Tag: Dedekind

  • the Riemann hypothesis and Psi

    Last time we revisited Robin’s theorem saying that 5040 being the largest counterexample to the bound \[ \frac{\sigma(n)}{n~log(log(n))} < e^{\gamma} = 1.78107... \] is equivalent to the Riemann hypothesis. There’s an industry of similar results using other arithmetic functions. Today, we’ll focus on Dedekind’s Psi function \[ \Psi(n) = n \prod_{p | n}(1 + \frac{1}{p}) […]

  • 5 years blogging

    A few recollections and a very quick number game by Hendrik Lenstra.

  • noncommutative F_un geometry (2)

    We use Kontsevich’s idea of thin varieties to define complexified varieties over F\_un.

  • Klein’s dessins d’enfant and the buckyball

    We saw that the icosahedron can be constructed from the alternating group $A_5 $ by considering the elements of a conjugacy class of order 5 elements as the vertices and edges between two vertices if their product is still in the conjugacy class. This description is so nice that one would like to have a…

  • bloomsday 2 : BistroMath

    Exactly one year ago this blog was briefly renamed MoonshineMath. The concept being that it would focus on the mathematics surrounding the monster group & moonshine. Well, I got as far as the Mathieu groups… After a couple of months, I changed the name back to neverendingbooks because I needed the freedom to post on…

  • Dedekind or Klein ?

    The black&white psychedelic picture on the left of a tessellation of the hyperbolic upper-halfplane, was called the Dedekind tessellation in this post, following the reference given by John Stillwell in his excellent paper Modular Miracles, The American Mathematical Monthly, 108 (2001) 70-76. But is this correct terminology? Nobody else uses it apparently. So, let’s try…

  • Farey symbols of sporadic groups

    John Conway once wrote : There are almost as many different constructions of $M_{24} $ as there have been mathematicians interested in that most remarkable of all finite groups. In the inguanodon post Ive added yet another construction of the Mathieu groups $M_{12} $ and $M_{24} $ starting from (half of) the Farey sequences and…

  • Quiver-superpotentials

    It’s been a while, so let’s include a recap : a (transitive) permutation representation of the modular group $\Gamma = PSL_2(\mathbb{Z}) $ is determined by the conjugacy class of a cofinite subgroup $\Lambda \subset \Gamma $, or equivalently, to a dessin d’enfant. We have introduced a quiver (aka an oriented graph) which comes from a…

  • quivers versus quilts

    We have associated to a subgroup of the modular group $PSL_2(\mathbb{Z}) $ a quiver (that is, an oriented graph). For example, one verifies that the fundamental domain of the subgroup $\Gamma_0(2) $ (an index 3 subgroup) is depicted on the right by the region between the thick lines with the identification of edges as indicated.…

  • the modular group and superpotentials (1)

    Here I will go over the last post at a more leisurely pace, focussing on a couple of far more trivial examples. Here’s the goal : we want to assign a quiver-superpotential to any subgroup of finite index of the modular group. So fix such a subgroup $\Gamma’ $ of the modular group $\Gamma=PSL_2(\mathbb{Z}) $…