Skip to content →

Tag: noncommutative

A for aggregates

Let us
begin with a simple enough question : what are the points of a
non-commutative variety? Anyone? Probably you\’d say something like :
standard algebra-geometry yoga tells us that we should associate to a
non-commutative algebra $A$ on object, say $X_A$ and an arbitrary
variety is then build from \’gluing\’ such things together. Ok, but what
is $X_A$? Commutative tradition whispers $X_A=\mathbf{spec}~A$ the
[prime spectrum][1] of $A$, that is, the set of all twosided prime
ideals $P$ (that is, if $aAb \subset P$ then either $a \in P$ or $b \in
P$) and \’points\’ of $\mathbf{spec}~A$ would then correspond to
_maximal_ twosided ideals. The good news is that in this set-up, the
point-set comes equipped with a natural topology, the [Zariski
topology][2]. The bad news is that the prime spectrum is rarely
functorial in the noncommutative world. That is, if $\phi~:~A
\rightarrow B$ is an algebra morphism then $\phi^{-1}(P)$ for $P \in
\mathbf{spec}~B$ is not always a prime ideal of $A$. For example, take
$\phi$ the inclusion map $\begin{bmatrix} C[x] & C[x] \\ (x) & C[x]
\end{bmatrix} \subset \begin{bmatrix} C[x] & C[x] \\ C[x] & C[x]
\end{bmatrix}$ and $P$ the prime ideal $\begin{bmatrix} (x) & (x) \\ (x)
& (x) \end{bmatrix}$ then $P Cap \begin{bmatrix} C[x] & C[x] \\ (x) &
C[x] \end{bmatrix} = P$ but the corresponding quotient is
$\begin{bmatrix} C & C \\ 0 & C \end{bmatrix}$ which is not a prime
algebra so $\phi^{-1}(P)$ is not a prime ideal of the smaller algebra.
Failing this, let us take for $X_A$ something which obviously is
functorial and worry about topologies later. Take $X_A = \mathbf{rep}~A$
the set of all finite dimensional representations of $A$, that is
$\mathbf{rep}~A = \bigsqcup_n \mathbf{rep}_n~A$ where $\mathbf{rep}_n~A
= \{ Chi~:~A \rightarrow M_n(C)~\}$ with $Chi$ an algebra morphism. Now,
for any algebra morphism $\phi~:~A \rightarrow B$ there is an obvious
map $\mathbf{rep}~B \rightarrow \mathbf{rep}~A$ sending $Chi \mapsto Chi
Circ \phi$. Alernatively, $\mathbf{rep}_n~A$ is the set of all
$n$-dimensional left $A$-modules $M_{Chi} = C^n_{Chi}$ with $a.m =
Chi(m)m$. As such, $\mathbf{rep}~A$ is not merely a set but a
$C$-_category_, that is, all objects are $C$-vectorspaces and all
morphisms $Hom(M,N)$ are $C$-vectorspaces (the left $A$-module
morphisms). Moreover, it is an _additive_ category, that is if
$Chi,\psi$ are representations then we also have a direct sum
representation $Chi \oplus \psi$ defined by $a \mapsto \begin{bmatrix}
Chi(a) & 0 \\ 0 & \psi(a) \end{bmatrix}$. Returning at the task at
hand let us declare a _non-commutative variety_ $X$ to be (1) _an
additive_ $C$-_category_ which \’locally\’ looks like $\mathbf{rep}~A$
for some non-commutative algebra $A$ (even if we do not know at the
momemt what we mean by locally as we do not have defined a topology,
yet). Let is call objects of teh category $X$ the \’points\’ of our
variety and $X$ being additive allows us to speak of _indecomposable_
points (that is, those objects that cannot be written as a direct sum of
non-zero objects). By the local description of $X$ an indecomposable
point corresponds to an indecomposable representation of a
non-commutative algebra and as such has a local endomorphism algebra
(that is, all non-invertible endomorphisms form a twosided ideal). But
if we have this property for all indecomposable points,our category $X$
will be a Krull-Schmidt category so it is natural to impose also the
condition (2) : every point of $X$ can be decomposed uniquely into a
finite direct sum of indecomposable points. Further, as the space of
left $A$-module morphisms between two finite dimensional modules is
clearly finite dimensional we have also the following strong finiteness
condition (3) : For all points $x,y \in X$ the space of morphisms
$Hom(x,y)$ is a finite dimensional $C$-vectorspace. In their book
[Representations of finite-dimensional algebras][3], Peter Gabriel and
Andrei V. Roiter call an additive category such that all endomorphism
algebras of indecomposable objects are local algebras and such that all
morphism spaces are finite dimensional an _aggregate_. So, we have a
first tentative answer to our question **the points of a
non-commutative variety are the objects of an aggregate** Clearly, as
$\mathbf{rep}~A$ has stronger properties like being an _Abelian
category_ (that is, morphisms allow kernels and cokernels) it might also
be natural to replace \’aggregate\’ by \’Abelian Krull-Schmidt category
with finite dimensional homs\’ but if Mr. Abelian Category himself finds
the generalization to aggregates useful I\’m not going to argue about
this. Are all aggregates of the form $\mathbf{rep}~A$ or are there
other interesting examples? A motivating commutative example is : the
category of all coherent modules $Coh(Y)$ on a _projective_ variety $Y$
form an aggegate giving us a mental picture of what we might expect of a
non-commutative variety. Clearly, the above tentative answer cannot be
the full story as we haven\’t included the topological condition of
being locally of the form $\mathbf{rep}~A$ yet, but we will do that in
the next episode _B for Bricks_. [1]:
http://planetmath.org/encyclopedia/PrimeSpectrum.html [2]:
http://planetmath.org/encyclopedia/ZariskiTopology.html [3]:

1/ref=sr_1_8_1/026-3923724-4530018

2 Comments

TheLibrary (version 2)

Just in time for 2005 : a pretty good approx of what I had in mind
with TheLibrary.
The major new feature is one-page view. That
is, if you click on a bookmark or search-page link you will get a page
(as in the screenshot below) consisting of three frames. The left-bottom
frame contains the pdf file of _just_ the requested page, hence
your brwoser no longer has to download the full pdf-file to get at the
wanted page which speeds up the process. The downside is that you can no
longer scroll in neighbouring pages. To compensate for this there are
_previous page_ and _next page_ buttons in the top frame
as well as a link to the index and search page of the document.

An added bonus of this set-up is that the author of a document can
control what readers can do with these pdf-pages. For example, the pages
of 3 talks on noncommutative geometry@n
admit all features (such as content-copy, merging pages, printing etc.)
whence a determined reader can reconstruct the full pdf-document if
he/she so desires. On the other hand, the pages of version 2 can only be printed at a low
resolution and those of version 3 do not even permit this.

The bottom-right frame of the pages allow the reader
to read (and post) marginal notes wrt. the content of the document-text
(such as : extra references, errors, suggestions etc.). As always,
comments are great; obnoxious comments get deleted. Deal!
Once
again, if you like your courses and or books (on a subject from either
non-commutative geometry or non-commutative algebra) to be included in
TheLibrary email.
All scripts are adapted from the original
scripts from pdf
hacks
.

Leave a Comment

TheLibrary (demo)

It is far from finished but you can already visit a demo-version of
TheLibrary which I hope will one day be a useful collection of
online courses and books on non-commutative algebra & geometry. At
the moment it just contains a few of my own things but I do hope that
others will find the format interesting enough to allow me to include
their courses and/or books. So, please try this demo out! But before you
do, make sure that you have a good webbrowser-plugin to view
PDF-documents from within your browser (rather than having to download
the files). If you are using Macintosh 10.3 or better there is a very
nice plugin freely
available whch you only have to drag into your _/Library/Internet
Plug-Ins/_-folder to get it working (after restarting Safari).
If you click on the title you will get a page with hyper-links to all
bookmarks of the pdf-file (for example, if you have used the hyperref package to
(La)TeX your file, you get these bookmarks for free). If you only have a
PDF-file you can always include the required bookmarks using Acrobat.
No doubt the most useful feature (at this moment) of the set-up is
that all files are fully searchable for keywords.
For example, if
you are at the page of my 3 talks on noncommutative
geometry@n
-course and fill out “Azumaya” in the Search
Document-field you will get a screen like the one below

That is, you wlll get all occurrences of 'Azumaya' in
the document together with some of the context as well as page- or
section-links nearby that you can click to get to the paragraph you are
looking for. In the weeks to come I hope to extend the usability of
_TheLibrary_ by offering a one-page view, modular security
enhancements, a commenting feature as well as a popularity count. But,
as always, this may take longer than I want…
If you think
that the present set-up might already be of interest to readers of your
courses or books and if you have a good PDF-file of it available
(including bookmarks) then email and we will try to include your
material!

Leave a Comment

changes

Tomorrow
I’ll give my last class of the semester (year?) so it is about time to
think about things to do (such as preparing the courses for the
“master program on noncommutative geometry”) and changes to make to
this weblog (now that it passed the 25000 mark it is time for something
different). In the sidebar I’ve added a little poll to let you guess
what changes 2005 will bring to this blog (if I find the time over
Christmas to implement it). In short, @matrix will
become the portal of a little company I’ll start up (seems
_the_ thing to do now). Here are some possible names/goals. Which
one will it be? Vote and find out after Christmas.

WebMathNess is a Web-service company helping lazy
mathematicians to set up their website and make it LaTeXRender savvy
(free restyling every 6 months).

iHomeEntertaining is a
Tech-company helping Mac-families to get most out of their valuable
computers focussing on Audio-Photo-Video streaming along their Airport-network.

SnortGipfGames is a Game-company focussing on the
mathematical side of the Gipf project
games
by distributing Snort-versions of them.

NeverendingBooks is a Publishing-company specializing
in neverending mathematical course- and book-projects offering their
hopeless authors print on demand and eprint services.

QuiverMerch is a Merchandising-company specializing in
quivers. For example, T-shirts with the tame quiver classification,
Calogero-Moser coffee mugs, Lego-boxes to construct local quivers
etc.

Leave a Comment

version pi

Now
that versions 2 and 3 of my abandoned book project
noncommutative~geometry@n are being referenced (as suggested) as
“forgotten book” (see for example Michel's latest paper) it is
perhaps time to consider writing version $\\pi$. I haven't made up
my mind what to include in this version so if you had a go at these
versions (available no longer)
and have suggestions, please leave a comment. An housekeeping-note :
this blog is flooded with link-spammers recently so I did remove the
automatic posting of comments. I use the strategy proposed by Angsuman to combat
them. This sometimes means that I overlook a comment (this morning I
discovered a lost comment while cleaning up the spam-comments, sorry!)
but it is the only way to keep this blog poker-casino-sex-etc free. It
goes without saying that any relevant comment (positive or negative)
will be approved as soon as I spot it.

At the moment I
haven't the energy to start the writing phase yet, but I am slowly
preparing things

  • Emptied the big antique table upstairs
    to have plenty of place to put things.
  • Got myself a laser
    printer and put it into our home-network using AirportExpress which
    allows to turn any USB-printer into a network-printer.
  • Downloaded the Springer Verlag Book Stylefiles svmono.zip. This
    does not mean that I will submit it there (in fact, I promised at least
    one series-editor to send him a new version first) but these days I
    cannot bring myself to use AMS-stylefiles.
  • Accepted an
    invitation to give a master-course on noncommutative geometry in Granada in 2005 which, combined with
    the master-class here in Antwerp next semester may just be enough
    motivation to rewrite notes.
  • Bought all four volumes of the
    reprinted Winning Ways for your
    Mathematical Plays
    as inspiration for fancy terminology and notation
    (yes, it will be version $\\pi$ and _not_ version $e$).
  • etc.
Leave a Comment

double Poisson algebras

This morning,
Michel Van den Bergh
posted an interesting paper on the arXiv
entitled Double
Poisson Algebras
. His main motivation was the construction of a
natural Poisson structure on quotient varieties of representations of
deformed multiplicative preprojective algebras (introduced by
Crawley-Boevey and Shaw in Multiplicative
preprojective algebras, middle convolution and the Deligne-Simpson
problem
) which he achieves by extending his double Poisson structure
on the path algebra of the quiver to the 'obvious' universal
localization, that is the one by inverting all $1+aa^{\star} $ for $a $ an
arrow and $a^{\star} $ its double (the one in the other direction).
For me the more interesting fact of this paper is that his double
bracket on the path algebra of a double quiver gives finer information
than the _necklace Lie algebra_ as defined in my (old) paper with Raf
Bocklandt Necklace
Lie algebras and noncommutative symplectic geometry
. I will
certainly come back to this later when I have more energy but just to
wet your appetite let me point out that Michel calls a _double bracket_
on an algebra $A $ a bilinear map
$\{ \{ -,- \} \}~:~A \times A
\rightarrow A \otimes A $
which is a derivation in the _second_
argument (for the outer bimodulke structure on $A $) and satisfies
$\{ \{ a,b \} \} = – \{ \{ b,a \} \}^o $ with $~(u \otimes v)^0 = v
\otimes u $
Given such a double bracket one can define an ordinary
bracket (using standard Hopf-algebra notation)
$\{ a,b \} = \sum
\{ \{ a,b \} \}_{(1)} \{ \{ a,b \} \}_{(2)} $
which makes $A $ into
a Loday
algebra
and induces a Lie algebra structure on $A/[A,A] $. He then
goes on to define such a double bracket on the path algebra of a double
quiver in such a way that the associated Lie structure above is the
necklace Lie algebra.

2 Comments

anyone interested

I've been here before! I mean, I did try to set up
non-commutative algebra&geometry sites before and sooner or later
they always face the same basic problems :

a :
dyspnoea : one person does not have enough fresh ideas
to keep a mathematical site updated daily so that it continues to be of
interest (at least, I'm not one of those who can).

b :
claustrophobia : the topic of non-commutative algebra
& non-commutative geometry is too wide to be covered (cornered) by
one person. More (and differing) views are needed for balance and
continued interest.

c : paranoia : if one is
not entirely naive one has to exercise some restraint trying to protect
ones research plans (or those of students) so the most interesting ideas
never even get posted!

By definition, I cannot solve problems
a) and b) on my own. All I can hope is that, now that the basic
technological problems (such as including LaTeX-code in posts) are
solved, other people are willing to contribute. For this reason I
'depersonalized' this blog : I changed the title, removed all
personal links in the sidebar and so on. I want to open up this site
(but as I said, I've tried this before without much success) to
anyone working in non-commutative algebra and/or non-commutative
geometry who is willing to contribute posts on at least a monthly basis
(or fortnightly, weekly, daily…) for the foreseeable future. At
the moment the following 'categories' of posts are available
(others can be added on request) :

  • courses : if you want
    to tell about your topic of interest in small daily or weekly pieces.
  • columns : if you want to ventilate an opinion on something
    related (even vaguely) to na&g.
  • nc-algebra : for anything
    on non-commutative algebra not in the previous categories.
  • nc-geometry : for anything on non-commutative geometry not in the
    previous categories.
  • this blog : for suggestions or
    explanations on the technology of this site.

Mind you,
I am not looking for people who seek a forum to post
their questions (such people can still add questions as comments to
related posts) but rather for people active in na&g with a personal
opinion on relevance and future of the topic.
If you are
interested in contributing, please email me and we will work
something out. I'll also post information for authors (such as, how
to include tex, how to set restrictions etc.) in a _sticky_ post
soon.

Now, problem c) : in running sites for our master class
on noncommutative geometry I've noticed that some people are more
willing to post lectures notes etc. if they know that there is some
control on who can download their material. For this reason there will
be viewing restrictions on certain posts. Such posts will get a
padlock-sign next to them in the 'recent posts' sidebar (they
will not show up in your main page, if you are not authorized to see
them). I will add another sticky on all of this soon. For now, if you
would only be willing to contribute if there was this safeguard, rest
assured, it will be there soon. All others can of course already sign-up
or wait whether any of these plans (resp. day-dreams) ever work
out….

update (febr 2007) : still waiting
but the padlock idea is abandoned.

Leave a Comment

cotangent bundles

The
previous post in this sequence was [moduli spaces][1]. Why did we spend
time explaining the connection of the quiver
$Q~:~\xymatrix{\vtx{} \ar[rr]^a & & \vtx{} \ar@(ur,dr)^x} $
to moduli spaces of vectorbundles on curves and moduli spaces of linear
control systems? At the start I said we would concentrate on its _double
quiver_ $\tilde{Q}~:~\xymatrix{\vtx{} \ar@/^/[rr]^a && \vtx{}
\ar@(u,ur)^x \ar@(d,dr)_{x^*} \ar@/^/[ll]^{a^*}} $ Clearly,
this already gives away the answer : if the path algebra $C Q$
determines a (non-commutative) manifold $M$, then the path algebra $C
\tilde{Q}$ determines the cotangent bundle of $M$. Recall that for a
commutative manifold $M$, the cotangent bundle is the vectorbundle
having at the point $p \in M$ as fiber the linear dual $(T_p M)^*$ of
the tangent space. So, why do we claim that $C \tilde{Q}$
corresponds to the cotangent bundle of $C Q$? Fix a dimension vector
$\alpha = (m,n)$ then the representation space
$\mathbf{rep}_{\alpha}~Q = M_{n \times m}(C) \oplus M_n(C)$ is just
an affine space so in its point the tangent space is the representation
space itself. To define its linear dual use the non-degeneracy of the
_trace pairings_ $M_{n \times m}(C) \times M_{m \times n}(C)
\rightarrow C~:~(A,B) \mapsto tr(AB)$ $M_n(C) \times M_n(C)
\rightarrow C~:~(C,D) \mapsto tr(CD)$ and therefore the linear dual
$\mathbf{rep}_{\alpha}~Q^* = M_{m \times n}(C) \oplus M_n(C)$ which is
the representation space $\mathbf{rep}_{\alpha}~Q^s$ of the quiver
$Q^s~:~\xymatrix{\vtx{} & & \vtx{} \ar[ll] \ar@(ur,dr)} $
and therefore we have that the cotangent bundle to the representation
space $\mathbf{rep}_{\alpha}~Q$ $T^* \mathbf{rep}_{\alpha}~Q =
\mathbf{rep}_{\alpha}~\tilde{Q}$ Important for us will be that any
cotangent bundle has a natural _symplectic structure_. For a good
introduction to this see the [course notes][2] “Symplectic geometry and
quivers” by [Geert Van de Weyer][3]. As a consequence $C \tilde{Q}$
can be viewed as a non-commutative symplectic manifold with the
symplectic structure determined by the non-commutative 2-form
$\omega = da^* da + dx^* dx$ but before we can define all this we
will have to recall some facts on non-commutative differential forms.
Maybe [next time][4]. For the impatient : have a look at the paper by
Victor Ginzburg [Non-commutative Symplectic Geometry, Quiver varieties,
and Operads][5] or my paper with Raf Bocklandt [Necklace Lie algebras
and noncommutative symplectic geometry][6]. Now that we have a
cotangent bundle of $C Q$ is there also a _tangent bundle_ and does it
again correspond to a new quiver? Well yes, here it is
$\xymatrix{\vtx{} \ar@/^/[rr]^{a+da} \ar@/_/[rr]_{a-da} & & \vtx{}
\ar@(u,ur)^{x+dx} \ar@(d,dr)_{x-dx}} $ and the labeling of the
arrows may help you to work through some sections of the Cuntz-Quillen
paper…

[1]: http://www.neverendingbooks.org/index.php?p=39
[2]: http://www.win.ua.ac.be/~gvdwey/lectures/symplectic_moment.pdf
[3]: http://www.win.ua.ac.be/~gvdwey/
[4]: http://www.neverendingbooks.org/index.php?p=41
[5]: http://www.arxiv.org/abs/math.QA/0005165
[6]: http://www.arxiv.org/abs/math.AG/0010030

2 Comments

nog course outline

Now that the preparation for my undergraduate courses in the first semester is more or less finished, I can begin to think about the courses I’ll give this year in the master class
non-commutative geometry. For a change I’d like to introduce the main ideas and concepts by a very concrete example : Ginzburg’s coadjoint-orbit result for the Calogero-Moser space and its
relation to the classification of one-sided ideals in the first Weyl algebra. Not only will this example give me the opportunity to say things about formally smooth algebras, non-commutative
differential forms and even non-commutative symplectic geometry, but it also involves what some people prefer to call _non-commutative algebraic geometry_ (that is the study of graded Noetherian
rings having excellent homological properties) via the projective space associated to the homogenized Weyl algebra. Besides, I have some affinity with this example.

A long time ago I introduced
the moduli spaces for one-sided ideals in the Weyl algebra in Moduli spaces for right ideals of the Weyl algebra and when I was printing a _very_ preliminary version of Ginzburg’s paper
Non-commutative Symplectic Geometry, Quiver varieties, and Operads (probably because he send a preview to Yuri Berest and I was in contact with him at the time about the moduli spaces) the
idea hit me at the printer that the right way to look at the propblem was to consider the quiver

$\xymatrix{\vtx{} \ar@/^/[rr]^a & & \vtx{} \ar@(u,ur)^x \ar@(d,dr)_y \ar@/^/[ll]^b} $

which eventually led to my paper together with Raf Bocklandt Necklace Lie algebras and noncommutative symplectic geometry.

Apart from this papers I would like to explain the following
papers by illustrating them on the above example : Michail Kapranov Noncommutative geometry based on commutator expansions Maxim Kontsevich and Alex Rosenberg Noncommutative smooth
spaces
Yuri Berest and George Wilson Automorphisms and Ideals of the Weyl Algebra Yuri Berest and George Wilson Ideal Classes of the Weyl Algebra and Noncommutative Projective
Geometry
Travis Schedler A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver and of course the seminal paper by Joachim Cuntz and Daniel Quillen on
quasi-free algebras and their non-commutative differential forms which, unfortunately, in not available online.

I plan to write a series of posts here on all this material but I will be very
happy to get side-tracked by any comments you might have. So please, if you are interested in any of this and want to have more information or explanation do not hesitate to post a comment (only
your name and email is required to do so, you do not have to register and you can even put some latex-code in your post but such a posting will first have to viewed by me to avoid cluttering of
nonsense GIFs in my directories).

One Comment

more noncommutative manifolds

Can
it be that one forgets an entire proof because the result doesn’t seem
important or relevant at the time? It seems the only logical explanation
for what happened last week. Raf Bocklandt asked me whether a
classification was known of all group algebras l G which are
noncommutative manifolds (that is, which are formally smooth a la Kontsevich-Rosenberg or, equivalently, quasi-free
a la Cuntz-Quillen). I said I didn’t know the answer and that it looked
like a difficult problem but at the same time it was entirely clear to
me how to attack this problem, even which book I needed to have a look
at to get started. And, indeed, after a visit to the library borrowing
Warren Dicks
lecture notes in mathematics 790 “Groups, trees and projective
modules” and browsing through it for a few minutes I had the rough
outline of the classification. As the proof is basicly a two-liner I
might as well sketch it here.
If l G is quasi-free it
must be hereditary so the augmentation ideal must be a projective
module. But Martin Dunwoody proved that this is equivalent to
G being a group acting on a (usually infinite) tree with finite
group vertex-stabilizers all of its orders being invertible in the
basefield l. Hence, by Bass-Serre theory G is the
fundamental group of a graph of finite groups (all orders being units in
l) and using this structural result it is then not difficult to
show that the group algebra l G does indeed have the lifting
property for morphisms modulo nilpotent ideals and hence is
quasi-free.
If l has characteristic zero (hence the
extra order conditions are void) one can invoke a result of Karrass
saying that quasi-freeness of l G is equivalent to G being
virtually free (that is, G has a free subgroup of finite
index). There are many interesting examples of virtually free groups.
One source are the discrete subgroups commensurable with SL(2,Z)
(among which all groups appearing in monstrous moonshine), another
source comes from the classification of rank two vectorbundles over
projective smooth curves over finite fields (see the later chapters of
Serre’s Trees). So
one can use non-commutative geometry to study the finite dimensional
representations of virtually free groups generalizing the approach with
Jan Adriaenssens in Non-commutative covers and the modular group (btw.
Jan claims that a revision of this paper will be available soon).
In order to avoid that I forget all of this once again, I’ve
written over the last couple of days a short note explaining what I know
of representations of virtually free groups (or more generally of
fundamental algebras of finite graphs of separable
l-algebras). I may (or may not) post this note on the arXiv in
the coming weeks. But, if you have a reason to be interested in this,
send me an email and I’ll send you a sneak preview.

Leave a Comment