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The shaft becomes too deep ... and if new
veins would not be discovered, places for geom-
etry in the Academy will become what already
are the Arabic chairs at the Universities.
Lagrange to D’Alembert, 1781

All mathematics is divided into three parts: cryptography (paid for by CIA, KGB
and the like), hydrodynamics (supported by manufacturers of atomic submarines)
and celestial mechanics (financed by military and by other institutions dealing with
missiles, such as NASA.).

Cryptography has generated number theory, algebraic geometry over finite fields,
algebra !, combinatorics and computers.

Hydrodynamics procreated complex analysis, partial derivative equations, Lie
groups and algebra theory, cohomology theory and scientific computing.

Celestial mechanics is the origin of dynamical systems, linear algebra, topology,
variational calculus and symplectic geometry.

The existence of mysterious relations between all these different domains is the
most striking and delightful feature of mathematics (having no rational explanation).

The experience of the past centuries shows that the development of mathematics
was due not to technical progress (consuming most of the efforts of mathematicians
at any given moment), but rather to discoveries of unexpected interrelations between
different domains (which were made possible by these efforts).

*Partially supported by the Russian Basic Research Foundation, project 99-01-01109, and by the
Institut Universitaire de France.

fThe author thanks I. Mazella and J.-O. Moussafir for the typing help.

!The creator of modern algebra, Viéte, was the cryptographer of King Henry IV of France.



The precious technical reports of the present state of different mathematical
domains reminds us of the trench warfare. The description of the front line with its
bends and everyday moves is of course highly important for the battle participants.

But the pernicious character of the separating tendencies (to which the growing
specialisation of mathematicians and the fragmentation of mathematics into small
domains leads) becomes evident when one tries to understand the development of
mathematics in the past with all its meanders.

Sylvester(1876) already described as an astonishing intellectual phenomenon, the
fact that general statements are simpler than their particular cases. The antibour-
bakist conclusion that he drew from this observation is even more striking. According
to Sylvester, a mathematical idea should not be petrified in a formalised axiomatic
setting, but should be considered instead as flowing as a river. One should always be
ready to change the axioms, preserving the informal idea.

Consider for instance the idea of a number. It is impossible to discover quater-
nions trying to generalise real, rational, complex or algebraic number fields.

The possibility of such informal generalisation of all mathematics, for which we
have no ready axioms, seems to me the most appealing dream.

The informal complexification, quaternionization, symplectization, contactiza-
tion etc., described below, are acting not on such small things, as points, functions,
varieties, categories or functors, but on the whole of mathematics.

I have successfully used these ideas many times as a method to guess new results.
I hope therefore that in the future this method of the multiplication of mathematics
will be as standard, as is now the transition from finite-dimensional linear algebra
to the theory of integral equations and to functional analysis.

Perhaps, the simplest example of this multiplication paradigm is provided by
the Killing-Coxeter theory of the reflection groups. Linear algebra is essentially the
theory of the special roots systems Ag. The basic facts of linear algebra (like the
eigenvalues and the Jordan blocks theory) can be reformulated in terms of the roots,
making the statements meaningful for other systems of roots. These new statements
miraculously occur to be correct (while suitably modified). The theories of the
roots systems By, Ck, Dy (corresponding to the Euclidean and symplectic spaces
geometry) are from this point of view rather the sisters than the daughters of the
usual vector space geometry (even though they are, of course, the geometries of the
usual vector spaces endowed with additional structures).

By the way, many of the results of these theories are in fact also true not only for
the exceptional crystallographic groups (Fs, F7, Eg, Fy, G2) but also for the non-
crystallographic Euclidean reflection groups (I2(p), Hs, H4). For example, starting
from the ideas of O. Scherbak (1985), A.B. Givental (1988) discovered in the theory
of Lagrange and Legendre projections in symplectic and contact geometry a geo-
metrical problem, whose solutions are in a natural one-to-one correspondence with



the Euclidean reflection groups (and not just with the crystallographic ones as in
my preceding theory). This is the problem of classification of the simple projections
(having no continuous invariants) of the (virtually singular) Lagrange and Legendre
subvarieties.

The main applications of the mathematics multiplication idea are not to be found
in finite dimensional algebra but rather in infinite-dimensional calculus, where the
Killing classification of the simple Lie algebras is replaced by the Cartan classification
of the simple Lie pseudo-groups.

For example the symplectization idea suggests that all differential geometry and
topology notions and results should have symplectic versions — the symplectic geom-
etry and the symplectic topology.

In some cases these versions are quite obvious. The ordinary vector fields corre-
spond to the Hamiltonian ones, their Poisson brackets algebra to the Poisson brackets
of the Hamilton functions, the strings should move from the configuration space to
the phase space and so on. In other cases this generalisation is less evident. For
instance, the submanifolds of the ordinary geometry correspond to the Lagrangian
submanifolds of symplectic manifolds (A. Weinstein’s Principle).

Trying to symplectize the Euler-Poincaré theorem on the sum of the indices of
the singular points of vector fields, I was lead in 1965 to the conclusion that the sym-
plectization should be an astonishing extension of the Morse theory. I formulated
“Arnold’s conjectures” on the fixed points of symplectomorphisms, on the intersec-
tions of the Lagrangian submanifolds and on the linkings of the Legendrian ones.

The simplest of these conjectures states that the number of fized points of an area
preserving diffeomorphism of a two-torus to itself, “preserving the mass centre”, has
at least 4 fized points (taking the multiplicities into account).

In the more general case of a compact symplectic manifold, the diffeomorphism
should be the time one map of a flow defined by time-dependent Hamilton function,
and the number of fixed points is minorated by the minimal number of the critical
points of a function on the manifold (the fixed and critical points being counted
either both with their multiplicities, or in both cases geometrically).

These conjectures, generalising the “last theorem” of Poincaré on the circular an-
nulus mapping, have been later studied in a series of brilliant works of many authors
(Ya. Eliashberg, P. Rabinowitz, C. Conley and E. Zehnder, M. Chaperon, J.-C. Siko-
rav, F. Laudenbach, Yu. Chekanov, A. Floer, H. Hofer, C. Viterbo, A. Weinstein,
D. Salomon, A. Givental, M. Gromov, and others). Quantum and Floer cohomolo-
gies and Gromov’s pseudoholomorphic curves theories are well-known byproducts of
this development.

The Lagrange intersection theory is a far-reaching extension of the Morse theory,
replacing the functions by such genuinely multivalued function as \/z. Another ex-
tension replaces the functions by the closed 1-forms and Morse theory by Novikov’s



complex. The corresponding version of the Lagrange submanifolds intersection the-
ory is due to J.-C. Sikorav.

I have heard that my initial conjectures, which triggered all these theories, are
now proved (by Fukaya, Ono, Salomon, Ruan and others). Unfortunately I was
unable to understand the technical details of these proofs. Kontsevich was unable
to explain these details to me, while all the proofs are based on his theory of stable
mappings of curves.

As far as I understand, all these proofs minorate the number of fixed points by
the sums of the Betti numbers while I conjectured that it is minorated by the Morse
number (or by the minimal number of geometrically different critical points if the
fixed points are counted geometrically).

In my dreams of the 60s the symplectomorphisms fixed points number minoration
was followed by the similar study of the symplectic correspondences, which are not
graphs of symplectomorphisms.

My idea of symplectic and contact topology was from the very beginning different
from that of Gromov and Eliashberg, who were the first to explore the new domains
discovered by the symplectization and contactization methods.

In their opinion, the symplectic (or contact) topology objects should have the
“symplectic (or contact) homeomorphism invariance” property : they should persist
under the C%-small symplectic (or contact) diffeomorphisms.

To me the word “topology” with any adjective is the study of the discrete in-
variants of the continuous objects of the corresponding branch of geometry, be they
homeomorphism invariant or not.

Thus, I include into projective topology the Mobius theorem on the three inflection
points of a projective line deformations (claiming that a noncontractible circle, em-
bedded generically into the real projective plane, has at least three inflection points,
the dual curve having at least three cusps).

A recent conjecture in projective topology (due to F. Aicardi and D. Panov)
extends the Mobius theorem to the generic surfaces in RP3, smoothly close to a
plane. The conjecture claims, that the parabolic line of such o surface is tangent to
the asymptotic direction of the surface at least at 6 points (generating 6 swallowtails
of the dual surface) and that there are at least 4 parabolic lines if there are only 6
tangency points.

The recent spectacular achievements of contact topology include the creation by
Yu. Chekanov (and also by Ya. Eliashberg and H. Hofer) of the contact homology
theory. One may hope that the further development of these ideas would provide
the proof of the conjectures on the necessity of four cusps of any wave front eversion
in the plane.

This conjecture extends to the genuine multivalued function (of \/z type) the
Sturm theorem on periodic functions, which itself extends the Morse theory of crit-



ical points to higher derivatives. This theorem claims that the number of zeros of
a function on a circle is minorated by the number of zeros of its first non vanish-
ing Fourier harmonic (providing a confirmation of the general topological economy
principle of algebraic objects).

The relation of all this domain to cyclic homology and characteristic classes,
discovered by M. Kazarian, provides some hope that Morse theory can be extended
to the higher derivatives (or to the more general case of nonholonomic constraints).

This extension should contain the (genuine) multivalued functions Morse theory
— the theory of Lagrange intersections and Legendre linking (describing the causality
in the relativistic physics, according to R. Low and R. Penrose) as the first derivative
case.

Symplectic and contact topologies, created as the symplectization and the con-
tactization of differential topology, are today well settled domains of mathematics.

Another attempt to multiply mathematical results is the complezification and
quaternionization dream. The first spectacular success of this idea was the proof the
Gudkov’s conjecture in real algebraic geometry.

One of the most fundamental problems of mathematics is the problem of the
topological structures of the real curves ? defined by algebraic equations of degree n.

This problem has been solved for n = 2 by the Ancients (ellipses, hyperbolas,
parabolas ... ). The cases n = 3 or 4 were settled by Descartes and Newton.
Hilbert has included the case n = 6 in his 16th problem. For n = 8, the answer is
still unknown.

These real problems are too difficult for the modern algebraic geometers and for
present day computers.

According to Harnack, the number of connected components of a curve of degree
n in the real projective plane does not exceed g + 1, where g = (n — 1)(n — 2)/2
is the genus of the curve. Curves with g + 1 components do exist, they were called
M-curves (M for “maximal”) by I.G. Petrovsky.

Hilbert announced that he had proved that only two arrangements of the 11 ovals
of an M-curve of degree 6 were possible : only one oval contains other ovals inside
its disc, the number of the interior ovals being either 1 or 9.

A Nizhni Novgorod mathematician, D. Gudkov, submitted in 1970 his Thesis,
proving that Hilbert was wrong. There exists one (and only one) more possible
arrangement, for which the number of the interior ovals is 5. I1.G. Petrovsky asked
me to check this paper, contradicting both the Hilbert’s statement and the preceding
paper by Gudkov, in which he was proving the (wrong) Hilbert’s claim.

2The Russian way to formulate problems is to mention the first nontrivial case (in a way that
no one would be able to simplify it). The French way is to formulate it in the most general form
making impossible any further generalisation.



Mistakes are an important and instructive part of mathematics, perhaps as im-
portant a part as the proofs. Proofs are to mathematics what spelling (or even
calligraphy) is to poetry. Mathematical works do consist of proofs, just as poems do
consist of characters.

Leibniz started his calculus studies from the formula d(uv) = dudv. Cauchy,
the € — d inventor, proved in his calculus course the continuity of the limit of the
(nonuniformly) convergent series of continued functions. Lagrange’s mistake in the
linear ODE’s theory hampered the development of linear algebra and of Jordan’s
form theory. The story of the Poincaré conjecture started from his confusion of
homotopy with homology.

His “New methods of celestial mechanics” are the by-product of the attempts to
prove a wrong statement (the by-product — the creation of the Dynamical Systems
theory — being by far more important than this wrong statement “solving” a prize
problem). The Burnside celebrated theorem on the groups of order p®¢® was first
formulated by him wrongly. Leray told me, that his works on the hyperbolic PDE’s
were motivated by the remarkable paper of Petrovsky, who wrongly used the triviality
of the cotangent bundle of every sphere (the paper was later modernised by Atiyah,
Bott and Garding). Kolmogorov’s initial definition of the entropy of a dynamical
system was wrong, as well as the Pontriagin’s and Rokhlin’s calculations of homotopy
groups of spheres. I would be able to provide dozens of more recent examples of
mistakes in celebrated papers if I did not fear for my life. I shall only mention
a wrong symplectic reduction theorem in the first edition of the “Mathematical
Methods of Classical Mechanics” (appendix 5,B).

The mistake of Hilbert, discovered by Gudkov, has lead to the foundation of the
modern real algebraic geometry. Trying to understand Gudkov’s very complicated
paper, I have observed that in all his examples of M-curves of degree 2k, bounding
orientable surfaces B, the following “Gudkov congruence” for the Euler characteris-
tics holded

x(B) = k*mod 8.

Knowing the importance of the congruences mod 8 in the topology of 4-manifolds, 1
have decided to replace the real surface B by its complexification of real dimension
four.

The problem arose : how to complexify a manifold with boundary ¢ This is a
standard difficulty : the complexification is an informal operation for which there
are no axioms, we should try to guess.

After several attempts I came to the following conclusion. Consider the real
manifold with boundary, defined by the inequality f(z) > 0, where f is a real
function. To complexify it, replace the inequality by the equality f(z) = y?. We
guess, that the complezification of the real surface B with boundary f = 0, is the
two-fold covering of the complement in CP? of the Riemannian surface f = 0 (which
complezifies the boundary curve), ramified along the Riemannian surface.



Applying the 4-dimensional topology result to this 4-manifold, I was able to prove
the Gudkov congruence mod 4 (Rokhlin later extended it to the mod 8 case).

From this moment on, the real algebraic geometry entered the modern mathemat-
ics. In a series of brilliant works by Kharlamov, Nikulin, Viro, Shustin, Polotovski,
Khovanski, Orevkov and others, a substantial progress was achieved. The interrela-
tions of this domain to the “geometry of the formulae” (that is to the toric varieties
and Newton polyhedra theory), to the “fewnomials” of Kushnirenko-Sevastianov-
Khovanski and even to mathematical logic have been discovered.

Applying these ideas, I once suggested to I.M. Gelfand that they might simplify
the complicated formulae of representation theory and of the hypergeometric func-
tions theory : one should express their coefficients in terms of the convex polyhedra
geometry. Gelfand (with his collaborators) immediately used this suggestion, finding
new brilliant applications. He has always stressed (quite correctly) that mathemati-
cians never appreciate new ideas, only the last step to the summit of the mountain
counts in this mountain-climbing 3

I shall now list some complexifications and quaternionizations of different math-
ematical objects. The trinities (real version, complex version, quaternionic versions)
are listed below as the lines of a big informal commutative diagram, whose verticals
are (mostly nontrivial) operations, transforming one trinity into another. Some of
these operations are described in the comments below.

3M.M. Postnikov formulated an even more radical statement : the science never accepts new
ideas, it fights against them. Most scientists at any given moment are working on horse-shoes and
naturally do react negatively against the limousines ideas. See the curious attempt of S.-T. Yau to
fight against Givental’s theory in the present volume.
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(2) = (3) : Morse theory describes the modification of the real level hypersurface



of a smooth function, due to the jump of the noncritical value from one of the two
connected components of the noncritical values set to the other. Picard-Lefschetz
theory describes the Dehn twist of the complex level hypersurface of an holomorphic
function, due to the motion of the noncritical value around the critical one.

(5) — (6) : T have used the diffeomorphism CP?/Conj ~ S* in my 1971 paper
on real algebraic geometry as a well known fact. But Rokhlin told me that the proof
of this fact, known to Pontriagin in the 30s, had never been published. I therefore
asked experts (including Kuiper, who was visiting Moscow — which I was unable to
leave — for the IMU buisness) whether they were aware of this fact, and later Kuiper
and Massey published their proofs.

My original (1971) proof, based on the theory of the hyperbolic PDE’s, provides
also the real and the quaternionic versions of the Pontriagin’s theorem : the proofs
of the three versions are identical.

(6) — (7) : Hermitian (hyperhermitian) quadratic forms in complex (quater-
nionic) vector spaces are real quadratic forms, invariant under the action of the
multiplication of the vectors by complex numbers (quaternions) of norm 1. This
definition is missing in the algebra textbooks.

The proof of (6) is based on the hyperbolicity of the cone of the degenerated real
quadratic forms. The cones of the degenerated hermitian (hyperhermitian) forms
are also hyperbolic, providing such generalisations of (6), as

S'/U(2) =CP?/SU(2) = HP?/S' = 87, S§%/Sp(2) = S'3.

The three hyperbolic cones (corresponding to the real quadratic, Hermitian and
hyperhermitian forms) are in fact universal varieties, providing the “Schur index” of
representation theory.

(7) = (8) : The Wigner-von Newman theorem of the eigenvalues repulsion is
based on the fact that the codimension of the variety of quadratic forms with multiple
eigenvalues (in the space of the quadratic forms in an Euclidean space) is equal to 2.

In my 1972 paper “Modes and quasimodes” I have studied the monodromy of the
eigenvectors fibration over the complement of this codimension two variety as well
as the Hermitian case (where the codimension of the variety of the forms having a
multiple eigenvalue is equal to 3).

As S.P. Novikow later explained to me, the complexification of this study im-
plies the topological theory of the (integer) quantum Hall effect. T had also missed
in 1972 the Berry phase theory, describing the natural adiabatic connection of the
eigenvectors fibration in the Hermitian case.

The present situation of the hyperhermitian case is in a sense similar to that
of the Hermitian case in 1972. The mathematical theory is ready, but its physical
applications are still to be named. These applications should be interesting : the



complexification of the monodromy being the connection notion, its quaternioniza-
tion (which is also the complexification of the connection ) should provide a 4-form,
measuring the dependence of the complex connection from the complex structure.

(8) — (9) : The restriction of the eigenvectors bundle to the link S' of the
variety of the quadratic forms having a multiple eigenvalue (at its regular point) is
the Mdébius bundle (sending the boundary of the Mo6bius band to its central circle).
In the Hermitian (hyperhermitian) case the transversal to the multiple eigenvalues
variety forms is R? (respectively R?), therefore the link in S? (respectively S*). The
eigenvectors bundle’s restriction to this link is the Hopf bundle.

(9) — (10) : The “hypercurvature” should be a 4-form, providing the first Pon-
triagin class. Its geometrical description as of the complexification of the curvature
might hopefully provide more topological information than its probable relation to
the square of the curvature form and to the Chern-Simons theory.

The algebra of forms, generated by the Chern forms of the eigenvectors bundles,
has been studied recently by B. Shapiro and his collaborators; they have also proved
the degeneration of the spectral sequence, corresponding to the stratification of the
Hermitian forms space accordingly to the eigenvalues multiplicities.

The real and hyperhermitian cases seems to be unsettled in these theories.

(1) — (13) : Tt is difficult to believe that the octahedron is the complex version
of the tetrahedron, and icosahedron — of the octahedron. 1 first deduced it from the
lecture of D. Kazhdan at the 80th Gelfand’s birthday celebration at Rutgers (1993).
The strange numerology below provides some confirmation of the mysterious paral-
lelisms of all mathematical trinities, such as the parallelisms (1)—(13) or (1)—(22).

(13)— (14) : The numbers of edges have the following property :
6 = 23, 12 = 34, 30 = 5.6.

We recognise in the trinity (2, 3,5) the codimensions of the varieties of the multiple
eigenvalues quadratic, Hermitian and hyperhermitian forms. Of course, we have also

2=14+dimR, 3=1+dimC, 5=1+dimH
and the numbers
3=24+dimR, 4=2+4+dimC, 6=1+dimH

are the codimensions of the varieties of the degenerated forms.

(13)—(15) : The rotation group I' C SO(3) of a regular polyhedron (13) is
covered twice by the “binary group” I' C Spin(3) = SU(2), acting on C2. Its orbit
space is the surface of zeros of the polynomial (15).
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(15)—(16) : The simple singularities (15) are “fenced” from the sea of the non-
simple ones by the “parabolic” (or “affine Eg,E7,Eg ) singularities, of which the
polynomials (16) are the simplest representatives.

(16)— (17) : Consider a triangle which one can buy in a stationery, (17). The
affine reflection group defined by the triangle acts on the corresponding elliptic curve.
The fencing singularity (16) can be obtained from this action on the elliptic curve
essentially by the same invariant theory construction which builds the simple singu-
larity (15) from the action of the binary group of a regular polyhedron (13) on the
rational curve CP!.

(13)— (18) : The symmetry groups (18) of regular polyhedra (13) are generated
by reflections.

(18) — (19) : The mirrors of a reflection group (18) of order |IW| subdivide the
3-space into |W| simplicial cones, called the Weyl chambers.

The three boundary mirrors of a chamber subdivide the 3-space into 8 larger
pyramids — the Springer cones. The summands in (19) represent the numbers of the
Weyl chambers in each Springer cone. Note the prime summands.

(19) — (20) — (21) — (13) : Adding one to the numbers of line (19) one gets
the degrees (20) of the invariants of the reflection groups (21) and also the numbers
of vertices, faces and edges of the polyhedra (13).

(22) — (23) : The classical “folding”, transforming Fg into Hy4, transforms also
E; into Fy and Ej into Dy (generated by e; — ez, e9 — e3,e3 — eq and 2e; instead of
e1+es).

(15)— (22) : The monodromy groups of the simple singularities (15) are the
Euclidean reflection groups (22).

(13)—(22) : The J. MacKay correspondence describes the Dynkin diagrams of
the (extended) root systems (22) directly in terms of the representation theory of
the binary group of the corresponding regular polyhedron (13).

(11) — (23) : Gabrielov observed that in the polylogarithmic formulae for the
characteristic classes studied in his works with Gelfand, Losik and Mc¢ Pherson,
the two poles case corresponded to the Chern class and the three poles case to the
Pontriagin class.

(23)— (24) : The Turaev-Frenkel theory of the elliptic numbers relation to mod-
ular hypergeometric functions is described in their paper in the “Arnold-Gelfand
Mathematical Seminars”, Birkhauser 1997.

(23)—(25) : The trinity, consisting of cohomology, K-theory and elliptic theory,
has been suggested by A.B. Givental.

It is interesting that the complexification of a manifold is by no way unique,
depending on the structures we are interested in. Thus, the complexification of
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S! = RP! being CP! = S? that of S! = SO(2) is SU(2) = S3. This is nice, making
it possible to complexify the Mobius bundle

S0 (8" =50(2)) = (S' =RP')
to obtain the Hopf bundle
St — (8% = SU(2)) — (8% = CP).

Trinity (6) suggests that the complexification of S! is sometimes also S*.

Trinity (3) suggests that the complexification of Zg is Z. This is confirmed also
by the following construction (originating from one of the attempts to complexify the
braid groups and to quaternionize the permutation groups).

Consider the set F of homotopy classes at mappings from a Lie group G to itself
preserving the identity. Define the (virtually noncommutative) “addition” in E by
(f +9)(z) = f(x)g(x) and the “multiplication” by (fg)(z) = f(g(z)). The resulting
algebraic structure on F seems to have no name (the distributivity holding only from
one side), so I shall call this “ring” E the ellipse of G.

The ellipse of SY is the ring Zs of two elements, that of S = SO(2) is the ring
Z. The ellipse of S = SU(2) is also Z (I would prefer to get the Gauss numbers
ring as the complexification of 7).

To complexify Z one can also consider it as the died braid group IBr(2) where
IBr(n) = 7 (C" \ G-mirrors of A4,),
or as the ordinary braid group Br(2), where
Br(n) = m(Config,C).
The died braid group IBr(n) is the complexification of the symmetric group:

mo(R" \ R-mirrors of A,) = S(n).

To complezify the fundamental group m (X) one is tempted to write m(X) =
mo(QX) and to complexify it to 71 (“Q ©X). The complezification of the loop space
is perhaps related to the holomorphic loops. Applying these ideas to X = C\ 0,
we should consider as complex loops the polynomial mappings of C into C2\ 0 (the
boundary conditions at infinity being provided by the highest degree terms).

The Zariski theorem reduces the calculation of the fundamental group of the
space of these pairs of polynomials to the calculation of the fundamental group of
the complement of a single rational curve in C? (which is the image of a generic
polynomial mapping of C of a given degree). I guess that the final answer is either Z
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or Z2, depending on whether the boundary conditions at infinity correspond to the
complexification of the died braid group Z ~ IBr(2) or to the ordinary braid group
Br(2) = Z.

The quaternionic versions of the Coxeter and Shephard-Todd groups are still to
be defined and classified. These versions might be Lie groups whose orbit spaces are
smooth, or groups generated by the “quaternionic reflections”. One might speculate
that the existence of the sporadic simple groups is related to what remains from
the real and complex reflection groups in the quaternionic version of the reflection
groups trinity.

The complexification of the orientation is of course a nowhere vanishing holo-
morphic highest degree form. B. Khesin and I. Frenkel have suggested that the
complezification of the cohomology theory should be the Leray theory of meromor-
phic differential forms. Using this theory, Khesin and Rosly were able to define the
“complex linking number” of two complex curves in some complex 3-manifolds (gen-
eralising the Gauss integral formula for the linking number of real curves in the real
3-space).

In mathematics we always encounter mysterious analogies, and our trinities rep-
resent only a small part of these miracles. I might mention, as an example, the
“strange duality” of the Lobachevsky triangles, which I discovered in 1974 and which
is now explained by V. Batyrev as the first manifestation of the general mirror sym-
metry of physicists. As an example of a still puzzling mystery, I shall mention the
R. Faure’s duality, relating the particle moving with energy E in the field with po-
tential U(z) = |dw/dz|? with the particle moving with energy —1/F in the field with
potential energy V(w) = —|dz/dw|?, whatever be the holomorphic function w(z).
The function w = z? provides the classical duality between the Hooke and gravita-
tion or Coulomb forces, but the above duality is quite general and holds both in the
classical and in the quantum version.

A commented list of several hundred of problems, originating from such “exper-
imental facts”, is prepared by my Moscow seminar participants and will hopefully
be published soon.

The attempts to complexify and to quaternionize mathematical theories are mak-
ing clear the fundamental unity of all parts of mathematics. The growing speciali-
sation and the bureaucratic subdivision of mathematics into small domains becomes
an obstacle to its development. The organisers of the International Congress of
Mathematicians in Berlin in 1998 have considered their bureaucratic sections as sci-
entifically independent unities. As a result, parallel talks, formally belonging to
different sections, were in fact devoted to the same subject, be it called symplectic
geometry, mathematical physics, differential topology, partial differential equations,
global analysis, quantum mathematics or infinite dimensional Lie algebra theory.
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Several invited speakers of the Berlin Congress told me that they would rather
have listened to each other’s talk, but were unable to do it, speaking simultaneously.

This lack of understanding of the interrelations between different domains of
mathematics originates from the disastrous divorce of mathematics from physics
in the middle of the 20th century, and from the resulting degeometrisation of the
mathematical education.

Criticising my statement that mathematics is a part of physics, one of the former
best Bourbaki leaders * has written to me in June 1998 : “Mathematics is completly
different from physics ... Mathematicians should not write on such philosophical
questions, since even the best of them can write pure nonsense”.

It is interesting to compare this boomerang statements with the words of Hilbert,
who wrote in 1930 : “Geometry is nothing more than a branch of physics; the geo-
metrical truths are not essentially different from the physical ones in any aspect and
are established in the same way” (Naturerkennen und Logik, Naturwissenschaften,
1930, 959-963).

Hilbert tried to predict the future development of mathematics and to influence it
by his Problems. The development of mathematics in the 20th century has followed a
different path. The most important achievements — the flourishing of homotopy the-
ory and of differential topology, the geometrisation of all branches of mathematics,
its fusion with the theoretical physics, the discovery of the algorithmically undecid-
able problems and the appearance of computers — all this went in a different (if not
opposite) direction.

The influence of H. Poincaré and of H. Weyl on the science of the 20th cen-
tury was much deeper. To Poincaré, who created modern mathematics, topology
and dynamical systems theory, the future of mathematics lay in the development
of mathematical physics, oriented to the description of the relativistic and quan-
tum phenomena. Among other important things, Poincaré explained, that only non
interesting problems might be formulated unambiguously and solved completely. Ac-
cording to Poincaré, one should rather try to understand, what may be changed in
the problem formulation. He had in mind first of all the variation of the coefficients
of the equations in bifurcation type problems and all kinds of general position ar-
guments — the topics which are now called singularity theory, global analysis and
functional analysis. Interestingly enough, what is now called wersal deformation
theorem had already been proved in his Thesis (for the case of zero dimensional
holomorphic complete intersections) as lemma 4, basis for his bifurcation theory.

The mathematics of the 20th century mostly followed the road shown by Poincaré
(the main difficulty being — as A. Weil once told me — the fact that too many good

“who declined the invitation to participate in the present book, explaining that, according to his
experience, all collective works are failures.
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mathematicians have appeared, whereas all valuable mathematicians knew person-
nally each other at Poincaré’s time).

According to Kolmogorov, Hilbert was seriously worried by what would happen
to the Mathematische Annalen cover in 500 years : he thought that the names of
the former Editors would fill up all the space.

Kolmogorov objected to Hilbert that our culture would probably not survive for
such a long period : the united bureaucrats of all countries will soon be able to
stop all kind of creativity, making further mathematical discoveries impossible, as
are geographical discoveries today.

We can imagine that some of the most appealing domains of mathematics will
be transformed into wilderness preserves, where rich people will be able to buy for
an expensive price the pleasure to hunt one-two theorems, guided by the scientific
jaegermeisters.

It is difficult to decide, which of these predictions is more likely to happen. It
seems however rather clear that the centre of the humanity will soon move from
wealthy Furope and North America to hungry Asia, where our culture has few
chances to survive.

I would like to hope that this prediction is as wrong as the others. Discussing
these perspectives, the optimist H. Whitney insisted that America is still produc-
ing excellent mathematicians in spite of the sad fact that its general cultural and
educational level is already almost as low as that of the future global attractor.

One may also hope that the coming nuclear civil wars and military confrontations
will lead to a better appreciation of science by society and to a paradoxical flourishing
of world mathematics (similar to the flourishing which occurred in Russia after the
awful Bolshevik revolution).
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