
At the moment I’m rereading Siobhan Roberts’ biography of John Horton Conway, Genius at play – the curious mind of John Horton Conway. In fact, I’m also rereading Alexander Masters’ biography of Simon Norton, The genius in my basement – the biography of a happy man. [full_width_image] [/full_width_image] If you’re in for a suggestion, try… Read more »

Since mid May the Montpellier part of Grothendieck’s gribouillis are online and for everyone available at the Archives Grothendieck. The story is wellknown. End of June 1990, Grothendieck phoned Jean Malgoire warning him to come asap if he wanted to safeguard the better part of G’s mathematical archive, for he was making a bonfire… A… Read more »

In several of his talks on #IUTeich, Mochizuki argues that usual scheme theory over $\mathbb{Z}$ is not suited to tackle problems such as the ABCconjecture. The idea appears to be that ABC involves both the additive and multiplicative nature of integers, making rings into ‘2dimensional objects’ (and clearly we use both ‘dimensions’ in the theory… Read more »

Today, Samuel Dehority, Xavier Gonzalez, Neekon Vafa and Roger Van Peski arXived their paper Moonshine for all finite groups. Originally, Moonshine was thought to be connected to the Monster group. McKay and Thompson observed that the first coefficients of the normalized elliptic modular invariant \[ J(\tau) = q^{1} + 196884 q + 21493760 q^2 +… Read more »

Soon, we will be teaching computational geometry courses to football commentators. If a player is going to be substituted we’ll hear sentences like: “no surprise he’s being replaced, his Voronoi cell has been shrinking since the beginning of the second half!” David Sumpter, the author of Soccermatics: Mathematical Adventures in the Beautiful Game, wrote a… Read more »

The Boston subway is a complex system, spreading out from a focus at Park Street. On March 3rd, the Boylston shuttle went into service, tying together the seven principal lines, on four different levels. A day later, train 86 went missing on the CambridgeDorchester line. The Harvard algebraist R. Tupelo suggested the train might have… Read more »

Geometers will tell you there are two ways to introduce affine schemes. You can use structure sheaves. That is, compute all prime ideals of your ring and turn them into a space. Then, put a sheaf of rings on this space by localisation. You’ll get your ring back taking global sections. Or, you might try… Read more »

Please allow for a couple of endofsemester bluesy ramblings. I just finished grading the final test of the last of five courses I lectured this semester. Most of them went, I believe, rather well. As always, it was fun to teach an introductory group theory course to second year physics students. Personally, I did enjoy… Read more »

A couple of days ago, there was yet another article by Philippe Douroux on Grothendieck’s Lasserre writings “Inestimables mathématiques, avezvous donc un prix?” in the French newspaper Liberation. Not that there is much news to report. I’ve posted on this before: Grothendieck’s gribouillis, Grothendieck’s gribouillis (2), and more recently Where are Grothendieck’s writings? In that… Read more »

My favourite tags on MathOverflow are biglists, bigpicture, softquestion, referencerequest and the like. Often, answers to such tagged questions contain sound reading advice, style: “roadmap to important result/theory X”. Two more K to go, so let’s spend some more money. [section_title text=”Category theory”] [full_width_image] [/full_width_image] One of the problems with my master course on algebraic… Read more »

books, geometry, noncommutative, representations
let’s spend 3K on (math)books
Posted on by lievenlbSanta gave me 3000 Euros to spend on books. One downside: I have to give him my wishlist before monday. So, I’d better get started. Clearly, any further suggestions you might have will be much appreciated, either in the comments below or more directly via email. Today I’ll focus on my own interests: algebraic geometry,… Read more »

It was fun following the second game last night in real time. Carlsen got a winning endgame with two bishops against a rook, but blundered with 62. Bg4?? (winning was Kf7), resulting in stalemate. There was this hilarious message around move 60: “The computer has just announced that white mates in 31 moves. Of course,… Read more »

In 2001, Eugenia Cheng gave an interesting afterdinner talk Mathematics and Lego: the untold story. In it she compared math research to fooling around with lego. A quote: “Lego: the universal toy. Enjoyed by people of all ages all over the place. The idea is simple and brilliant. Start with some basic blocks that can… Read more »

If you’re a mathematician chances are that your texteditor of choice will be TeXShop, the perfect environment for writing papers. Even when writing a massive textbook, most of us stick to this or a similar LaTeXfrontend. The order of chapters in such a book is usually selfevident, and it is enough to use one TeXfile… Read more »

Two more days to go in the NaNoWriMo 2016 challenge. Alas, it was clear from the outset that I would fail, bad. I didn’t have a sound battle plan. Hell, I didn’t even have a a clue which book to write… But then, I may treat myself to a SloWriMo over the Christmas break. For… Read more »

Either this is horribly wrong, or it must be wellknown. So I guess I’m asking for either a rebuttal or a reference. Take a ‘smallish’ category $\mathbf{C}$. By this I mean that for every object $C$ the collection of all maps ending in $C$ must be a set. On this set, let’s call it $y(C)$… Read more »

Theorems have the tendency to pop into existence when you least expect them: taking a bath, during your sleep, dreaming away during a dull lecture, waiting for an airplane, bicycling, whatever. One of the most famous (and useful) lemmas was dreamed up in the Parisian Gare du Nord station, during a conversation between Saunders Mac… Read more »

What do you get when two cars crash head on at full speed? A heap of twisted metal. What do you get when two tiny cars crash head on at full speed? A smaller heap of twisted metal. In the limit, what do you get when two point cars crash head on at full speed?… Read more »

Some weeks ago I did register to be a participant of NaNoWriMo 2016. It’s a belated newyear’s resolution. When PS (pseudonymous sister), always eager to fill a 10 second silence at family dinners, asked (PS) And Lieven, what are your resolutions for 2016? she didn’t really expect an answer (for decades my generic reply has… Read more »

In according to Groth IV.22 we tried to solve one of the riddles contained in Roubaud’s announcement of Bourbaki’s death. Today, we’ll try our hands on the next one: where was Bourbaki buried? The death announcement gives this fairly opaque clue: “The burial will take place in the cemetery for Random Functions (metro stations Markov… Read more »

A fun way to teach first year students the different methods of proof is to play a game with chocolate bars, Chomp. The players take turns to choose one chocolate block and “eat it”, together with all other blocks that are below it and to its right. There is a catch: the top left block… Read more »

Gitte Le Bruyn, the artist previously known as PD1 on this blog, exhibits some of her work in Ghent. The exhibition VGC Visual Art Gitte Le Bruyn is hosted by the Van Crombrugghe’s Genootschap, Huidevetterskaai 39, 9000 Gent, Belgium. Gitte shows hundreds of stills from her animation projects. She has a laborious working method: for… Read more »

The Bourbaki wedding invitation is probably the most effective branding and marketingcampaign in the history of mathematics. It contains this, seemingly opaque, paragraph: [quote name=”Bourbaki wedding card”]The trivial isomorphism will be given to them by P. Adic, of the Diophantine Order, at the Principal Cohomology of the Universal Variety, the 3 Cartember, year VI, at… Read more »

After 50 years, vivid interest in topos theory seems to have returned to one of the most prestigious research institutes, the IHES. Last november, there was the meeting Topos a l’IHES. At the meeting, Celine Loozen filmed a documentary which is supposed to have as its title “Unifying Worlds”. Its very classy trailer is now… Read more »

Some weeks ago, Robert Kucharczyk and Peter Scholze found a topological realisation of the ‘hopeless’ part of the absolute Galois group $\mathbf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. That is, they constructed a compact connected space $M_{cyc}$ such that etale covers of it correspond to Galois extensions of the cyclotomic field $\mathbb{Q}_{cyc}$. This gives, at least in theory, a handle on… Read more »
Close