so the subring k[f ] ⊂ Ke is a polynomial ring. LetR be the
integral closure of k[f ] in Ke (which is a finite field extension of k(f) say of dimension r).
Then R is a Dedekind domain, projective of rank r over k[f ] and there are maximal ideals
P i in R such that

(f) = P 1e 1 · · · P se s

Because the localization of R at P i is a discrete valuation ring with residue field k, each
P i defines a point P i ∈ C and we have

∑
ie i = r. Similarly, let S be the integral

closure of the polynomial algebra k[ 1
f ] in Ke, then there are maximal ideals Q j (corre-

sponding to points Q j ∈ C) such that

(
1

f

)
= Q 1f 1 · · · Q tf t

and
∑

jf j = r. But then the divisor of f satisfies the claims

div(f) =
∑

P ∈ C ord P (f)[P ] =
∑

i = 1se i[P i]−
∑

j = 1tf j[Q j]

Differentials forms: Consider the Ke-vectorspace ΩC spanned by all ’differential forms’
df where f ∈ Ke, subject to the usual rules:

http://en.wikipedia.org/wiki/Field_with_one_element
http://en.wikipedia.org/wiki/Euler's_totient_function
http://en.wikipedia.org/wiki/Riemann�Hurwitz_formula
http://en.wikipedia.org/wiki/Genus_(mathematics)
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* d(f + g) = df + dg for all f, g ∈ Ke. * d(fg) = f dg + g df for all f, g ∈ Ke. *
da = 0 for all a ∈ k.

We claim that Ω C has dimension one. More precisely, if x ∈ Ke is transcendental over k
such that Ke is a finite separable field extension of the subfield k(x), then Ω C = Kedx.

The proof is a computation. Let g ∈ Ke have a minimal polynomial over k(x) of the form

G(Y ) = Y n + f 1Y n−1 + · · ·+ f n− 1Y + fn

with all fi ∈ k(x). Now consider these two polynomials in k(x)[Y ] :

G 1(Y ) = nY n−1 + (n− 1)f 1Y n−2 + · · ·+ fn−1, and

G 2(Y ) = Y n + ∂f 1
∂x Y

n−1 + · · ·+ ∂f n−1
∂x Y + ∂f n

∂x .

By the above equations among differential forms we get

0 = dG(g) = G 2(g) dx+G 1(g) dg

Because G1(g) 6= 0 by separability, it follows that dg ∈ Kedx. Done!

Genus: In particular, if t is a uniformizing parameter of the discrete valuation ring O P ,
then for any differential form ω ∈ Ω C there is a unique f ∈ Ke such that ω = f dt. We
define ord P (ω) = ord P (f). Clearly, this number depends only on ω (and P ), but not
on the choice of uniformizer (check!).

Slightly more involved is the claim that ordP (ω) 6= 0 for finitely many P ∈ C.

Here’s the idea : Take x ∈ Ke such that Ke is a finite separable extension of k(x) of
dimension r, write ω = f dx and consider the corresponding cover x : C → P1. As before,
there are at most r points of C lying over a point Q ∈ P1. Now, write Ke = k(x)(α) and
let D ∈ k(x) be the discriminant of the minimal polynomial of α over k(x). Then, away
from the finite number of poles and zeroes of D, there are precisely r points of C lying
over any point Q ∈ P1. So, removing a finite number of points from C, in the remaining
P ∈ C we have f(P ) 6= 0,∞, x(P ) 6= ∞ and x− x(P ) is a uniformizer of O P . But in
such points we have ord P (ω) = ord P (f d(x− x(P ))) = 0.

The number
∑

P ∈ C ordP (ω) is thus well-defined and we claim that it doesn’t depend
on the choice of differential form. For, any other form can be written as ω′ = fω for some
f ∈ Ke and then we have

∑
P ∈ C ord P (ω′) =

∑
P ∈ C(ord P (f) + ord P (ω))

and we know already that
∑

P ∈ C ordP (f) = 0. The **genus** g C of the curve C is
then determined from that number by 2g C − 2 =

∑
P ∈ C ord P (ω).

Example: Take the projective line P1 corresponding to the purely transcendental field
k(x) and consider ω = dx. In a point α 6=∞ we know that x− α is a uniformizer, so

ord α(ω) = ord α(dx) = ord α(d(x− α)) = 0

In∞ the uniformizer is 1
x , whence

ord ∞(ω) = ord ∞(dx) = ord ∞
(
−x2 d

(
1

x

))
= −2

Thus,
∑

P ∈ P1 ord P (ω) = −2 and so the genus of the projective line gP1 = 0.
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