Skip to content →

Tag: simples

working archive plugin, please!

Over the last two weeks Ive ported all old neverendingbooks-post from the last 4 years to a nearly readable format. Some tiny problems remain : a few TeX-heavy old posts are still in $…$ format rather than LaTeXrender-compatible (but Ill fix this soon), a few links may turn out to be dead (still have to check out those), TheLibrary-project links do not exist at the moment (have to decide whether to revive the project or to start a similar idea afresh), some other techie-things such as FoaF-stuff will be updated/expanded soon, et. etc. (and still have to port some 20 odd posts).

Anyway, the good news being that we went from about 40 posts since last july to over 310 posts, all open to the internal Search engine. Having all this stuff online is only useful if one can browse through it easily, so I wanted to install a proper up-to-date archive-plugin…

The current theme Redoable has build-in support for the Extended Live Archives v0.10beta-r18 plugin which would be ideal if I could get it installed… Im not the total newbie in installing WordPress-plugins and Ive read all the documentation and the support-forum and chmodded whathever I felt like chmodding, but still no success… If you know how to kick it into caching the necessary files, please drop a comment!

The next alternative Ive tried was the AWSOM Archive Version 1.2.3 plugin which gave me a pull-down menu just under the title-bar but not much seems to happen when using bloody Safari (Flock was OK though). Maybe Ill give it another go…

UPDATE (jan. 9th) : The AWSOM Archive seems to be working fine with the Redoable theme when custom installed in the footer. So, there is now a pulldown-menu at the bottom of the page.

**UPDATE (jan. 12th) : Ive installed the new version 1.3 of AWSOM Archive and it works from the default position **

At a loss I opted in the end for the simplest (though not the most aesthetic) plugin : Justin Blanton’s Smart Archives. This provides a year-month scheme at the top followed by a reverse ordered list of all months and titles of posts and is available as the arXiv neverendingbooks link available also from the sidebar (up, second link). I hope it will help you not to get too lost on this site…

Suggestions for a working-from-the-box WordPress Archive plugin, anyone???

4 Comments

the modular group and superpotentials (1)

Here I will go over the last post at a more leisurely pace, focussing on a couple of far more trivial examples. Here’s the goal : we want to assign a quiver-superpotential to any subgroup of finite index of the modular group. So fix such a subgroup $\Gamma’ $ of the modular group $\Gamma=PSL_2(\mathbb{Z}) $ and consider the associated permutation representation of $\Gamma $ on the left-cosets $\Gamma/\Gamma’ $. As $\Gamma \simeq C_2 \ast C_3 $ this representation is determined by the action of the order 2 and order 3 generators of the modular group. There are a number of combinatorial gadgets to control the subgroup $\Gamma’ $ and the associated permutation representation : (generalized) Farey symbols and dessins d’enfants.

Recall that the modular group acts on the upper-halfplane (the ‘hyperbolic plane’) by Moebius transformations, so to any subgroup $\Gamma’ $ we can associate a fundamental domain for its restricted action. The dessins and the Farey symbols give us a particular choice of these fundamental domains. Let us consider the two most trivial subgroups of all : the modular group itself (so $\Gamma/\Gamma $ is just one element and therefore the associated permutation representation is just the trivial representation) and the unique index two subgroup $\Gamma_2 $ (so there are two cosets $\Gamma/\Gamma_2 $ and the order 2 generator interchanges these two while the order 3 generator acts trivially on them). The fundamental domains of $\Gamma $ (left) and $\Gamma_2 $ (right) are depicted below

In both cases the fundamental domain is bounded by the thick black (hyperbolic) edges. The left-domain consists of two hyperbolic triangles (the upper domain has $\infty $ as the third vertex) and the right-domain has 4 triangles. In general, if the subgroup $\Gamma’ $ has index n, then its fundamental domain will consist of $2n $ hyperbolic triangles. Note that these triangles are part of the Dedekind tessellation so really depict the action of $PGL_2(\mathbb{Z} $ and any $\Gamma $-hyperbolic triangle consists of one black and one white triangle in Dedekind’s coloring. We will indicate the color of a triangle by a black circle if the corresponding triangle is black. Of course, the bounding edges of the fundamental domain need to be identified and the Farey symbol is a notation device to clarify this. The Farey symbols of the above domains are
[tex]\xymatrix{\infty \ar@{-}[r]_{\circ} & 0 \ar@{-}[r]_{\bullet} & \infty}[/tex] and [tex]\xymatrix{\infty \ar@{-}[r]_{\bullet} & 0 \ar@{-}[r]_{\bullet} & \infty}[/tex] respectively. In both cases this indicates that the two bounding edges on the left are to be identified as are the two bounding edges on the right (so, in particular, after identification $\infty $ coincides with $0 $). Hence, after identification, the $\Gamma $ domain consists of two triangles on the vertices ${ 0,i,\rho } $ (where $\rho=e^{2 \pi i}{6} $) (the blue dots) sharing all three edges, the $\Gamma_2 $ domain consists of 4 triangles on the 4 vertices ${ 0,i,\rho,\rho^2 } $ (the blue dots). In general we have three types of vertices : cusps (such as 0 or $\infty $), even vertices (such as $i $ where there are 4 hyperbolic edges in the Dedekind tessellation) and odd vertices (such as $\rho $ and $\rho^2 $ where there are 6 hyperbolic edges in the tessellation).

Another combinatorial gadget assigned to the fundamental domain is the cuboid tree diagram or dessin. It consists of all odd and even vertices on the boundary of the domain, together with all odd and even vertices in the interior. These vertices are then connected with the hyperbolic edges connecting them. If we color the even vertices red and the odds blue we have the indicated dessins for our two examples (the green pictures). An half-edge is an edge connecting a red and a blue vertex in the dessin and we number all half-edges. So, the $\Gamma $-dessin has 1 half-edge whereas the $\Gamma_2 $-dessin has two (in general, the number of these half-edges is equal to the index of the subgroup). Observe also that every triangle has exactly one half-edge as one of its three edges. The dessin gives all information to calculate the permutation representation on the coset-set $\Gamma/\Gamma’ $ : the action of the order 2 generator of $\Gamma $ is given by taking for each internal red vertex the two-cycle $~(a,b) $ where a and b are the numbers of the two half-edges connected to the red vertex and the action of the order 3 generator is given by taking for every internal blue vertex the three cycle $~(c,d,e) $ where c, d and e are the numbers of the three half-edges connected to the blue vertex in counter-clockwise ordering. Our two examples above are a bit too simplistic to view this in action. There are no internal blue vertices, so the action of the order 3 generator is trivial in both cases. For $\Gamma $ there is also no red internal vertex, whence this is indeed the trivial representation whereas for $\Gamma_2 $ there is one internal red vertex, so the action of the order 2 generator is given by $~(1,2) $, which is indeed the representation representation on $\Gamma/\Gamma_2 $. In general, if the index of the subgroup $\Gamma’ $ is n, then we call the subgroup of the symmetric group on n letters $S_n $ generated by the action-elements of the order 2 and order 3 generator the monodromy group of the permutation representation (or of the subgroup). In the trivial cases here, the monodromy groups are the trivial group (for $\Gamma $) and $C_2 $ (for $\Gamma_2 $).

As a safety-check let us work out all these concepts in the next simplest examples, those of some subgroups of index 3. Consider the Farey symbols

[tex]\xymatrix{\infty \ar@{-}[r]_{\circ} & 0 \ar@{-}[r]_{\circ} & 1 \ar@{-}[r]_{\circ} & \infty}[/tex] and
[tex]\xymatrix{\infty \ar@{-}[r]_{\circ} & 0 \ar@{-}[r]_{1} & 1 \ar@{-}[r]_{1} & \infty}[/tex]

In these cases the fundamental domain consists of 6 triangles with the indicated vertices (the blue dots). The distinction between the two is that in the first case, one identifies the two edges of the left, resp. bottom, resp. right boundary (so, in particular, 0,1 and $\infty $ are identified) whereas in the second one identifies the two edges of the left boundary and identifies the edges of the bottom with those of the right boundary (here, 0 is identified only with $\infty $ but also $1+i $ is indetified with $\frac{1}{2}+\frac{1}{2}i $).

In both cases the dessin seems to be the same (and given by the picture on the right). However, in the first case all three red vertices are distinct hence there are no internal red vertices in this case whereas in the second case we should identify the bottom and right-hand red vertex which then becomes an internal red vertex of the dessin!

Hence, if we order the three green half-edges 1,2,3 starting with the bottom one and counting counter-clockwise we see that in both cases the action of the order 3-generator of $\Gamma $ is given by the 3-cycle $~(1,2,3) $. The action of the order 2-generator is trivial in the first case, while given by the 2-cycle $~(1,2) $ in the second case. Therefore, the monodromy group is the cylic group $C_3 $ in the first case and is the symmetric group $S_3 $ in the second case.

Next time we will associate a quiver to these vertices and triangles as well as a cubic superpotential which will then allow us to define a noncommutative algebra associated to any subgroup of the modular group. The monodromy group of the situation will then reappear as a group of algebra-automorphisms of this noncommutative algebra!

One Comment

Superpotentials and Calabi-Yaus

Yesterday, Jan Stienstra gave a talk at theARTS entitled “Quivers, superpotentials and Dimer Models”. He started off by telling that the talk was based on a paper he put on the arXiv Hypergeometric Systems in two Variables, Quivers, Dimers and Dessins d’Enfants but that he was not going to say a thing about dessins but would rather focuss on the connection with superpotentials instead…pleasing some members of the public, while driving others to utter despair.

Anyway, it gave me the opportunity to figure out for myself what dessins might have to do with dimers, whathever these beasts are. Soon enough he put on a slide containing the definition of a dimer and from that moment on I was lost in my own thoughts… realizing that a dessin d’enfant had to be a dimer for the Dedekind tessellation of its associated Riemann surface!
and a few minutes later I could slap myself on the head for not having thought of this before :

There is a natural way to associate to a Farey symbol (aka a permutation representation of the modular group) a quiver and a superpotential (aka a necklace) defining (conjecturally) a Calabi-Yau algebra! Moreover, different embeddings of the cuboid tree diagrams in the hyperbolic plane may (again conjecturally) give rise to all sorts of arty-farty fanshi-wanshi dualities…

I’ll give here the details of the simplest example I worked out during the talk and will come back to general procedure later, when I’ve done a reference check. I don’t claim any originality here and probably all of this is contained in Stienstra’s paper or in some physics-paper, so if you know of a reference, please leave a comment. Okay, remember the Dedekind tessellation ?

So, all hyperbolic triangles we will encounter below are colored black or white. Now, take a Farey symbol and consider its associated special polygon in the hyperbolic plane. If we start with the Farey symbol

[tex]\xymatrix{\infty \ar@{-}_{(1)}[r] & 0 \ar@{-}_{\bullet}[r] & 1 \ar@{-}_{(1)}[r] & \infty} [/tex]

we get the special polygonal region bounded by the thick edges, the vertical edges are identified as are the two bottom edges. Hence, this fundamental domain has 6 vertices (the 5 blue dots and the point at $i \infty $) and 8 hyperbolic triangles (4 colored black, indicated by a black dot, and 4 white ones).

Right, now let us associate a quiver to this triangulation (which embeds the quiver in the corresponding Riemann surface). The vertices of the triangulation are also the vertices of the quiver (so in our case we are going for a quiver with 6 vertices). Every hyperbolic edge in the triangulation gives one arrow in the quiver between the corresponding vertices. The orientation of the arrow is determined by the color of a triangle of which it is an edge : if the triangle is black, we run around its edges counter-clockwise and if the triangle is white we run over its edges clockwise (that is, the orientation of the arrow is independent of the choice of triangles to determine it). In our example, there is one arrows directed from the vertex at $i $ to the vertex at $0 $, whether you use the black triangle on the left to determine the orientation or the white triangle on the right. If we do this for all edges in the triangulation we arrive at the quiver below

where x,y and z are the three finite vertices on the $\frac{1}{2} $-axis from bottom to top and where I’ve used the physics-convention for double arrows, that is there are two F-arrows, two G-arrows and two H-arrows. Observe that the quiver is of Calabi-Yau type meaning that there are as much arrows coming into a vertex as there are arrows leaving the vertex.

Now that we have our quiver we determine the superpotential as follows. Fix an orientation on the Riemann surface (for example counter-clockwise) and sum over all black triangles the product of the edge-arrows counterclockwise MINUS sum over all white triangles
the product of the edge arrows counterclockwise. So, in our example we have the cubic superpotential

$IH’B+HAG+G’DF+FEC-BHI-H’G’A-GFD-CEF’ $

From this we get the associated noncommutative algebra, which is the quotient of the path algebra of the above quiver modulo the following ‘commutativity relations’

$\begin{cases} GH &=G’H’ \\ IH’ &= IH \\ FE &= F’E \\ F’G’ &= FG \\ CF &= CF’ \\ EC &= GD \\ G’D &= EC \\ HA &= DF \\ DF’ &= H’A \\ AG &= BI \\ BI &= AG’ \end{cases} $

and morally this should be a Calabi-Yau algebra (( can someone who knows more about CYs verify this? )). This concludes the walk through of the procedure. Summarizing : to every Farey-symbol one associates a Calabi-Yau quiver and superpotential, possibly giving a Calabi-Yau algebra!

6 Comments

Anabelian & Noncommutative Geometry 2

Last time (possibly with help from the survival guide) we have seen that the universal map from the modular group $\Gamma = PSL_2(\mathbb{Z}) $ to its profinite completion $\hat{\Gamma} = \underset{\leftarrow}{lim}~PSL_2(\mathbb{Z})/N $ (limit over all finite index normal subgroups $N $) gives an embedding of the sets of (continuous) simple finite dimensional representations

$\mathbf{simp}_c~\hat{\Gamma} \subset \mathbf{simp}~\Gamma $

and based on the example $\mu_{\infty} = \mathbf{simp}_c~\hat{\mathbb{Z}} \subset \mathbf{simp}~\mathbb{Z} = \mathbb{C}^{\ast} $ we would like the above embedding to be dense in some kind of noncommutative analogon of the Zariski topology on $\mathbf{simp}~\Gamma $.

We use the Zariski topology on $\mathbf{simp}~\mathbb{C} \Gamma $ as in these two M-geometry posts (( already, I regret terminology, I should have just called it noncommutative geometry )). So, what’s this idea in this special case? Let $\mathfrak{g} $ be the vectorspace with basis the conjugacy classes of elements of $\Gamma $ (that is, the space of class functions). As explained here it is a consequence of the Artin-Procesi theorem that the linear functions $\mathfrak{g}^{\ast} $ separate finite dimensional (semi)simple representations of $\Gamma $. That is we have an embedding

$\mathbf{simp}~\Gamma \subset \mathfrak{g}^{\ast} $

and we can define closed subsets of $\mathbf{simp}~\Gamma $ as subsets of simple representations on which a set of class-functions vanish. With this definition of Zariski topology it is immediately clear that the image of $\mathbf{simp}_c~\hat{\Gamma} $ is dense. For, suppose it would be contained in a proper closed subset then there would be a class-function vanishing on all simples of $\hat{\Gamma} $ so, in particular, there should be a bound on the number of simples of finite quotients $\Gamma/N $ which clearly is not the case (just look at the quotients $PSL_2(\mathbb{F}_p) $).

But then, the same holds if we replace ‘simples of $\hat{\Gamma} $’ by ‘simple components of permutation representations of $\Gamma $’. This is the importance of Farey symbols to the representation problem of the modular group. They give us a manageable subset of simples which is nevertheless dense in the whole space. To utilize this a natural idea might be to ask what such a permutation representation can see of the modular group, or in geometric terms, what the tangent space is to $\mathbf{simp}~\Gamma $ in a permutation representation (( more precisely, in the ‘cluster’ of points making up the simple components of the representation representation )). We will call this the modular content of the permutation representation and to understand it we will have to compute the tangent quiver $\vec{t}~\mathbb{C} \Gamma $.

Leave a Comment

Anabelian vs. Noncommutative Geometry

This is how my attention was drawn to what I have since termed
anabelian algebraic geometry, whose starting point was exactly a study
(limited for the moment to characteristic zero) of the action of absolute
Galois groups (particularly the groups $Gal(\overline{K}/K) $, where K is an extension of finite type of the prime field) on (profinite) geometric fundamental
groups of algebraic varieties (defined over K), and more particularly (breaking with a well-established tradition) fundamental groups which are very far
from abelian groups (and which for this reason I call anabelian). Among
these groups, and very close to the group $\hat{\pi}_{0,3} $ , there is the profinite compactification of the modular group $SL_2(\mathbb{Z}) $, whose quotient by its centre
$\{ \pm 1 \} $ contains the former as congruence subgroup mod 2, and can also be
interpreted as an oriented cartographic group, namely the one classifying triangulated oriented maps (i.e. those whose faces are all triangles or
monogons).

The above text is taken from Alexander Grothendieck‘s visionary text Sketch of a Programme. He was interested in the permutation representations of the modular group $\Gamma = PSL_2(\mathbb{Z}) $ as they correspond via Belyi-maps and his own notion of dessins d’enfants to smooth projective curves defined over $\overline{\mathbb{Q}} $. One can now study the action of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) $ on these curves and their associated dessins. Because every permutation representation of $\Gamma $ factors over a finite quotient this gives an action of the absolute Galois group as automorphisms on the profinite compactification

$\hat{\Gamma} = \underset{\leftarrow}{lim}~\Gamma/N $

where the limit is taken over all finite index normal subgroups $N \triangleleft PSL_2(\mathbb{Z}) $. In this way one realizes the absolute Galois group as a subgroup of the outer automorphism group of the profinite group $\hat{\Gamma} $. As a profinite group is a compact topological group one should study its continuous finite dimensional representations which are precisely those factoring through a finite quotient. In the case of $\hat{\Gamma} $ the simple continuous representations $\mathbf{simp}_c~\hat{\Gamma} $ are precisely the components of the permutation representations of the modular group. So in a sense, anabelian geometry is the study of these continuous simples together wirth the action of the absolute Galois group on it.

In noncommutative geometry we are interested in a related representation theoretic problem. We would love to know the simple finite dimensional representations $\mathbf{simp}~\Gamma $ of the modular group as this would give us all simples of the three string braid group $B_3 $. So a natural question presents itself : how are these two ‘geometrical’ objects $\mathbf{simp}_c~\hat{\Gamma} $ (anabelian) and $\mathbf{simp}~\Gamma $ (noncommutative) related and can we use one to get information about the other?

This is all rather vague so far, so let us work out a trivial case to get some intuition. Consider the profinite completion of the infinite Abelian group

$\hat{\mathbb{Z}} = \underset{\leftarrow}{lim}~\mathbb{Z}/n\mathbb{Z} = \prod_p \hat{\mathbb{Z}}_p $

As all simple representations of an Abelian group are one-dimensional and because all continuous ones factor through a finite quotient $\mathbb{Z}/n\mathbb{Z} $ we see that in this case

$\mathbf{simp}_c~\hat{\mathbb{Z}} = \mu_{\infty} $

is the set of all roots of unity. On the other hand, the simple representations of $\mathbb{Z} $ are also one-dimensional and are determined by the image of the generator so

$\mathbf{simp}~\mathbb{Z} = \mathbb{C} – { 0 } = \mathbb{C}^* $

Clearly we have an embedding $\mu_{\infty} \subset \mathbb{C}^* $ and the roots of unity are even dense in the Zariski topology. This might look a bit strange at first because clearly all roots of unity lie on the unit circle which ‘should be’ their closure in the complex plane, but that’s because we have a real-analytic intuition. Remember that the Zariski topology of $\mathbb{C}^*$ is just the cofinite topology, so any closed set containing the infinitely many roots of unity should be the whole space!

Let me give a pedantic alternative proof of this (but one which makes it almost trivial that a similar result should be true for most profinite completions…). If $c $ is the generator of $\mathbb{Z} $ then the different conjugacy classes are precisely the singletons $c^n $. Now suppose that there is a polynomial $a_0+a_1x+\ldots+a_mx^m $ vanishing on all the continuous simples of $\hat{\mathbb{Z}} $ then this means that the dimensions of the character-spaces of all finite quotients $\mathbb{Z}/n\mathbb{Z} $ should be bounded by $m $ (for consider $x $ as the character of $c $), which is clearly absurd.

Hence, whenever we have a finitely generated group $G $ for which there is no bound on the number of irreducibles for finite quotients, then morally the continuous simple space for the profinite completion

$\mathbf{simp}_c~\hat{G} \subset \mathbf{simp}~G $

should be dense in the Zariski topology on the noncommutative space of simple finite dimensional representations of $G $. In particular, this should be the case for the modular group $PSL_2(\mathbb{Z}) $.

There is just one tiny problem : unlike the case of $\mathbb{Z} $ for which this space is an ordinary (ie. commutative) affine variety $\mathbb{C}^* $, what do we mean by the “Zariski topology” on the noncommutative space $\mathbf{simp}~PSL_2(\mathbb{Z}) $ ? Next time we will clarify what this might be and show that indeed in this case the subset

$\mathbf{simp}_c~\hat{\Gamma} \subset \mathbf{simp}~\Gamma $

will be a Zariski closed subset!

5 Comments

Segal’s formal neighbourhood result

Yesterday, Ed Segal gave a talk at the Arts. His title “Superpotential algebras from 3-fold singularities” didnt look too promising to me. And sure enough it was all there again : stringtheory, D-branes, Calabi-Yaus, superpotentials, all the pseudo-physics babble that spreads virally among the youngest generation of algebraists and geometers.

Fortunately, his talk did contain a general ringtheoretic gem. After a bit of polishing up this gem, contained in his paper The A-infinity Deformation Theory of a Point and the Derived Categories of Local Calabi-Yaus, can be stated as follows.

Let $A $ be a $\mathbb{C} $-algebra and let $M = S_1 \oplus \ldots \oplus S_k $ be a finite dimensional semi-simple representation with distinct simple components. Let $\mathfrak{m} $ be the kernel of the algebra epimorphism $A \rightarrow S $ to the semi-simple algebra $S=End(M) $. Then, the $\mathfrak{m} $-adic completion of $A $ is Morita-equivalent to the completion of a quiver-algebra with relations. The nice thing is that both the quiver and relations come in a canonical way from the $A_{\infty} $-structure on the Ext-algebra $Ext^{\bullet}_A(M,M) $. More precisely, there is an isomorphism

$\hat{A}_{\mathfrak{m}} \simeq \frac{\hat{T}_S(Ext^1_A(M,M)^{\ast})}{(Im(HMC)^{\ast})} $

where the homotopy Maurer-Cartan map comes from the $A_{\infty} $ structure maps

$HMC = \oplus_i m_i~:~T_S(Ext_A^1(M,M)) \rightarrow Ext^2_A(M,M) $

and hence the defining relations of the completion are given by the image of the dual of this map.

For ages, Ive known this result in the trivial case of formally smooth algebras (where $Ext^2_A(M,M)=0 $ and hence there are no relations to divide out) and where it is a consequence of a special case of the Cuntz-Quillen “tubular neighborhood” result. Completions of formally smooth algebras at semi-simples are Morita equivalent to completions of path algebras. This fact motivated all the local-quiver technology that was developed here in Antwerp over the last decade (see my book if you want to know the details).

Also for 3-dimensional Calabi-Yau algebras it states that the completions at semi-simples are Morita equivalent to completions of quotients of path algebras by the relations coming from a superpotential (aka a necklace) by taking partial noncommutative derivatives. Here the essential ingredient is that $Ext^2_A(M,M)^{\ast} \simeq Ext^1_A(M,M) $ in this case.

One Comment

problema bovinum

Suppose for a moment that some librarian at the Bodleian Library announces that (s)he discovered an old encrypted book attributed to Isaac Newton. After a few months of failed attempts, the code is finally cracked and turns out to use a Public Key system based on the product of two gigantic prime numbers, $2^{32582657}-1 $ and $2^{30402457}-1 $, which were only discovered to be prime recently. Would one deduce from this that Newton invented public key cryptography and that he used alchemy to factor integers? (( Come to think of it, some probably would ))

The cynic in me would argue that it is a hell of a coincidence for this text to surface exactly at the moment in history when we are able to show these numbers to be prime and understand their cryptographic use, and conclude that the book is likely to be a fabrication. Still, stranger things have happened in the history of mathematics…

In 1773, Gotthold Ephraim Lessing at that time librarian at the Herzog-August-Bibliothek discovered and published a Greek epigram in 22 elegiac couplets. The manuscript describes a problem sent by Archimedes to the mathematicians in Alexandria.

In his beautiful book “Number Theory, an approach through history. From Hammurapi to Legendre” Andre Weil asserts (( Chapter I,IX )):

Many mathematical epigrams are known. Most of them state problems of little depth; not so Lessing’s find; there is indeed every reason to accept the attribution to Archimedes, and none for putting it into doubt.

This Problema Bovidum (the cattle problem) is a surprisingly difficult diophantine problem and the simplest complete solution consists of eigth numbers, each having about 206545 digits. As we will see later the final ingredient in the solution is the solution of Pell’s equation using continued fractions discovered by Lagrange in 1768 and published in 1769 in a long memoir. Lagrange’s solution to the Pell equation was inserted in Euler’s “Algebra” which was composed in 1771 but published only in 1773… the very same year as Lessing’s discovery! (( all dates learned from Weil’s book Chp. III,XII ))

Weil’s book doesn’t include the details of the original epigram. The (lost) archeologist in me wanted to see the original Greek 22 couplets as well as a translation. So here they are : (( thanks to the Cattle problem site ))

A PROBLEM

which Archimedes solved in epigrams, and which he communicated to students of such matters at Alexandria in a letter to Eratosthenes of Cyrene.

If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into four herds of different colours, one milk white, another a glossy black, a third yellow and the last dappled. In each herd were bulls, mighty in number according to these proportions: Understand, stranger, that the white bulls were equal to a half and a third of the black together with the whole of the yellow, while the black were equal to the fourth part of the dappled and a fifth, together with, once more, the whole of the yellow. Observe further that the remaining bulls, the dappled, were equal to a sixth part of the white and a seventh, together with all of the yellow. These were the proportions of the cows: The white were precisely equal to the third part and a fourth of the whole herd of the black; while the black were equal to the fourth part once more of the dappled and with it a fifth part, when all, including the bulls, went to pasture together. Now the dappled in four parts were equal in number to a fifth part and a sixth of the yellow herd. Finally the yellow were in number equal to a sixth part and a seventh of the white herd. If thou canst accurately tell, O stranger, the number of cattle of the Sun, giving separately the number of well-fed bulls and again the number of females according to each colour, thou wouldst not be called unskilled or ignorant of numbers, but not yet shalt thou be numbered among the wise.

But come, understand also all these conditions regarding the cattle of the Sun. When the white bulls mingled their number with the black, they stood firm, equal in depth and breadth, and the plains of Thrinacia, stretching far in all ways, were filled with their multitude. Again, when the yellow and the dappled bulls were gathered into one herd they stood in such a manner that their number, beginning from one, grew slowly greater till it completed a triangular figure, there being no bulls of other colours in their midst nor none of them lacking. If thou art able, O stranger, to find out all these things and gather them together in your mind, giving all the relations, thou shalt depart crowned with glory and knowing that thou hast been adjudged perfect in this species of wisdom.

The Lessing epigram may very well be an extremely laborious hoax but it is still worth spending a couple of posts on it. It gives us the opportunity to retell the amazing history of Pell’s problem rangingfrom the ancient Greeks and Indians, over Fermat and his correspondents, to Euler and Lagrange (with a couple of recent heroes entering the story). And, on top of this, the modular group is all the time just around the corner…

4 Comments

M-geometry (3)

For any finite dimensional A-representation S we defined before a character $\chi(S) $ which is an linear functional on the noncommutative functions $\mathfrak{g}_A = A/[A,A]_{vect} $ and defined via

$\chi_a(S) = Tr(a | S) $ for all $a \in A $

We would like to have enough such characters to separate simples, that is we would like to have an embedding

$\mathbf{simp}~A \hookrightarrow \mathfrak{g}_A^* $

from the set of all finite dimensional simple A-representations $\mathbf{simp}~A $ into the linear dual of $\mathfrak{g}_A^* $. This is a consequence of the celebrated Artin-Procesi theorem.

Michael Artin was the first person to approach representation theory via algebraic geometry and geometric invariant theory. In his 1969 classical paper “On Azumaya algebras and finite dimensional representations of rings” he introduced the affine scheme $\mathbf{rep}_n~A $ of all n-dimensional representations of A on which the group $GL_n $ acts via basechange, the orbits of which are exactly the isomorphism classes of representations. He went on to use the Hilbert criterium in invariant theory to prove that the closed orbits for this action are exactly the isomorphism classes of semi-simple -dimensional representations. Invariant theory tells us that there are enough invariant polynomials to separate closed orbits, so we would be done if the caracters would generate the ring of invariant polynmials, a statement first conjectured in this paper.

Claudio Procesi was able to prove this conjecture in his 1976 paper “The invariant theory of $n \times n $ matrices” in which he reformulated the fundamental theorems on $GL_n $-invariants to show that the ring of invariant polynomials of m $n \times n $ matrices under simultaneous conjugation is generated by traces of words in the matrices (and even managed to limit the number of letters in the words required to $n^2+1 $). Using the properties of the Reynolds operator in invariant theory it then follows that the same applies to the $GL_n $-action on the representation schemes $\mathbf{rep}_n~A $.

So, let us reformulate their result a bit. Assume the affine $\mathbb{C} $-algebra A is generated by the elements $a_1,\ldots,a_m $ then we define a necklace to be an equivalence class of words in the $a_i $, where two words are equivalent iff they are the same upto cyclic permutation of letters. For example $a_1a_2^2a_1a_3 $ and $a_2a_1a_3a_1a_2 $ determine the same necklace. Remark that traces of different words corresponding to the same necklace have the same value and that the noncommutative functions $\mathfrak{g}_A $ are spanned by necklaces.

The Artin-Procesi theorem then asserts that if S and T are non-isomorphic simple A-representations, then $\chi(S) \not= \chi(T) $ as elements of $\mathfrak{g}_A^* $ and even that they differ on a necklace in the generators of A of length at most $n^2+1 $. Phrased differently, the array of characters of simples evaluated at necklaces is a substitute for the clasical character-table in finite group theory.

3 Comments

M-geometry (1)

Take an affine $\mathbb{C} $-algebra A (not necessarily commutative). We will assign to it a strange object called the tangent-quiver $\vec{t}~A $, compute it in a few examples and later show how it connects with existing theory and how it can be used. This series of posts can be seen as the promised notes of my talks at the GAMAP-workshop but in reverse order… If some of the LaTeX-pictures are not in the desired spots, please size and resize your browser-window and they will find their intended positions.

A vertex $v $ of $\vec{t}~A $ corresponds to the isomorphism class of a finite dimensional simple A-representations $S_v $ and between any two such vertices, say $v $ and $w $, the number of directed arrows from $v $ to $w $ is given by the dimension of the Ext-space

$dim_{\mathbb{C}}~Ext^1_A(S_v,S_w) $

Recall that this Ext-space counts the equivalence classes of short exact sequences of A-representations

[tex]\xymatrix{0 \ar[r] & S_w \ar[r] & V \ar[r] & S_v \ar[r] & 0}[/tex]

where two such sequences (say with middle terms V resp. W) are equivalent if there is an A-isomorphism $V \rightarrow^{\phi} W $ making the diagram below commutative

[tex]\xymatrix{0 \ar[r] & S_w \ar[r] \ar[d]^{id_{S_w}} & V \ar[r] \ar[d]^{\phi} & S_v \ar[r] \ar[d]^{id_{S_v}} & 0 \\\
0 \ar[r] & S_w \ar[r] & W \ar[r] & S_v \ar[r] & 0}[/tex]

The Ext-space measures how many non-split extensions there are between the two simples and is always a finite dimensional vectorspace. So the tangent quiver $\vec{t}~A $ has the property that in all vertices there are at most finitely many loops and between any two vertices there are a finite number of directed arrows, but in principle a vertex may be the origin of arrows connecting it to infinitely many other vertices.

Right, now let us at least motivate the terminology. Let $X $ be a (commutative) affine variety with coordinate ring $A = \mathbb{C}[X] $ then what is $\vec{t}~A $ in this case? To begin, as $\mathbb{C}[X] $ is commutative, all its finite dimensional simple representations are one-dimensional and there is one such for every point $x \in X $. Therefore, the vertices of $\vec{t}~A $ correspond to the points of the affine variety $X $. The simple A-representation $S_x $ corresponding to a point $x $ is just evaluating polynomials in $x $. Moreover, if $x \not= y $ then there are no non-split extensions between $S_x $ and $S_y $ (a commutative semi-local algebra splits as a direct sum of locals), therefore in $\vec{t}~A $ there can only be loops and no genuine arrows between different vertices. Finally, the number of loops in the vertex corresponding to the point $x $ can be computed using the fact that the self-extensions can be identified with the tangent space at $x $, that is

$dim_{\mathbb{C}}~Ext^1_{\mathbb{C}[X]}(S_x,S_x) = dim_{\mathbb{C}}~T_x~X $

That is, if $A=\mathbb{C}[X] $ is the coordinate ring of an affine variety $X $, then the quiver $\vec{t}~A $ is the set of points of $X $ having in each point $x $ as many loops as the dimension of the tangent space $T_x~X $. So, in this case, the quiver $\vec{t}~A $ contains all information about tangent spaces to the variety and that’s why we call it the tangent quiver.

Let’s go into the noncommutative wilderness. A first, quite trivial, example is the group algebra $A = \mathbb{C} G $ of a finite group $G $, then the simple A-representations are just the irreducible G-representations and as the group algebra is semi-simple every short exact sequence splits so all Ext-spaces are zero. That is, in this case the tangent quiver $\vec{t}~A $ in just a finite set of vertices (as many as there are irreducible G-representations) and no arrows nor loops.

Now you may ask whether there are examples of tangent quivers having arrows apart from loops. So, take another easy finite dimensional example : the path algebra $A = \mathbb{C} Q $ of a finite quiver $Q $ without oriented cycles. Recall that the path algebra is the vectorspace having as basis all vertices and all oriented paths in the quiver Q (and as there are no cycles, this basis is finite) and multiplication is induced by concatenation of paths. Here an easy example. Suppose the quiver Q looks like

[tex]\xymatrix{\vtx{} \ar[r] & \vtx{} \ar[r] & \vtx{}}[/tex]

then the path algebra is 6 dimensional as there are 3 vertices, 2 paths of length one (the arrows) and one path of length two (going from the leftmost to the rightmost vertex). The concatenation rule shows that the three vertices will give three idempotents in A and one easily verifies that the path algebra can be identified with upper-triangular $3 \times 3 $ matrices

$\mathbb{C} Q \simeq \begin{bmatrix} \mathbb{C} & \mathbb{C} & \mathbb{C} \\\ 0 & \mathbb{C} & \mathbb{C} \\\ 0 & 0 & \mathbb{C} \end{bmatrix} $

where the diagonal components correspond to the vertices, the first offdiagonal components to the two arrows and the corner component corresponds to the unique path of length two. Right, for a general finite quiver without oriented cycles is the quite easy to see that all finite dimensional simples are one-dimensional and correspond to the vertex-idempotents, that is every simple is of the form $S_v = e_v \mathbb{C} Q e_v $ where $e_v $ is the vertex idempotent. No doubt, you can guess what the tangent quiver $\vec{t}~A = \vec{t}~\mathbb{C} Q $ will be, can’t you?

5 Comments

Hexagonal Moonshine (3)

Hexagons keep on popping up in the representation theory of the modular group and its close associates. We have seen before that singularities in 2-dimensional representation varieties of the three string braid group $B_3 $ are ‘clanned together’ in hexagons and last time Ive mentioned (in passing) that the representation theory of the modular group is controlled by the double quiver of the extended Dynkin diagram $\tilde{A_5} $, which is an hexagon…

Today we’re off to find representations of the extended modular group $\tilde{\Gamma} = PGL_2(\mathbb{Z}) $, which is obtained by adding to the modular group (see this post for a proof of generation)

$\Gamma = \langle U=\begin{bmatrix} 0 & -1 \\\ 1 & 0 \end{bmatrix},V=\begin{bmatrix} 0 & 1 \\\ -1 & 1 \end{bmatrix} \rangle $ the matrix $R=\begin{bmatrix} 0 & 1 \\\ 1 & 0 \end{bmatrix} $

In terms of generators and relations, one easily verfifies that

$\tilde{\Gamma} = \langle~U,V,R~|~U^2=R^2=V^3=(RU)^2=(RV)^2=1~\rangle $

and therefore $\tilde{\Gamma} $ is the amalgamated free product of the dihedral groups $D_2 $ and $D_3 $ over their common subgroup $C_2 = \langle~R~\rangle $, that is

$\tilde{\Gamma} = \langle U,R | U^2=R^2=(RU)^2=1 \rangle \ast_{\langle R | R^2=1 \rangle} \langle V,R | V^3=R^2=(RV)^2=1 \rangle = D_2 \ast_{C_2} D_3 $

From this description it is easy to find all n-dimensional $\tilde{\Gamma} $-representations $V $ and relate them to quiver-representations. $D_2 = C_2 \times C_2 $ and hence has 4 1-dimensonal simples $S_1,S_2,S_3,S_4 $. Restricting $V\downarrow_{D_2} $ to the subgroup $D_2 $ it decomposes as

$V \downarrow_{D_2} \simeq S_1^{\oplus a_1} \oplus S_2^{\oplus a_2} \oplus S_3^{\oplus a_3} \oplus S_4^{\oplus a_4} $ with $a_1+a_2+a_3+a_4=n $

Similarly, because $D_3=S_3 $ has two one-dimensional representations $T,S $ (the trivial and the sign representation) and one simple 2-dimensional representation $W $, restricting $V $ to this subgroup gives a decomposition

$V \downarrow_{D_3} \simeq T^{b_1} \oplus S^{\oplus b_2} \oplus W^{\oplus b_3} $, this time with $b_1+b_2+2b_3=n $

Restricting both decompositions further down to the common subgroup $C_2 $ one obtains a $C_2 $-isomorphism $V \downarrow_{D_2} \rightarrow^{\phi} V \downarrow_{D_3} $ which implies also that the above numbers must be chosen such that $a_1+a_3=b_1+b_3 $ and $a_2+a_4=b_2+b_3 $. We can summarize all this info about $V $ in a representation of the quiver

Here, the vertex spaces on the left are the iso-typical factors of $V \downarrow_{D_2} $ and those on the right those of $V \downarrow_{D_3} $ and the arrows give the block-components of the $C_2 $-isomorphism $\phi $. The nice things is that one can also reverse this process to get all $\tilde{\Gamma} $-representations from $\theta $-semistable representations of this quiver (having the additional condition that the square matrix made of the arrows is invertible) and isomorphisms of group-representation correspond to those of quiver-representations!

This proves that for all n the varieties of n-dimensional representations $\mathbf{rep}_n~\tilde{\Gamma} $ are smooth (but have several components corresponding to the different dimension vectors $~(a_1,a_2,a_3,a_4;b_1,b_2,b_3) $ such that $\sum a_i = n = b_1+b_2+2b_3 $.

The basic principle of _M-geometry_ is that a lot of the representation theory follows from the ‘clan’ (see this post) determined by the simples of smallest dimensions. In the case of the extended modular group $\tilde{\Gamma} $ it follows that there are exactly 4 one-dimensional simples and exactly 4 2-dimensional simples, corresponding to the dimension vectors

$\begin{cases} a=(0,0,0,1;0,1,0) \\\ b=(0,1,0,0;0,1,0) \\\ c=(1,0,0,0;1,0,0) \\\ d=(0,0,1,0;1,0,0) \end{cases} $ resp. $\begin{cases} e=(0,1,1,0;0,0,1) \\\ f=(1,0,0,1;0,0,1) \\\ g=(0,0,1,1;0,0,1) \\\ h=(1,1,0,0;0,0,1) \end{cases} $

If one calculates the ‘clan’ of these 8 simples one obtains the double quiver of the graph on the left. Note that a and b appear twice, so one should glue the left and right hand sides together as a Moebius-strip. That is, the clan determining the representation theory of the extended modular group is a Moebius strip made of two hexagons!

However, one should not focuss too much on the hexagons (that is, the extended Dynkin diagram $\tilde{A_5} $) here. The two ‘backbones’ (e–f and g–h) have their vertices corresponding to 2-dimensional simples whereas the topand bottom vertices correspond to one-dimensional simples. Hence, the correct way to look at this clan is as two copies of the double quiver of the extended Dynkin diagram $\tilde{D_5} $ glued over their leaf vertices to form a Moebius strip. Remark that the components of the sotropic root of $\tilde{D_5} $ give the dimensions of the corresponding $\tilde{\Gamma} $ simples.

The remarkable ubiquity of (extended) Dynkins never ceases to amaze!

One Comment