Skip to content →

Tag: modular

symmetry and the monster

Mark
Ronan
has written a beautiful book intended for the general public
on Symmetry and the Monster. The
book’s main theme is the classification of the finite simple groups. It
starts off with the introduction of groups by Galois, gives the
classifivcation of the finite Lie groups, the Feit-Thompson theorem and
the construction of several of the sporadic groups (including the
Mathieu groups, the Fischer and Conway groups and clearly the
(Baby)Monster), explains the Leech lattice and the Monstrous Moonshine
conjectures and ends with Richard Borcherds proof of them using vertex
operator algebras. As in the case of Music of the
Primes
it is (too) easy to be critical about notation. For example,
whereas groups are just called symmetry groups, I don’t see the point of
calling simple groups ‘atoms of symmetry’. But, unlike du Sautoy,
Mark Ronan stays close to mathematical notation, lattices are just
lattices, characer-tables are just that, j-function is what it is etc.
And even when he simplifies established teminology, for example
‘cyclic arithmetic’ for modular arithmetic, ‘cross-section’
for involution centralizer, ‘mini j-functions’ for Hauptmoduln
etc. there are footnotes (as well as a glossary) mentioning the genuine
terms. Group theory is a topic with several colourful people
including the three Johns John Leech, John
McKay
and John Conway
and several of the historical accounts in the book are a good read. For
example, I’ve never known that the three Conway groups were essentially
discovered in just one afternoon and a few telephone exchanges between
Thompson and Conway. This year I’ve tried to explain some of
monstrous moonshine to an exceptionally good second year of
undergraduates but failed miserably. Whereas I somehow managed to give
the construction and proof of simplicity of Mathieu 24, elliptic and
modular functions were way too difficult for them. Perhaps I’ll give it
another (downkeyed) try using ‘Symmetry and the Monster’ as
reading material. Let’s hope Oxford University Press will soon release a
paperback (and cheaper) version.

Leave a Comment

why nag? (1)

Let us
take a hopeless problem, motivate why something like non-commutative
algebraic geometry might help to solve it, and verify whether this
promise is kept.

Suppose we want to know all solutions in invertible
matrices to the braid relation (or Yang-Baxter equation)

X Y X
= Y X Y

All such solutions (for varying size of matrices)
form an additive Abelian category \mathbf{rep}~B_3, so a big step forward would be to know all its
simple solutions (that is, those whose matrices cannot be brought in
upper triangular block form). A literature check shows that even this
task is far too ambitious. The best result to date is the classification
due to Imre Tuba and
Hans Wenzl
of simple solutions of which the matrix size is at most
5.

For fixed matrix size n, finding solutions in \mathbf{rep}~B_3 is the same as solving a system of n^2 cubic
polynomial relations in 2n^2
unknowns, which quickly becomes a daunting task. Algebraic geometry
tells us that all solutions, say \mathbf{rep}_n~B_3 form an affine closed subvariety of n^2-dimensional affine space. If we assume that \mathbf{rep}_n~B_3 is a smooth variety (that is, a manifold) and
if we know one solution explicitly, then we can use the tangent space in
this point to linearize the problem and to get at all solutions in a
neighborhood.

So, here is an idea : assume that \mathbf{rep}~B_3 itself would be a non-commutative manifold, then
we might linearize our problem by considering tangent spaces and obtain
new solutions out of already known ones. But, what is a non-commutative
manifold? Well, by the above we at least require that for all integers n
the commutative variety \mathbf{rep}_n~B_3 is a commutative manifold.

But, there
is still some redundancy in our problem : if (X,Y) is a
solution, then so is any conjugated pair (g^{-1}Xg,g^{-1}Yg) where g \in
GL_n is a basechange matrix. In categorical terms, we are only
interested in isomorphism classes of solutions. Again, if we fix the
size n of matrix-solutions, we consider the affine variety \mathbf{rep}_n~B_3 as a variety with a GL_n-action
and we like to classify the orbits of simple solutions. If \mathbf{rep}_n~B_3 is a manifold then the theory of Luna slices
provides a method, both to linearize the problem as well as to reduce
its complexity. Instead of the tangent space we consider the normal
space N to the GL_n-orbit
(in a suitable solution). On this affine space, the stabilizer subgroup
GL(\alpha) acts and there is a natural one-to-one
correspondence between GL_n-orbits
in \mathbf{rep}_n~B_3 and GL(\alpha)-orbits in the normal space N (at least in a
neighborhood of the solution).

So, here is a refinement of the
idea : we would like to view \mathbf{rep}~B_3 as a non-commutative manifold with a group action
given by the notion of isomorphism. Then, in order to get new isoclasses
of solutions from a constructed one we want to reduce the size of our
problem by considering a linearization (the normal space to the orbit)
and on it an easier isomorphism problem.

However, we immediately
encounter a problem : calculating ranks of Jacobians we discover that
already \mathbf{rep}_2~B_3 is not a smooth variety so there is not a
chance in the world that \mathbf{rep}~B_3 might be a useful non-commutative manifold.
Still, if (X,Y) is a
solution to the braid relation, then the matrix (XYX)^2
commutes with both X and Y.

If (X,Y) is a
simple solution, this means that after performing a basechange, C=(XYX)^2 becomes a scalar matrix, say \lambda^6 1_n. But then, (X_1,Y_1) =
(\lambda^{-1}X,\lambda^{-1}Y) is a solution to

XYX = YXY , (XYX)^2 = 1

and all such solutions form a
non-commutative closed subvariety, say \mathbf{rep}~\Gamma of \mathbf{rep}~B_3 and if we know all (isomorphism classes of)
simple solutions in \mathbf{rep}~\Gamma we have solved our problem as we just have to
bring in the additional scalar \lambda \in \mathbb{C}^*.

Here we strike gold : \mathbf{rep}~\Gamma is indeed a non-commutative manifold. This can
be seen by identifying \Gamma
with one of the most famous discrete infinite groups in mathematics :
the modular group PSL_2(\mathbb{Z}). The modular group acts by Mobius
transformations on the upper half plane and this action can be used to
write PSL_2(\mathbb{Z}) as the free group product \mathbb{Z}_2 \ast \mathbb{Z}_3. Finally, using
classical representation theory of finite groups it follows that indeed
all \mathbf{rep}_n~\Gamma are commutative manifolds (possibly having
many connected components)! So, let us try to linearize this problem by
looking at its non-commutative tangent space, if we can figure out what
this might be.

Here is another idea (or rather a dogma) : in the
world of non-commutative manifolds, the role of affine spaces is played
by \mathbf{rep}~Q the representations of finite quivers Q. A quiver
is just on oriented graph and a representation of it assigns to each
vertex a finite dimensional vector space and to each arrow a linear map
between the vertex-vector spaces. The notion of isomorphism in \mathbf{rep}~Q is of course induced by base change actions in all
of these vertex-vector spaces. (to be continued)

Leave a Comment

a 2006 chess puzzle anyone?

Noam Elkies is one of
those persons I seem to bump into (figuratively speaking) wherever my
interests take me. At the moment I’m reading (long overdue, I
know, I know) the excellent book Notes on
Fermat’s Last Theorem
by Alf Van der
Poorten
. On page 48, Elkies figures as an innocent bystander in the
1994 April fools joke e-perpetrated by
Henri Darmon
in the midst of all confusion about ‘the
gap’ in Wiles’ proof.

There has
been a really amazing development today on Fermat’s Last Theorem.
Noam Elkies has announced a counterexample, so that FLT is not true
after all! He spoke about this at the institute today. The solution to
Fermat that he constructs involves an incredibly large prime exponent
(larger than $10^{20}$), but it is constructive. The main idea seems to
be a kind of Heegner-point construction, combined with a really
ingenious descent for passing from the modular curves to the Fermat
curve. The really difficult part of the argument seems to be to show
that the field of definition of the solution (which, a priori, is some
ring class field of an imaginary quadratic field) actually descends to
$\\mathbb{Q}$. I wasn’t able to get all the details, which were
quite intricate…

Elkies is also an
excellent composer of chess problems. The next two problems he composed
as New Year’s greetings. The problem is : “How many shortest
sequences exists (with only white playing) to reach the given
position?”

$\\begin{position}
\\White(Kb5,Qd1,Rb1,Rh1,Nc3,Ne5,Bc1,Bf1,a2,b2,c4,d2,e2,f3,g3,h2)
\\end{position}{\\font\\mathbb{C}hess=chess10 \\showboard
}xc $

Here’s Elkies’ solution
:

There are 2004 sequences of the minimal length 12.
Each consists of the sin- gle move g3, the 3-move sequence
c4,Nc3,Rb1, and one of the three 8-move sequences
Nf3,Ne5,f3,Kf2,Ke3,Kd3(d4),Kc4(c5),Kb5. The move g3 may be played at
any point, and so contributes a factor of 12. If the King goes
through c5 then the 3- and 8-move sequences are independent, and can
be played in $\\binom{11}{3}$ orders. If the King goes through c4 then
the entire 8-move sequence must be played before the 3-move sequence
begins, so there are only two possibilities, depending on the choice
of Kd3 or Kd4. Hence the total count is $12(\\binom{11}{3}+2)=2004$ as
claimed.

A year later he composed the
problem

$\\begin{position}
\\White(Kh3,Qe4,Rc2,Rh1,Na4,Ng1,Bc1,Bf1,a2,b2,c3,d3,e2,f4,g2,h2)
\\end{position}{\\font\\mathbb{C}hess=chess10 \\showboard
}xd $

of which Elkies’ solution is
:

There are 2005 sequences of the minimal length 14.
This uses the happy coincidence $\\binom{14}{4}=1001$. Here White
plays the 4-move sequence f4,Kf2,Kg3,Kh3 and one of the five
sequences Nc3,Na4,c3,Qc2,Qe4,d3,Bd2(e3,f4,g5,h6),Rc1,Rc2,Bc1 of
length 10. If the Bishop goes to d2 or e3, the sequences are
independent, and can be played in $\\binom{14}{4}$ orders. Otherwise
the Bishop must return to c1 before White plays f4, so the entire
10-move sequence must be played before the 4-move sequence begins. Hence
the total count is $2 \\binom{14}{4}+3 =
2005$.

With just a few weeks remaining, anyone in for
a 2006 puzzle?

Leave a Comment

necklaces (again)

I have
been posting before on the necklace Lie algebra : on Travis
Schedler's extension of the Lie algebra structure to a Lie bialgebra
and its deformation and more recently
in connection with Michel Van den Bergh's double Poisson paper.
Yesterday, Victor Ginzburg and Travis Schedler posted their paper Moyal quantization of
necklace Lie algebras
on the arXiv in which they give a Moyal-type
construction of the Hopf algebra deformation of the necklace Lie
bialgebra found by Schedler last year.
It would be nice if
someone worked out a few examples of these constructions in full detail.
But as often in the case of (wild) quiver situation it is not clear what
an 'interesting' example might be. For the finite and tame case
we have a full classification by (extended) Dynkin diagrams so a natural
class of examples but it isn't clear how to find gems in the
complement.
One natural source of double quiver situations seems
to come from what I called the One Quiver of a
formally smooth algebra. This one quiver of group algebras of some
interesting arithemetical groups such as the modular group
$PSL_2(\mathbb{Z}) $ and $SL_2(\mathbb{Z}) $ were calculated before and
turned out to be consisting of one (resp. two) components which are the
double of the tame quiver $\tilde{A}_5 $.
To obtain the double of
a wild quiver situation loook at the group $GL_2(\mathbb{Z}) = D_4
\bigstar_{D_2} D_6 $. In a previous post
I thought to have calculated it, but lately I found that this was
incorrect. Even the version I computed last week still had some mistakes
as Raf
Bocklandt
discovered. But as of yesterday we are pretty certain that
the one quiver for $GL_2(\mathbb{Z}) $ consists of two components. One of
these is the double quiver of an interesting wild quiver

$\xymatrix{& \vtx{} \ar@{=}[rr] \ar@{=}[dd] & & \vtx{} \ar@{=}[dd]
\\ \vtx{} \ar@{=}[ur] \ar@{=}[rr] \ar@{=}[dd] & & \vtx{} \ar@{.}[ur]
\ar@{.}[dd] \ar@{=}[dr] \\ & \vtx{} \ar@{.}[rr] \ar@{=}[dr] & & \vtx{}
\\ \vtx{} \ar@{=}[rr] \ar@{.}[ur] & & \vtx{} \ar@{=}[ur]} $

where each double line indicates that there is an arrow in each
direction between the vertices. So, it is an interwoven pattern of one
big cycle of length 6 (reminiscent of the modular group case) with 4
cycles of length 5. Perhaps the associated necklace Lie (bi)algebra and
its deformation might be interesting to work out.
However, the
second component of the one quiver for $GL_2(\mathbb{Z}) $ is _not_
symmetric.Maybe I will come back to the calculation of these quivers
later.

Leave a Comment

ISBN prefix

How to sell
modular arithmetic to students only interested in literature? Well, try
to explain the structure of ISBN-numbers
“The ISBN (International Standard Book Number) is a unique
machine-readable identification number, which marks any book
unmistakably. This number is defined in ISO Standard 2108. The number
has been in use now for 30 years and has revolutionised the
international book-trade. 166 countries and territories are officially
ISBN members. The ISBN accompanies a publication from its production
onwards.” The ISBN-number of a book is a ten-digit number divided into
four parts, separated by hyphens telling you a lot about the ambitions
and location of the book’ publisher. I’ll explain some of it by
telling how I obtained the barcode for the first book to be published by
neverendingbooks.org (see
picture). The first part is the group
identifier
and identifies a country, area or language area
participating in the ISBN system. For the Netherlands and the Flemish
speaking part of Belgium this identifier is 90. Hence,
depending on your location you have to approach different agencies in
order to obtain an ISBN-number. If you are living in the US all you have
to do is to invent a name for your PublishingHouse, get your Visa-card
out and visit isbn.org
. For smaller groups the process is more personal. The first time I
tried to apply for an ISBN-number with De Boekenbank I
messed up and got immediately an email telling me what I did wrong. I
replied explaining what NeverEndingBooks had in mind and asked advice on
how to set it up properly. I’m sure I’ll need this personal contact
again in the near future. The second part is the _Publisher
Identifier_ or _prefix_. I didn’t know this before but the
very definition of a _publisher_ is the person or company
registering a book’s ISBN. Hence, if you intend to publish a series of
books your local ISBN-agency has to reserve a certain amount of
ISBN-numbers for you, all having the same start-block (the prefix). The
shorter the prefix the more ambitious the PublishingHouse. The
registered prefix of NeverEndingBooks is 90809390 which
tells the experienced ISBN-watcher that we intend in the next years to
publish “only” ten books. If you have more energy you can also apply
for a series of 100, 1000 or even 10000 ISBN-numbers but the amount of
money needed to register these series increases quickly… The third
part of the ISBN-number is the _title identifier_ so for our
first book it is just 1. However, in order to register
it you have to provide the agency (minimally) with a title and
publication date (fortunately, author, price, number of pages etc. are
optional at this stage). Anyway, the first real deadline for
NeverEndingBooks will be may 15th 2005! And now it is time to return
to modular arithmetic, the fourth part is a _check digit_. The
check digit is the last digit of an ISBN. It is calculated on a modulus
11 with weights 10-2, using X in lieu of 10 where ten would occur as a
check digit. This means that each of the first nine digits of the ISBN
excluding the check digit itself is multiplied by a number
ranging from 10 to 2 and that the resulting sum of the products, plus
the check digit, must be divisible by 11 without a remainder. In our
case, we have the following numbers(weights) 9(10) 0(9) 8(8)
0(7) 9(6) 3(5) 9(4) 0(3) 1(2)
We have to multiply the numbers
with their weight and add them all up,
90+0+64+0+54+15+36+0+2=261=8(mod 11) whence the check
digit should be 3. For example, I know already that the
ISBN-number of the second book to be published by NeverEndingBooks will
be 90-809390-2-1 but, due to lacking information, it will take a while
before it can be registered.

One Comment

TheLibrary (demo)

It is far from finished but you can already visit a demo-version of
TheLibrary which I hope will one day be a useful collection of
online courses and books on non-commutative algebra & geometry. At
the moment it just contains a few of my own things but I do hope that
others will find the format interesting enough to allow me to include
their courses and/or books. So, please try this demo out! But before you
do, make sure that you have a good webbrowser-plugin to view
PDF-documents from within your browser (rather than having to download
the files). If you are using Macintosh 10.3 or better there is a very
nice plugin freely
available whch you only have to drag into your _/Library/Internet
Plug-Ins/_-folder to get it working (after restarting Safari).
If you click on the title you will get a page with hyper-links to all
bookmarks of the pdf-file (for example, if you have used the hyperref package to
(La)TeX your file, you get these bookmarks for free). If you only have a
PDF-file you can always include the required bookmarks using Acrobat.
No doubt the most useful feature (at this moment) of the set-up is
that all files are fully searchable for keywords.
For example, if
you are at the page of my 3 talks on noncommutative
geometry@n
-course and fill out “Azumaya” in the Search
Document-field you will get a screen like the one below

That is, you wlll get all occurrences of 'Azumaya' in
the document together with some of the context as well as page- or
section-links nearby that you can click to get to the paragraph you are
looking for. In the weeks to come I hope to extend the usability of
_TheLibrary_ by offering a one-page view, modular security
enhancements, a commenting feature as well as a popularity count. But,
as always, this may take longer than I want…
If you think
that the present set-up might already be of interest to readers of your
courses or books and if you have a good PDF-file of it available
(including bookmarks) then email and we will try to include your
material!

Leave a Comment

the one quiver for GL(2,Z)

Before the vacation I finished a rewrite of the One quiver to rule them
all
note. The main point of that note was to associate to any qurve
$A$ (formerly known as a quasi-free algebra in the terminology of
Cuntz-Quillen or a formally smooth algebra in the terminology of
Kontsevich-Rosenberg) a quiver $Q(A)$ and a dimension vector $\alpha_A$
such that $A$ is etale isomorphic (in a yet to be defined
non-commutative etale toplogy) to a ring Morita equivalent to the path
algebra $lQ(A)$ where the Morita setting is determined by the dimension
vector $\alpha_A$. These “one-quiver settings” are easy to
work out for a group algebra $lG$ if $G$ is the amalgamated free product
of finite groups $G = H_1 \bigstar_H H_2$.

Here is how to do
this : construct a bipartite quiver with the left vertices corresponding
to the irreducible representations of $H_1$, say ${ S_1, .. ,S_k }$ of
dimensions $(d_1, .. ,d_k)$ and the right vertices corresponding to the
irreducible representations of $H_2$, ${ T_1, .. ,T_l }$ of dimensions
$(e_1, .. ,e_l)$. The number of arrows from the $i$-th left vertex to
the $j$-th right vertex is given by the dimension of $Hom_H(S_i,T_j)$
This is the quiver I call the Zariski quiver for $G$ as the finite
dimensional $G$-representations correspond to $\theta$-semistable
representations of this quiver for the stability structure $\theta=(d_1,
.. ,d_k ; -e_1, .. ,-e_l)$. The one-quiver $Q(G)$ has vertices
corresponding to the minimal $\theta$-stable dimension vectors (say
$\alpha,\beta, .. $of the Zariski quiver and with the number of arrows
between two such vertices determined by $\delta_{\alpha
\beta}-\chi(\alpha,\beta)$ where $\chi$ is the Euler form of the Zariski
quiver. In the old note I've included the example of the projective
modular group $PSL_2(Z) = Z_2 \bigstar Z_3$ (which can easily be
generalized to the modular group $SL_2(Z) = Z_4 \bigstar_{Z_2} Z_6$)
which turns out to be the double of the extended Dynkin quiver
$\tilde{A_5}$. In the rewrite I've also included an example of a
congruence subgroup $\Gamma_0(2) = Z_4 \bigstar_{Z_2}^{HNN}$ which is an
HNN-extension. These are somehow the classical examples of interesting
amalgamated (HNN) groups and one would like to have plenty of other
interesting examples. Yesterday I read a paper by Karen Vogtmann called

Automorphisms of free groups and outer space
in which I encountered
an amalgamated product decomposition for $GL_2(Z) = D_8 \bigstar_{Z_2
\times Z_2} (S_3 \times Z_2)$where $D_8$ is the diheder group of 8
elements. When I got back from vacation I found a reference to this
result in my mail-box from Warren Dicks. Theorem 23.1, p. 82, in Heiner
Zieschang, Finite Groups of Mapping Classes of Surfaces, LNM 875,
Springer, Berlin, 1981.

I worked out the one-quiver and it has
the somewhat strange form depicted above. It is perfectly possible that
I made mistakes so if you find another result, please let me know.

added material (febr 2007) : mistakes were made and
the correct one quiver can be found elsewhere on this blog.

Leave a Comment

more noncommutative manifolds

Can
it be that one forgets an entire proof because the result doesn’t seem
important or relevant at the time? It seems the only logical explanation
for what happened last week. Raf Bocklandt asked me whether a
classification was known of all group algebras l G which are
noncommutative manifolds (that is, which are formally smooth a la Kontsevich-Rosenberg or, equivalently, quasi-free
a la Cuntz-Quillen). I said I didn’t know the answer and that it looked
like a difficult problem but at the same time it was entirely clear to
me how to attack this problem, even which book I needed to have a look
at to get started. And, indeed, after a visit to the library borrowing
Warren Dicks
lecture notes in mathematics 790 “Groups, trees and projective
modules” and browsing through it for a few minutes I had the rough
outline of the classification. As the proof is basicly a two-liner I
might as well sketch it here.
If l G is quasi-free it
must be hereditary so the augmentation ideal must be a projective
module. But Martin Dunwoody proved that this is equivalent to
G being a group acting on a (usually infinite) tree with finite
group vertex-stabilizers all of its orders being invertible in the
basefield l. Hence, by Bass-Serre theory G is the
fundamental group of a graph of finite groups (all orders being units in
l) and using this structural result it is then not difficult to
show that the group algebra l G does indeed have the lifting
property for morphisms modulo nilpotent ideals and hence is
quasi-free.
If l has characteristic zero (hence the
extra order conditions are void) one can invoke a result of Karrass
saying that quasi-freeness of l G is equivalent to G being
virtually free (that is, G has a free subgroup of finite
index). There are many interesting examples of virtually free groups.
One source are the discrete subgroups commensurable with SL(2,Z)
(among which all groups appearing in monstrous moonshine), another
source comes from the classification of rank two vectorbundles over
projective smooth curves over finite fields (see the later chapters of
Serre’s Trees). So
one can use non-commutative geometry to study the finite dimensional
representations of virtually free groups generalizing the approach with
Jan Adriaenssens in Non-commutative covers and the modular group (btw.
Jan claims that a revision of this paper will be available soon).
In order to avoid that I forget all of this once again, I’ve
written over the last couple of days a short note explaining what I know
of representations of virtually free groups (or more generally of
fundamental algebras of finite graphs of separable
l-algebras). I may (or may not) post this note on the arXiv in
the coming weeks. But, if you have a reason to be interested in this,
send me an email and I’ll send you a sneak preview.

Leave a Comment

capita selecta


Rather than going to the NOG
III Workshop
I think it is more fun to give a talk for the Capita
Selecta
-course for 2nd year students on “Monstrous Moonshine”. If
I manage to explain to them at least something, I think I am in good
shape for next year\’s Baby Geometry (first year) course. Besides,
afterwards I may decide to give some details of Borcherds\’ solution next year in my 3rd year
Geometry-course…(but this may just be a little bit
over-optimistic).
Anyway, this is what I plan to do in my
lecture : explain both sides of the McKay-observation
that

196 884 = 196 883 + 1

that is, I\’ll give
the action of the modular group on the upper-half plane and prove that
its fundamental domain is just C using the modular j-function (left hand
side) and sketch the importance of the Monster group and its
representation theory (right hand side). Then I\’ll mention Ogg\’s
observation that the only subgroups Gamma(0,p)+ of SL(2,Z)
for which the fundamental domain has genus zero are the prime divisors
p of teh order of the Monster and I\’ll come to moonshine
conjecture of Conway and Norton (for those students who did hear my talk
on Antwerp sprouts, yes both Conway and Simon Norton (via his
SNORT-go) did appear there too…) and if time allows it, I\’ll sketch
the main idea of the proof. Fortunately, Richard Borcherds has written
some excellent expository papers I can use (see his papers-page and I also discovered a beautiful
moonshine-page by Helena Verrill which will make my job a lot
easier.
Btw. yesterday\’s Monster was taken from her other monster story…

Leave a Comment

Borcherds’ monster papers


Yesterday morning I thought that I could use some discussions I had a
week before with Markus Reineke to begin to make sense of one
sentence in Kontsevich’ Arbeitstagung talk Non-commutative smooth
spaces :

It seems plausible that Borcherds’ infinite rank
algebras with Monstrous symmetry can be realized inside Hall-Ringel
algebras for some small smooth noncommutative
spaces

However, as I’m running on a 68K RAM-memory, I
didn’t recall the fine details of all connections between the monster,
moonshine, vertex algebras and the like. Fortunately, there is the vast
amount of knowledge buried in the arXiv and a quick search on Borcherds gave me a
list of 17 papers. Among
these there are some delightful short (3 to 8 pages) expository papers
that gave me a quick recap on things I once must have read but forgot.
Moreover, Richard Borcherds has the gift of writing at the same time
readable and informative papers. If you want to get to the essence of
things in 15 minutes I can recommend What
is a vertex algebra?
(“The answer to the question in the title is
that a vertex algebra is really a sort of commutative ring.”), What
is moonshine?
(“At the time he discovered these relations, several
people thought it so unlikely that there could be a relation between the
monster and the elliptic modular function that they politely told McKay
that he was talking nonsense.”) and What
is the monster?
(“3. It is the automorphism group of the monster
vertex algebra. (This is probably the best answer.)”). Borcherds
maintains also his homepage on which I found a few more (longer)
expository papers : Problems in moonshine and Automorphic forms and Lie algebras. After these
preliminaries it was time for the real goodies such as The
fake monster formal group
, Quantum vertex algebras and the like.
After a day of enjoyable reading I think I’m again ‘a point’
wrt. vertex algebras. Unfortunately, I completely forgot what all this
could have to do with Kontsevich’ remark…

Leave a Comment