Skip to content →

Tag: Galois

Monsieur Mathieu

Even a virtual course needs an opening line, so here it is : Take your favourite $SL_2(\mathbb{Z}) $-representation Here is mine : the permutation presentation of the Mathieu group(s). Emile Leonard Mathieu is remembered especially for his discovery (in 1861 and 1873) of five sporadic simple groups named after him, the Mathieu groups $M_{11},M_{12},M_{22},M_{23} $ and $M_{24} $. These were studied in his thesis on transitive functions. He had a refreshingly direct style
of writing. I’m not sure what Cauchy would have thought (Cauchy died in 1857) about this ‘acknowledgement’ in his 1861-paper in which Mathieu describes $M_{12} $ and claims the construction of $M_{24} $.

Also the opening sentenses of his 1873 paper are nice, something along the lines of “if no expert was able to fill in the details of my claims made twelve years ago, I’d better do it myself”.

However, even after this paper opinions remained divided on the issue whether or not he did really achieve his goal, and the matter was settled decisively by Ernst Witt connecting the Mathieu groups to Steiner systems (if I recall well from Mark Ronan’s book Symmetry and the monster)

As Mathieu observed, the quickest way to describe these groups would be to give generators, but as these groups are generated by two permutations on 12 respectively 24 elements, we need to have a mnemotechnic approach to be able to reconstruct them whenever needed.

Here is a nice approach, due to Gunther Malle in a Luminy talk in 1993 on “Dessins d’enfants” (more about them later). Consider the drawing of “Monsieur Mathieu” on the left. That is, draw the left-handed bandit picture on 6 edges and vertices, divide each edge into two and give numbers to both parts (the actual numbering is up to you, but for definiteness let us choose the one on the left). Then, $M_{12} $ is generated by the order two permutation describing the labeling of both parts of the edges

$s=(1,2)(3,4)(5,8)(7,6)(9,12)(11,10) $

together with the order three permutation obtained from cycling counterclockwise
around a trivalent vertex and calling out the labels one encounters. For example, the three cycle corresponding to the ‘neck vertex’ is $~(1,2,3) $ and the total permutation
is

$t=(1,2,3)(4,5,6)(8,9,10) $

A quick verification using GAP tells that these elements do indeed generate a simple group of order 95040.

Similarly, if you have to reconstruct the largest Mathieu group from scratch, apply the same method to the the picture above or to “ET Mathieu” drawing on the left. This picture I copied from Alexander Zvonkin‘s paper How to draw a group as well as the computational details below.

This is all very nice and well but what do these drawings have to do with Grothendieck’s “dessins d’enfants”? Consider the map from the projective line onto itself

$\mathbb{P}^1_{\mathbb{C}} \rightarrow \mathbb{P}^1_{\mathbb{C}}$

defined by the rational map

$f(z) = \frac{(z^3-z^2+az+b)^3(z^3+cz^2+dz+e)}{Kz} $

where N. Magot calculated that

$a=\frac{107+7 \sqrt{-11}}{486},
b=-\frac{13}{567}a+\frac{5}{1701}, c=-\frac{17}{9},
d=\frac{23}{7}a+\frac{256}{567},
e=-\frac{1573}{567}a+\frac{605}{1701} $

and finally

$K =
-\frac{16192}{301327047}a+\frac{10880}{903981141} $

One verifies that this map is 12 to 1 everywhere except over the points ${
0,1,\infty } $ (that is, there are precisely 12 points mapping under f to a given point of $\mathbb{P}^1_{\mathbb{C}} – { 0,1,\infty } $. From the expression of f(z) it is clear that over 0 there lie 6 points (3 of which with multiplicity three, the others of multiplicity one). Over $\infty $ there are two points, one with multiplicity 11 and one with multiplicity one. The difficult part is to compute the points lying over 1. The miraculous fact of the given values is that

$f(z)-1 = \frac{-B(z)^2}{Kz} $

where

$B(z)=z^6+\frac{1}{11}(10c-8)z^5+(5a+9d-7c)z^4+(2b+4ac+8e-6d)z^3+$
$(3ad+bc-5e)z^2+2aez-be) $

and hence there are 6 points lying over 1 each with mutiplicity two.

Right, now consider the complex projective line $\mathbb{P}^1_{\mathbb{C}} $ as the Riemann sphere $S^2 $ and mark the six points lying over 1 by a white vertex and the six points lying over 0 with a black vertex (in the source sphere). Now, lift the real interval $[0,1] $ in the target sphere $\mathbb{P}^1_{\mathbb{C}} = S^2 $ to its inverse image on the source sphere. As there are exactly 12 points lying over each real
number $0 \lneq r \lneq 1 $, this inverse image will consist of 12 edges which are noncrossing and each end in one black and one white vertex. The obtained graph will look like the \”Monsieur Mathieu\” drawing above with the vertices corresponding to the black vertices and the three points over 1 of multiplicity three corresponding to the
trivalent vertices, those of multiplicity one to the three end-vertices. The white vertices correspond to mid-points of the six edges, so that we do get a drawing with twelve edges, one corresponding to each number. From the explicit description of f(z) it is clear that this map is defined over $\mathbb{Q}\sqrt{-11} $ which is also the
smallest field containing all character-values of the Mathieu group $M_{12} $. Further, the Galois group of the extension $Gal(\mathbb{Q}\sqrt{-11}/\mathbb{Q}) =
\mathbb{Z}/2\mathbb{Z} $ and is generated by complex conjugation. So, one might wonder what would happen if we replaced in the definition of the rational map f(z) the value of a by $a = \frac{107-\sqrt{-11}}{486} $. It turns out that this modified map has the same properties as $f(z) $ so again one can draw on the source sphere a picture consisting of twelve edges each ending in a white and black vertex.

If we consider the white vertices (which incidentally each lie on two edges as all points lying over 0 are of multiplicity two) as mid-points of longer edges connecting the
black vertices we obtain a drawing on the sphere which looks like \”Monsieur Mathieu\” but this time as a right handed bandit, and applying our mnemotechnic rule we obtain _another_ (non conjugated) embedding of $M_{12} $ in the full symmetric group on 12 vertices.

What is the connection with $SL_2(\mathbb{Z}) $-representations? Well, the permutation generators s and t of $M_{12} $ (or $M_{24} $ for that matter) have orders two and three, whence there is a projection from the free group product $C_2 \star C_3 $ (here $C_n $ is just the cyclic group of order n) onto $M_{12} $ (respectively $M_{24} $). Next
time we will say more about such free group products and show (among other things) that $PSL_2(\mathbb{Z}) \simeq C_2 \star C_3 $ whence the connection with $SL_2(\mathbb{Z}) $. In a following lecture we will extend the Monsieur Mathieu example to
arbitrary dessins d\’enfants which will allow us to assign to curves defined over $\overline{\mathbb{Q}} $ permutation representations of $SL_2(\mathbb{Z}) $ and other _cartographic groups_ such as the congruence subgroups $\Gamma_0(2) $ and
$\Gamma(2) $.

9 Comments

master class 2007

Next
week our master programme on noncommutative geometry
will start. Here is the list of all international mini-courses (8 hours
each) and firm or tentative dates. For the latest update, it is always
best to check with the Arts seminar
website
.

  • Hans-Juergen Schneider (Munich) “Hopf Galois extensions and
    quotient theory of Hopf algebras”. February 20-23 each day from
    10h30-12h30.

  • Markus Reineke
    (Wuppertal) “Representations of quivers”. February 27-28, March 1-2
    each day from 10h30-12h30.


  • Arthur Ruuge
    (Moscow) “Semiclassical approximation of quantum
    mechanics”. March 6-9 each day from 10h30-12h30.
  • Rupert Yu
    (Poitiers) in March or April.
  • Isar Stubbe (Antwerp) in April.
  • Fred Van Oystayen (Antwerp) in April.
  • Raf
    Bocklandt (Antwerp) in April or May.
  • Goro Kato (Los Angeles)
    in May.
  • Florin Panaite (Bucharest) in May.
  • Pjotr
    Hajac (Warsaw) in June.

Apart from these mini-courses
there will be four regular courses (approx. 30hrs each) during the whole
semester.

  • Raf Bocklandt “Knot theory”.
  • Lieven Le Bruyn “Noncommutative geometry”.
  • Geert Van
    de Weyer “Quantum groups”.
  • Fred Van Oysyaeyen
    “Noncommutative algebra”.

<

p>Dates and places of all
lectures will be made available through the Arts seminar
site
.

Leave a Comment

2006 paper nominees

Here are
my nominees for the 2006 paper of the year award in mathematics &
mathematical physics : in math.RA : math.RA/0606241
: Notes on A-infinity
algebras, A-infinity categories and non-commutative geometry. I
by

Maxim Kontsevich
and
Yan Soibelman
. Here is the abstract :

We develop
geometric approach to A-infinity algebras and A-infinity categories
based on the notion of formal scheme in the category of graded vector
spaces. Geometric approach clarifies several questions, e.g. the notion
of homological unit or A-infinity structure on A-infinity functors. We
discuss Hochschild complexes of A-infinity algebras from geometric point
of view. The paper contains homological versions of the notions of
properness and smoothness of projective varieties as well as the
non-commutative version of Hodge-to-de Rham degeneration conjecture. We
also discuss a generalization of Deligne’s conjecture which includes
both Hochschild chains and cochains. We conclude the paper with the
description of an action of the PROP of singular chains of the
topological PROP of 2-dimensional surfaces on the Hochschild chain
complex of an A-infinity algebra with the scalar product (this action is
more or less equivalent to the structure of 2-dimensional Topological
Field Theory associated with an “abstract” Calabi-Yau
manifold).

why ? : Because this paper
probably gives the correct geometric object associated to a
non-commutative algebra (a huge coalgebra) and consequently the right
definition of a map between noncommutative affine schemes. In a previous post (and its predecessors) I’ve
tried to explain how this links up with my own interpretation and since
then I’ve thought more about this, but that will have to wait for
another time. in hep-th : hep-th/0611082 : Children’s Drawings From
Seiberg-Witten Curves
by Sujay K. Ashok, Freddy Cachazo, Eleonora
Dell’Aquila. Here is the abstract :

We consider N=2
supersymmetric gauge theories perturbed by tree level superpotential
terms near isolated singular points in the Coulomb moduli space. We
identify the Seiberg-Witten curve at these points with polynomial
equations used to construct what Grothendieck called “dessins
d’enfants” or “children’s drawings” on the Riemann
sphere. From a mathematical point of view, the dessins are important
because the absolute Galois group Gal(\bar{Q}/Q) acts faithfully on
them. We argue that the relation between the dessins and Seiberg-Witten
theory is useful because gauge theory criteria used to distinguish
branches of N=1 vacua can lead to mathematical invariants that help to
distinguish dessins belonging to different Galois orbits. For instance,
we show that the confinement index defined in hep-th/0301006 is a Galois
invariant. We further make some conjectures on the relation between
Grothendieck’s programme of classifying dessins into Galois orbits and
the physics problem of classifying phases of N=1 gauge theories.

why ? : Because this paper gives the
best introduction I’ve seen to Grothendieck’s dessins d’enfants
(slightly overdoing it by giving a crash course on elementary Galois
theory in appendix A) and kept me thinking about dessins and their
Galois invariants ever since (again, I’ll come back to this later).

Leave a Comment

football representation theory

Unless
you never touched a football in your life (that’s a _soccer-ball_
for those of you with an edu account) you will know that the world
championship in Germany starts tonight. In the wake of it, the field of
‘football-science’ is booming. The BBC runs its The
Science of Football-site
and did you know the following?

Research indicates that watching such a phenomenon is not
only exciting, it can be good for our health too. The Scottish
researchers found that there were 14% fewer psychiatric admissions in
the weeks after one World Cup than before it started.

But, would you believe that some of the best people in the field
(Kostant and Sternberg to name a few) have written papers on the
representation theory of a football? Perhaps this becomes more plausible
when you realize that a football has the same shape as the buckyball aka Carbon60.
Because the football (or buckyball) is a truncated icosahedron, its
symmetry group is $A_5$, the smallest of all simple groups and its
representations explain some physical properties of the buckyball. Some
of these papers are freely available and are an excellent read. In fact,
I’m thinking of using them in my course on representations of finite
groups, nxt year. Mathematics and the Buckyball by Fan
Chung and Schlomo Sternberg is a marvelous introduction to
representation theory. Among other things they explain how Schur’s
lemma, Frobenius reciprocity and Maschke’s theorem are used to count the
number of lines in the infra red buckyball spectrum! The Graph of the
Truncated Icosahedron and the Last Letter of Galois
by Bertram
Kostant explains the observation, first made by Galois in his last
letter to Chevalier, that $A_{5} = PSL_2(\mathbb{F}_5)$ embeds into
$PSL_{2}(\mathbb{F}_{11})$ and applies this to the buckyball.

In effect, the model we are proposing for C60is such that
each carbon atom can be labeled by an element of order 11 in PSl(2,11)
in such a fashion that the carbon bonds can be expressed in terms of the
group structure of PSl(2,11). It will be seen that the twelve pentagons
are exactly the intersections of M with the twelve Borel sub- groups of
PSl(2,11). (A Borel subgroup is any subgroup which is conjugate to the
group PSl(2,11) defined in (2).) In particular the pentagons are the
maximal sets of commuting elements in M. The most subtle point is the
natural existence of the hexagonal bonds. This will arise from a group
theoretic linkage of any element of order 11 in one Borel subgroup with
a uniquely defined element of order 11 in another Borel subgroup.

These authors consequently joined forces to write Groups and the
Buckyball
in which they give further applications of the Galois
embeddings to the electronic spectrum of the buckyball. Another
account can be found in the Master Thesis by Joris Mooij called The
vibrational spectrum of Buckminsterfullerene – An application of
symmetry reduction and computer algebra
. Plenty to read should
tonight’s match Germany-Costa Rica turn out to be boring…

Leave a Comment

symmetry and the monster

Mark
Ronan
has written a beautiful book intended for the general public
on Symmetry and the Monster. The
book’s main theme is the classification of the finite simple groups. It
starts off with the introduction of groups by Galois, gives the
classifivcation of the finite Lie groups, the Feit-Thompson theorem and
the construction of several of the sporadic groups (including the
Mathieu groups, the Fischer and Conway groups and clearly the
(Baby)Monster), explains the Leech lattice and the Monstrous Moonshine
conjectures and ends with Richard Borcherds proof of them using vertex
operator algebras. As in the case of Music of the
Primes
it is (too) easy to be critical about notation. For example,
whereas groups are just called symmetry groups, I don’t see the point of
calling simple groups ‘atoms of symmetry’. But, unlike du Sautoy,
Mark Ronan stays close to mathematical notation, lattices are just
lattices, characer-tables are just that, j-function is what it is etc.
And even when he simplifies established teminology, for example
‘cyclic arithmetic’ for modular arithmetic, ‘cross-section’
for involution centralizer, ‘mini j-functions’ for Hauptmoduln
etc. there are footnotes (as well as a glossary) mentioning the genuine
terms. Group theory is a topic with several colourful people
including the three Johns John Leech, John
McKay
and John Conway
and several of the historical accounts in the book are a good read. For
example, I’ve never known that the three Conway groups were essentially
discovered in just one afternoon and a few telephone exchanges between
Thompson and Conway. This year I’ve tried to explain some of
monstrous moonshine to an exceptionally good second year of
undergraduates but failed miserably. Whereas I somehow managed to give
the construction and proof of simplicity of Mathieu 24, elliptic and
modular functions were way too difficult for them. Perhaps I’ll give it
another (downkeyed) try using ‘Symmetry and the Monster’ as
reading material. Let’s hope Oxford University Press will soon release a
paperback (and cheaper) version.

Leave a Comment

From Galois to NOG


Evariste Galois (1811-1832) must rank pretty high on the all-time
list of moving last words. Galois was mortally wounded in a duel he
fought with Perscheux d\’Herbinville on May 30th 1832, the reason for
the duel not being clear but certainly linked to a girl called
Stephanie, whose name appears several times as a marginal note in
Galois\’ manuscripts (see illustration). When he died in the arms of his
younger brother Alfred he reportedly said “Ne pleure pas, j\’ai besoin
de tout mon courage pour mourir ‚àö‚Ć 20 ans”. In this series I\’ll
start with a pretty concrete problem in Galois theory and explain its
elegant solution by Aidan Schofield and Michel Van den Bergh.
Next, I\’ll rephrase the problem in non-commutative geometry lingo,
generalise it to absurd levels and finally I\’ll introduce a coalgebra
(yes, a co-algebra…) that explains it all. But, it will take some time
to get there. Start with your favourite basefield $k$ of
characteristic zero (take $k = \mathbb{Q}$ if you have no strong
preference of your own). Take three elements $a,b,c$ none of which
squares, then what conditions (if any) must be imposed on $a,b,c$ and $n
\in \mathbb{N}$ to construct a central simple algebra $\Sigma$ of
dimension $n^2$ over the function field of an algebraic $k$-variety such
that the three quadratic fieldextensions $k\sqrt{a}, k\sqrt{b}$ and
$k\sqrt{c}$ embed into $\Sigma$? Aidan and Michel show in \’Division
algebra coproducts of index $n$\’ (Trans. Amer. Math. Soc. 341 (1994),
505-517) that the only condition needed is that $n$ is an even number.
In fact, they work a lot harder to prove that one can even take $\Sigma$
to be a division algebra. They start with the algebra free
product
$A = k\sqrt{a} \ast k\sqrt{b} \ast k\sqrt{c}$ which is a pretty
monstrous algebra. Take three letters $x,y,z$ and consider all
non-commutative words in $x,y$ and $z$ without repetition (that is, no
two consecutive $x,y$ or $z$\’s). These words form a $k$-basis for $A$
and the multiplication is induced by concatenation of words subject to
the simplifying relations $x.x=a,y.y=b$ and $z.z=c$.

Next, they look
at the affine $k$-varieties $\mathbf{rep}(n) A$ of $n$-dimensional
$k$-representations of $A$ and their irreducible components. In the
parlance of $\mathbf{geometry@n}$, these irreducible components correspond
to the minimal primes of the level $n$-approximation algebra $\int(n) A$.
Aidan and Michel worry a bit about reducedness of these components but
nowadays we know that $A$ is an example of a non-commutative manifold (a
la Cuntz-Quillen or Kontsevich-Rosenberg) and hence all representation
varieties $\mathbf{rep}n A$ are smooth varieties (whence reduced) though
they may have several connected components. To determine the number of
irreducible (which in this case, is the same as connected) components
they use _Galois descent
, that is, they consider the algebra $A
\otimes_k \overline{k}$ where $\overline{k}$ is the algebraic closure of
$k$. The algebra $A \otimes_k \overline{k}$ is the group-algebra of the
group free product $\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z}
\ast \mathbb{Z}/2\mathbb{Z}$. (to be continued…) A digression : I
cannot resist the temptation to mention the tetrahedral snake problem
in relation to such groups. If one would have started with $4$ quadratic
fieldextensions one would get the free product $G =
\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z} \ast
\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z}$. Take a supply of
tetrahedra and glue them together along common faces so that any
tertrahedron is glued to maximum two others. In this way one forms a
tetrahedral-snake and the problem asks whether it is possible to make
such a snake having the property that the orientation of the
\’tail-tetrahedron\’ in $\mathbb{R}^3$ is exactly the same as the
orientation of the \’head-tetrahedron\’. This is not possible and the
proof of it uses the fact that there are no non-trivial relations
between the four generators $x,y,z,u$ of $\mathbb{Z}/2\mathbb{Z} \ast
\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z} \ast
\mathbb{Z}/2\mathbb{Z}$ which correspond to reflections wrt. a face of
the tetrahedron (in fact, there are no relations between these
reflections other than each has order two, so the subgroup generated by
these four reflections is the group $G$). More details can be found in
Stan Wagon\’s excellent book The Banach-tarski paradox, p.68-71.

Leave a Comment

a cosmic Galois group

Are
there hidden relations between mathematical and physical constants such
as

$\frac{e^2}{4 \pi \epsilon_0 h c} \sim \frac{1}{137} $

or are these numerical relations mere accidents? A couple of years
ago, Pierre Cartier proposed in his paper A mad day’s work : from Grothendieck to Connes and
Kontsevich : the evolution of concepts of space and symmetry
that
there are many reasons to believe in a cosmic Galois group acting on the
fundamental constants of physical theories and responsible for relations
such as the one above.

The Euler-Zagier numbers are infinite
sums over $n_1 > n_2 > ! > n_r \geq 1 $ of the form

$\zeta(k_1,\dots,k_r) = \sum n_1^{-k_1} \dots n_r^{-k_r} $

and there are polynomial relations with rational coefficients between
these such as the product relation

$\zeta(a)\zeta(b)=\zeta(a+b)+\zeta(a,b)+\zeta(b,a) $

It is
conjectured that all polynomial relations among Euler-Zagier numbers are
consequences of these product relations and similar explicitly known
formulas. A consequence of this conjecture would be that
$\zeta(3),\zeta(5),\dots $ are all trancendental!

Drinfeld
introduced the Grothendieck-Teichmuller group-scheme over $\mathbb{Q} $
whose Lie algebra $\mathfrak{grt}_1 $ is conjectured to be the free Lie
algebra on infinitely many generators which correspond in a natural way
to the numbers $\zeta(3),\zeta(5),\dots $. The Grothendieck-Teichmuller
group itself plays the role of the Galois group for the Euler-Zagier
numbers as it is conjectured to act by automorphisms on the graded
$\mathbb{Q} $-algebra whose degree $d $-term are the linear combinations
of the numbers $\zeta(k_1,\dots,k_r) $ with rational coefficients and
such that $k_1+\dots+k_r=d $.

The Grothendieck-Teichmuller
group also appears mysteriously in non-commutative geometry. For
example, the set of all Kontsevich deformation quantizations has a
symmetry group which Kontsevich conjectures to be isomorphic to the
Grothendieck-Teichmuller group. See section 4 of his paper Operads and motives in
deformation quantzation
for more details.

It also appears
in the renormalization results of Alain Connes and Dirk Kreimer. A very
readable introduction to this is given by Alain Connes himself in Symmetries Galoisiennes
et renormalisation
. Perhaps the latest news on Cartier’s dream of a
cosmic Galois group is the paper by Alain Connes and Matilde Marcolli posted
last month on the arXiv : Renormalization and
motivic Galois theory
. A good web-page on all of this, including
references, can be found here.

Leave a Comment

Brauer-Severi varieties

![][1]
Classical Brauer-Severi varieties can be described either as twisted
forms of projective space (Severi\’s way) or as varieties containing
splitting information about central simple algebras (Brauer\’s way). If
$K$ is a field with separable closure $\overline{K}$, the first approach
asks for projective varieties $X$ defined over $K$ such that over the
separable closure $X(\overline{K}) \simeq
\mathbb{P}^{n-1}_{\overline{K}}$ they are just projective space. In
the second approach let $\Sigma$ be a central simple $K$-algebra and
define a variety $X_{\Sigma}$ whose points over a field extension $L$
are precisely the left ideals of $\Sigma \otimes_K L$ of dimension $n$.
This variety is defined over $K$ and is a closed subvariety of the
Grassmannian $Gr(n,n^2)$. In the special case that $\Sigma = M_n(K)$ one
can use the matrix-idempotents to show that the left ideals of dimension
$n$ correspond to the points of $\mathbb{P}^{n-1}_K$. As for any central
simple $K$-algebra $\Sigma$ we have that $\Sigma \otimes_K \overline{K}
\simeq M_n(\overline{K})$ it follows that the varieties $X_{\Sigma}$ are
among those of the first approach. In fact, there is a natural bijection
between those of the first approach (twisted forms) and of the second as
both are classified by the Galois cohomology pointed set
$H^1(Gal(\overline{K}/K),PGL_n(\overline{K}))$ because
$PGL_n(\overline{K})$ is the automorphism group of
$\mathbb{P}^{n-1}_{\overline{K}}$ as well as of $M_n(\overline{K})$. The
ringtheoretic relevance of the Brauer-Severi variety $X_{\Sigma}$ is
that for any field extension $L$ it has $L$-rational points if and only
if $L$ is a _splitting field_ for $\Sigma$, that is, $\Sigma \otimes_K L
\simeq M_n(\Sigma)$. To give one concrete example, If $\Sigma$ is the
quaternion-algebra $(a,b)_K$, then the Brauer-Severi variety is a conic
$X_{\Sigma} = \mathbb{V}(x_0^2-ax_1^2-bx_2^2) \subset \mathbb{P}^2_K$
Whenever one has something working for central simple algebras, one can
_sheafify_ the construction to Azumaya algebras. For if $A$ is an
Azumaya algebra with center $R$ then for every maximal ideal
$\mathfrak{m}$ of $R$, the quotient $A/\mathfrak{m}A$ is a central
simple $R/\mathfrak{m}$-algebra. This was noted by the
sheafification-guru [Alexander Grothendieck][2] and he extended the
notion to Brauer-Severi schemes of Azumaya algebras which are projective
bundles $X_A \rightarrow \mathbf{max}~R$ all of which fibers are
projective spaces (in case $R$ is an affine algebra over an
algebraically closed field). But the real fun started when [Mike
Artin][3] and [David Mumford][4] extended the construction to suitably
_ramified_ algebras. In good cases one has that the Brauer-Severi
fibration is flat with fibers over ramified points certain degenerations
of projective space. For example in the case considered by Artin and
Mumford of suitably ramified orders in quaternion algebras, the smooth
conics over Azumaya points degenerate to a pair of lines over ramified
points. A major application of their construction were examples of
unirational non-rational varieties. To date still one of the nicest
applications of non-commutative algebra to more mainstream mathematics.
The final step in generalizing Brauer-Severi fibrations to arbitrary
orders was achieved by [Michel Van den Bergh][5] in 1986. Let $R$ be an
affine algebra over an algebraically closed field (say of characteristic
zero) $k$ and let $A$ be an $R$-order is a central simple algebra
$\Sigma$ of dimension $n^2$. Let $\mathbf{trep}_n~A$ be teh affine variety
of _trace preserving_ $n$-dimensional representations, then there is a
natural action of $GL_n$ on this variety by basechange (conjugation).
Moreover, $GL_n$ acts by left multiplication on column vectors $k^n$.
One then considers the open subset in $\mathbf{trep}_n~A \times k^n$
consisting of _Brauer-Stable representations_, that is those pairs
$(\phi,v)$ such that $\phi(A).v = k^n$ on which $GL_n$ acts freely. The
corresponding orbit space is then called the Brauer-Severio scheme $X_A$
of $A$ and there is a fibration $X_A \rightarrow \mathbf{max}~R$ again
having as fibers projective spaces over Azumaya points but this time the
fibration is allowed to be far from flat in general. Two months ago I
outlined in Warwick an idea to apply this Brauer-Severi scheme to get a
hold on desingularizations of quiver quotient singularities. More on
this next time.

[1]: http://www.neverendingbooks.org/DATA/brauer.jpg
[2]: http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Grothendieck.html
[3]: http://www.cirs-tm.org/researchers/researchers.php?id=235
[4]: http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Mumford.html
[5]: http://alpha.luc.ac.be/Research/Algebra/Members/michel_id.html

Leave a Comment

projects in noncommutative geometry

Tomorrow
I’ll start with the course Projects in non-commutative geometry
in our masterclass. The idea of this course (and its companion
Projects in non-commutative algebra run by Fred Van Oystaeyen) is
that students should make a small (original if possible) work, that may
eventually lead to a publication.
At this moment the students
have seen the following : definition and examples of quasi-free algebras
(aka formally smooth algebras, non-commutative curves), their
representation varieties, their connected component semigroup and the
Euler-form on it. Last week, Markus Reineke used all this in his mini-course
Rational points of varieties associated to quasi-free
algebras
. In it, Markus gave a method to compute (at least in
principle) the number of points of the non-commutative Hilbert
scheme
and the varieties of simple representations over a
finite field. Here, in principle means that Markus demands a lot of
knowledge in advance : the number of points of all connected components
of all representation schemes of the algebra as well as of its scalar
extensions over finite field extensions, together with the action of the
Galois group on them … Sadly, I do not know too many examples were all
this information is known (apart from path algebras of quivers).
Therefore, it seems like a good idea to run through Markus’
calculations in some specific examples were I think one can get all this
: free products of semi-simple algebras. The motivating examples
being the groupalgebra of the (projective) modular group
PSL(2,Z) = Z(2) * Z(3) and the free matrix-products $M(n,F_q) *
M(m,F_q)$. I will explain how one begins to compute things in these
examples and will also explain how to get the One
quiver to rule them all
in these cases. It would be interesting to
compare the calculations we will find with those corresponding to the
path algebra of this one quiver.
As Markus set the good
example of writing out his notes and posting them, I will try to do the
same for my previous two sessions on quasi-free algebras over the next
couple of weeks.

One Comment

a noncommutative Grothendieck topology

We have seen that a non-commutative $l$-point is an
algebra$P=S_1 \\oplus … \\oplus S_k$with each $S_i$ a simple
finite dimensional $l$-algebra with center $L_i$ which is a separable
extension of $l$. The centers of these non-commutative points (that is
the algebras $L_1 \\oplus … \\oplus L_k$) are the open sets of a
Grothendieck-topology on
$l$. To define it properly, let $L$ be the separable closure of $l$
and let $G=Gal(L/l)$ be the so called absolute
Galois group. Consider the
category with objects the finite $G$-sets, that is : finite
sets with an action of $G$, and with morphisms the $G$-equivariant
set-maps, that is: maps respecting the group action. For each object
$V$ we call a finite collection of morphisms $Vi \\mapsto V$ a
cover of $V$ if the images of the finite number of $Vi$ is all
of $V$. Let $Cov$ be the set of all covers of finite $G$-sets, then
this is an example of a Grothendieck-topology as it satisfies
the following three conditions :

(GT1) : If
$W \\mapsto V$ is an isomorphism of $G$-sets, then $\\{ W \\mapsto
V \\}$ is an element of $Cov$.

(GT2) : If $\\{ Vi \\mapsto
V \\}$ is in $Cov$ and if for every i also $\\{ Wij \\mapsto Vi \\}$
is in $Cov$, then the collection $\\{ Wij \\mapsto V \\}$ is in
$Cov$.

(GT3) : If $\\{ fi : Vi \\mapsto V \\}$ is in $Cov$
and $g : W \\mapsto V$ is a $G$-morphism, then the fibered
products
$Vi x_V W = \\{ (vi,w) in Vi x W : fi(vi)=g(w) \\}$is
again a $G$-set and the collection $\\{ Vi x_V W \\mapsto V \\}$
is in $Cov$.

Now, finite $G$-sets are just
commutative separable $l$-algebras (that is,
commutative $l$-points). To see this, decompose a
finite $G$-set into its finitely many orbits $Oj$ and let $Hj$ be the
stabilizer subgroup of an element in $Oj$, then $Hj$ is of finite
index in $G$ and the fixed field $L^Hj$ is a finite dimensional
separable field extension of $l$. So, a finite $G$-set $V$
corresponds uniquely to a separable $l$-algebra $S(V)$. Moreover, a
finite cover $\\{ W \\mapsto V \\}$ is the same thing as saying
that $S(W)$ is a commutative separable $S(V)$-algebra. Thus,
the Grothendieck topology of finite $G$-sets and their covers
is anti-equivalent to the category of commutative separable
$l$-algebras and their separable commutative extensions.

This raises the natural question : what happens if we extend the
category to all separable $l$-algebras, that is, the category of
non-commutative $l$-points, do we still obtain something like a
Grothendieck topology? Or do we get something like a
non-commutative Grothendieck topology as defined by Fred Van
Oystaeyen (essentially replacing the axiom (GT 3) by a left and right
version). And if so, what are the non-commutative covers?
Clearly, if $S(V)$ is a commutative separable $l$-algebras, we expect
these non-commutative covers to be the set of all separable
$S(V)$-algebras, but what are they if $S$ is itself non-commutative,
that is, if $S$ is a non-commutative $l$-point?

Leave a Comment