Skip to content →

Category: stories

mathematics & unhappiness

Sociologists are a constant source of enlightenment as CNN keeps reminding

Kids who are turned
off by math often say they don’t enjoy it, they aren’t good
at it and they see little point in it. Who knew that could be a formula
for success?
The nations with the best scores have the
least happy, least confident math students, says a study by the
Brookings Institution’s Brown Center on Education Policy.
Countries reporting higher levels of enjoyment and confidence
among math students don’t do as well in the subject, the study
suggests.
The eighth-grade results reflected a common
pattern: The 10 nations whose students enjoyed math the most all scored
below average. The bottom 10 nations on the enjoyment scale all
excelled.

As this study is based on the 2003 Trends in International
Mathematics and Science Studies
and as “we” scored best
of all western countries
this
probably explains all the unhappy faces in my first-year class on group
theory. However, they seemed quite happy the first few weeks.
Fortunately, this is proof, at least according to the mountain of wisdom, that I’m on the right track

If too many students are too happy in the math
classes, be sure that it is simply because not much is expected from
them. It can’t be otherwise. If teaching of mathematics is
efficient, it is almost guaranteed that a large group or a majority must
dislike the math classes. Mathematics is hard and if it is not hard, it
is not mathematics.

Right on! But then, why is
it that people willing to study maths enter university in a happy mood?
Oh, I get it, yes, it must be because in secondary school not much was
expected of them! Ouf! my entire world is consistent once again.
But then, hey wait, the next big thing that’s inevitably going to
happen is that in 2007 “we” will be tumbling down this world
ranking! And, believe it or not, that is precisely what
all my colleagues are eagerly awaiting to happen. Most of us are willing
to bet our annual income on it. Belgium was among the first countries to
embrace in the sixties-early seventies what was then called
“modern mathematics’ (you know: Venn-diagrams, sets,
topology, categories (mind you, just categories not the n-stuff ) etc.) Whole
generations of promising Belgian math students were able in the late
70ties, 80ties and early 90ties to do what they did mainly because of
this (in spite of graduating from ‘just’ a Belgian
university, only some of which make it barely in the times top 100 ). But
then, in the ’90ties politicians decided that mathematics had to
be sexed-up, only the kind of mathematics that one might recognize in
everyday life was allowed to be taught. For once, I have to
agree with motl.

Also, the attempts to connect mathematics with
the daily life are nothing else than a form of lowering of the
standards. They are a method to make mathematics more attractive for
those who like to talk even if they don’t know what they’re
talking about. They are a method to include mathematics between the
social and subjective sciences. They give a wiggle room to transform
happiness, confidence, common sense, and a charming personality into
good grades.

Indeed, the major problem we are
facing today in first year classes is that most students have no formal
training at all! An example : last week I did a test after three weeks
of working with groups. One of the more silly questions was to ask them
for precise definitions of very basic concepts (groups, subgroups,
cyclic groups, cosets, order of an element) : just 5 out of 44 were able
to do this! Most of them haven’t heard of sets at all. It seems
that some time ago it was decided that sets no longer had a place in
secondary school, so just some of them had at least a few lessons on
sets in primary school (you know the kind (probably you won’t but
anyway) : put all the green large triangles in the correct place in the
Venn diagram and that sort of things). Now, it seems that politicians
have decided that there is no longer a place for sets in primary schools
either! (And if we complain about this drastic lowering of
math-standards in schools, we are thrown back at us this excellent 2003
international result, so the only hope left for us is that we will fall
down dramatically in the 2007 test.) Mind you, they still give
you an excellent math-education in Belgian primary and secondary schools
provided you want to end up as an applied mathematician or (even worse)
a statistician. But I think that we, pure mathematicians, should
seriously consider recruiting students straight from Kindergarten!

Leave a Comment

doing the Perelman

Can I
suggest this addition to mathematical terminology?

doing a Perelman = making a voluntary retreat from the
math circuit to preserve one’s own well-being (either mental,
physical, scientific …).

As in : “I’m doing a
Perelman ever since that Oberwolfach meeting in 2002″

I
guess by now everyone has read the New Yorker-article by Sylvia Nasar
and David Gruber
Manifold Destiny. A legendary problem and the battle over who solved
it.
summarized in the accompanying drawing

In
case you never made it to the last page, here is the crucial paragraph

Perelman repeatedly said that he had retired
from the mathematics community and no longer considered himself a
professional mathematician. He mentioned a dispute that he had had years
earlier with a collaborator over how to credit the author of a
particular proof, and said that he was dismayed by the
discipline’s lax ethics.

“It is not people who
break ethical standards who are regarded as aliens,” he said.
“it is people like me who are isolated.”

We asked
him whether he had read Cao and Zhu’s paper. “It is not
clear to me what new contribution did they make,” he said.
“Apparently, Zhu did not quite understand the argument and
reworked it.”

As for Yau, Perelman said, “I
can’t say I’m outraged. Other people do worse. Of course,
there are many mathematicians who are more or less honest. But almost
all of them are conformists. They are more or less honest, but they
tolerate those who are not honest.”

3 Comments

Krull & Paris

The
Category-Cafe ran an interesting post The history of n-categories
claiming that “mathematicians’ histories are largely
‘Royal-road-to-me’ accounts”

To my mind a key
difference is the historians’ emphasis in their histories that things
could have turned out very differently, while the mathematicians tend to
tell a story where we learn how the present has emerged out of the past,
giving the impression that things were always going to turn out not very
dissimilarly to the way they have, even if in retrospect the course was
quite tortuous.

Over the last weeks I’ve been writing up
the notes of a course on ‘Elementary Algebraic Geometry’ that I’ll
be teaching this year in Bach3. These notes are split into three
historical periods more or less corresponding to major conceptual leaps
in the subject : (1890-1920) ideals in polynomial rings (1920-1950)
intrinsic definitions using the coordinate ring (1950-1970) scheme
theory. Whereas it is clear to take Hilbert&Noether as the leading
figures of the first period and Serre&Grothendieck as those of the
last, the situation for the middle period is less clear to me. At
first I went for the widely accepted story, as for example phrased by Miles Reid in the
Final Comments to his Undergraduate Algebraic Geometry course.


rigorous foundations for algebraic geometry were laid in the 1920s and
1930s by van der Waerden, Zariski and Weil (van der Waerden’s
contribution is often suppressed, apparently because a number of
mathematicians of the immediate post-war period, including some of the
leading algebraic geometers, considered him a Nazi collaborator).

But then I read The Rising Sea: Grothendieck
on simplicity and generality I
by Colin McLarty and stumbled upon
the following paragraph

From Emmy Noether’s viewpoint,
then, it was natural to look at prime ideals instead of classical and
generic points—or, as we would more likely say today, to identify
points with prime ideals. Her associate Wolfgang Krull did this. He gave
a lecture in Paris before the Second World War on algebraic geometry
taking all prime ideals as points, and using a Zariski topology (for
which see any current textbook on algebraic geometry). He did this over
any ring, not only polynomial rings like C[x, y]. The generality was
obvious from the Noether viewpoint, since all the properties needed for
the definition are common to all rings. The expert audience laughed at
him and he abandoned the idea.

The story seems to be
due to Jurgen Neukirch’s ‘Erinnerungen an Wolfgang Krull’
published in ‘Wolfgang Krull : Gesammelte Abhandlungen’ (P.
Ribenboim, editor) but as our library does not have this book I would
welcome any additional information such as : when did Krull give this
talk in Paris? what was its precise content? did he introduce the prime
spectrum in it? and related to this : when and where did Zariski
introduce ‘his’ topology? Answers anyone?

Leave a Comment

noncommutative Fourier transform

At the
noncommutative algebra program in MSRI 1999/2000, Mikhail Kapranov gave
an intriguing talk Noncommutative neighborhoods and noncommutative Fourier transform
and over the years I’ve watched the video of this talk a number
of times. The first part of the talk is about his work on Noncommutative geometry
based on commutator expansions
and as I’ve once worked through it
this part didn’t present problems. On the other hand, I’ve never
understood much from the second part of the talk which claims to relate
these noncommutative formal neighborhoods to _noncommutative Fourier
transforms_. The string coffee table has a post Kapranov
and Getzler on Higher Stuff
linking to two recent talks by Kapranov
on noncommutative Fourier transforms at the Streetfest. Marni
Sheppeard made handwritten notes available. I definitely should find the time
to get through them and have another go at the Kapranov-video…

Leave a Comment

non-(commutative) geometry

Now
that my non-geometry
post
is linked via the comments in this
string-coffee-table post
which in turn is available through a
trackback from the Kontsevich-Soibelman
paper
it is perhaps useful to add a few links.

The little
I’ve learned from reading about Connes-style non-commutative geometry is
this : if you have a situation where a discrete group is acting with a
bad orbit-space (for example, $GL_2(\mathbb{Z})$ acting on the whole
complex-plane, rather than just the upper half plane) you can associate
to this a $C^*$-algebra and study invariants of it and interprete them
as topological information about this bad orbit space. An intruiging
example is the one I mentioned and where the additional noncommutative
points (coming from the orbits on the real axis) seem to contain a lot
of modular information as clarified by work of Manin&Marcolli and
Zagier. Probably the best introduction into Connes-style
non-commutative geometry
from this perspective are the Lecture on
Arithmetic Noncommutative Geometry
by Matilde Marcolli. To
algebraists : this trick is very similar to looking at the
skew-group algebra $\mathbb{C}[x_1,\ldots,x_n] * G$ if
you want to study the _orbifold_ for a finite group action on affine
space. But as algebraist we have to stick to affine varieties and
polynomials so we can only deal with the case of a finite group,
analysts can be sloppier in their functions, so they can also do
something when the group is infinite.

By the way, the
skew-group algebra idea is also why non-commutative algebraic
geometry
enters string-theory via the link with orbifolds. The
easiest (and best understood) example is that of Kleinian singularities.
The best introduction to this idea is via the Representations
of quivers, preprojective algebras and deformations of quotient
singularities
notes by Bill Crawley-Boevey.

Artin-style non-commutative geometry aka
non-commutative projective geometry originated from the
work of Artin-Tate-Van den Bergh (in the west) and Odeskii-Feigin (in
the east) to understand Sklyanin algebras associated to elliptic curves
and automorphisms via ‘geometric’ objects such as point- (and
fat-point-) modules, line-modules and the like. An excellent survey
paper on low dimensional non-commutative projective geometry is Non-commutative curves and surfaces by Toby
Stafford and
Michel Van den Bergh
. The best introduction is the (also
neverending…) book-project Non-
commutative algebraic geometry
by Paul Smith who
maintains a
noncommutative geometry and algebra resource page
page (which is
also available from the header).

Non-geometry
started with the seminal paper ‘Algebra extensions and
nonsingularity’, J. Amer. Math. Soc. 8 (1995), 251-289 by Joachim
Cuntz
and Daniel Quillen but which is not available online. An
online introduction is Noncommutative smooth
spaces
by Kontsevich and Rosenberg. Surely, different people have
different motivations to study non-geometry. I assume Cuntz got
interested because inductive limits of separable algebras are quasi-free
(aka formally smooth aka qurves). Kontsevich and Soibelman want to study
morphisms and deformations of $A_{\infty}$-categories as they explain in
their recent
paper
. My own motivation to be interested in non-geometry is the
hope that in the next decades one will discover new exciting connections
between finite groups, algebraic curves and arithmetic groups (monstrous
moonshine
being the first, and still not entirely understood,
instance of this). Part of the problem is that these three topics seem
to be quite different, yet by taking group-algebras of finite or
arithmetic groups and coordinate rings of affine smooth curves they all
turn out to be quasi-free algebras, so perhaps non-geometry is the
unifying theory behind these seemingly unrelated topics.

Leave a Comment

something to think about

This is
not going to be the post I should be writing (this morning I found out
that the last post
must have been rather cryptic as I didnt manage to get it explained to
people who should know at least half of the picture, so at the moment
Im writing out a short note giving the dictionary between the Kontsevich-Soibelman
approach
and my
own
. I’m still undecided whether this will make it here, or to
the arXiv or to my dustbin…).

Instead I want to draw your
attention to one of the best posts I’ve read lately. It’s
called A man’s character is his fate and it’s from
Christine C. Dantas’ blog Christine’s Background
Independence
and clearly has a history which you may know if you
somewhat followed (some) physics blogs this week or which you may
reconstruct from this and this from her site and something else.

Leave a Comment

non-geometry

Here’s
an appeal to the few people working in Cuntz-Quillen-Kontsevich-whoever
noncommutative geometry (the one where smooth affine varieties
correspond to quasi-free or formally smooth algebras) : let’s rename our
topic and call it non-geometry. I didn’t come up with
this term, I heard in from Maxim Kontsevich in a talk he gave a couple
of years ago in Antwerp. There are some good reasons for this name
change.

The term _non-commutative geometry_ is already taken by
much more popular subjects such as _Connes-style noncommutative
differential geometry_ and _Artin-style noncommutative algebraic
geometry_. Renaming our topic we no longer have to include footnotes
(such as the one in the recent Kontsevich-Soibelman
paper
) :

We use “formal” non-commutative geometry
in tensor categories, which is different from the non-commutative
geometry in the sense of Alain Connes.

or to make a
distinction between _noncommutative geometry in the small_ (which is
Artin-style) and _noncommutative geometry in the large_ (which in
non-geometry) as in the Ginzburg notes.

Besides, the stress in _non-commutative geometry_ (both in Connes-
and Artin-style) in on _commutative_. Connes-style might also be called
‘K-theory of $C^*$-algebras’ and they use the topological
information of K-theoretic terms in the commutative case as guidance to
speak about geometrical terms in the nocommutative case. Similarly,
Artin-style might be called ‘graded homological algebra’ and they
use Serre’s homological interpretation of commutative geometry to define
similar concepts for noncommutative algebras. Hence, non-commutative
geometry is that sort of non-geometry which is almost
commutative…

But the main point of naming our subject
non-geometry is to remind us not to rely too heavily on our
(commutative) geometric intuition. For example, we would expect a
manifold to have a fixed dimension. One way to define the dimension is
as the trancendence degree of the functionfield. However, from the work
of Paul Cohn (I learned about it through Aidan Schofield) we know that
quasi-free algebras usually do’nt have a specific function ring of
fractions, rather they have infinitely many good candidates for it and
these candidates may look pretty unrelated. So, at best we can define a
_local dimension_ of a noncommutative manifold at a point, say given by
a simple representation. It follows from the Cunz-Quillen tubular
neighborhood result that the local ring in such a point is of the
form

$M_n(\mathbb{C} \langle \langle z_1,\ldots,z_m \rangle
\rangle) $

(this s a noncommutative version of the classical fact
than the local ring in a point of a d-dimensional manifold is formal
power series $\mathbb{C} [[ z_1,\ldots,z_d ]] $) but in non-geometry both
m (the _local_ dimension) and n (the dimension of the simple
representation) vary from point to point. Still, one can attach to the
quasi-free algebra A a finite amount of data (in fact, a _finite_ quiver
and dimension vector) containing enough information to compute the (n,m)
couples for _all_ simple points (follows from the one quiver to rule them
all paper
or see this for more
details).

In fact, one can even extend this to points
corresponding to semi-simple representations in which case one has to
replace the matrix-ring above by a ring Morita equivalent to the
completion of the path algebra of a finite quiver, the _local quiver_ at
the point (which can also be computer from the one-quiver of A. The
local coalgebras of distributions at such points of
Kontsevich&Soibelman are just the dual coalgebras of these local
algebras (in math.RA/0606241 they
merely deal with the n=1 case but no doubt the general case will appear
in the second part of their paper).

The case of the semi-simple
point illustrates another major difference between commutative geometry
and non-geometry, whereas commutative simples only have self-extensions
(so the distribution coalgebra is just the direct sum of all the local
distributions) noncommutative simples usually have plenty of
non-isomorphic simples with which they have extensions, so to get at the
global distribution coalgebra of A one cannot simply add the locals but
have to embed them in more involved coalgebras.

The way to do it
is somewhat concealed in the
third version of my neverending book
(the version that most people
found incomprehensible). Here is the idea : construct a huge uncountable
quiver by taking as its vertices the isomorphism classes of all simple
A-representations and with as many arrows between the simple vertices S
and T as the dimension of the ext-group between these simples (and
again, these dimensions follow from the knowledge of the one-quiver of
A). Then, the global coalgebra of distributions of A is the limit over
all cotensor coalgebras corresponding to finite subquivers). Maybe I’ll
revamp this old material in connection with the Kontsevich&Soibelman
paper(s) for the mini-course I’m supposed to give in september.

Leave a Comment

writing with gloves on

Okay, let’s have it out in the open :

I’m officially diagnosed as being depressed by both PD1 and PD2!

Coming from the two top experience-experts on my mood swings, I’d better take this
seriously. So, do they come up with an explanation for this ‘depression’?

PD1 blames it on the celebrated mid-life-crisis which in her world is merely the generic phrase uttered when a parent does something ‘odd’.

If thePartner wants to spend some time among old friends, or wants to get involved in community work, it’s called ‘mid-life crisis’.

When both of us join a demonstration for the first time in over a decade, it’s MLC etc. etc.

In recent years I heard her say the MLC- phrase often enough referring to her friends’ parents and thePartner but somehow I always got away, until recently…

PD2 blames it on my turning 48 last week, a fact I cannot deny but then, what’s so special about 48? I don’t get it.

Feeble as their explanations may be, they still may have a point. Sure, some losses do affect me. Some recent, some imminent, some unfortunately permanent, some hopefully temporary…

I realise this is a bit cryptic to the uninitiated, but then I’ve given up writing about personal stuff a long time ago (to the dismay of PD2 who would welcome more web-presence when self-googling…).

But wait… Hey, that may be part of the problem :

I’ve given up writing about so many things recently that there’s hardly anything sufficiently interesting left to write about.

In the post-Dutroux scare I did remove all pictures and references to our daughters from my web-pages, for you don’t want to know the weirdos that have a look at it and you definitely do not want to think about what they might do when they obtain my address from the university web-page….

Surely a valid point. So, away with all writing about personal stuff.

Then, more recently (and I hope at least some of you noticed it…) I’ve imposed a ban on critical postings about people or events going on in noncommutative algebra/geometry. The reason behind this decision is personal, so if I didnt tell you in private you’ll never find it here.

Speaking about this with Paul Smith at the last Oberwolfach, he had an hilarious reply.

“I wouldn’t say you were critical. I’d say you are sometimes pretty intense and I love it, as long as I’m not on the receiving end…”

But see, that’s just the problem. Mathematicians are so vane that there is always someone who feels to be on the receiving end!

Let’s say, hypothetically speaking, that I write a somewhat critical post about the ongoing cluster-algebra hype, we all know some people who will not like it. Ditto about (again hypothetically…) symplectic-reflection algebras, ditto about etc. etc.

Compare this with the entertaining about-life-or-death fights going on in physics-blogs. If you don’t know what I’m talking about and want to have a good laugh, have a go at the comments to this Not Even Wrong Post.

Possibly, I should come to terms with the fact that blogging is an activity which will never be tolerated by the autism-enriched environment of mathematicians and that I should just give it up.

Or, perhaps, I should regain my writing-freedom and blog about whatever I feel strongly about at that particular moment in time (and remember, I do suffer from violent mood-swings so these opinions may change overnight…), be it critical or if you want ‘intense’, and hope that not too many will think they are on the receiving end…

I realize that I will sometimes be accused of ‘jealousy’, sometimes of being ‘frustrated’. But, let’s face it : bottling up one’s frustrations, that’s precisely the thing that leads to a genuine depression…

Leave a Comment