Skip to content →

Tag: Chevalley

9 Bourbaki founding members, really?

The Clique (Twenty Øne Piløts fanatic fanbase) is convinced that the nine Bishops of Dema were modelled after the Bourbaki-group.

It is therefore of no surprise to see a Photoshopped version circulating of this classic picture of some youthful Bourbaki-members (note Jean-Pierre Serre poster-boying for Elon Musk’s site),

replacing some of them with much older photos of other members. Crucial seems to be that there are just nine of them.

I don’t know whether the Clique hijacked Bourbaki’s Wikipedia page, or whether they were inspired by its content to select those people, but if you look at that Wikipedia page you’ll see in the right hand column:

Founders

  • Henri Cartan
  • Claude Chevalley
  • Jean Coulomb
  • Jean Delsarte
  • Jean Dieudonné
  • Charles Ehresmann
  • René de Possel
  • André Weil

Really? Come on.

We know for a fact that Charles Ehresmann was brought in to replace Jean Leray, and Jean Coulomb to replace Paul Dubreil. Surely, replacements can’t be founders, can they?

Well, unfortunately it is not quite that simple. There’s this silly semantic discussion: from what moment on can you call someone a Bourbaki-member…

The collective name ‘Nicolas Bourbaki’ was adopted only at the Bourbaki-congress in Besse in July 1935 (see also this post).

But, before the Besse-meeting there were ten ‘proto-Bourbaki’ meetings, the first one on December 10th, 1934 in Cafe Capoulade. These meetings have been described masterly by Liliane Beaulieu in A Parisian Cafe and Ten Proto-Bourbaki Meetings (1934-35) (btw. if you know a direct link to the pdf, please drop it in the comments).

During these early meetings, the group called itself ‘The Committee for the Treatise on Analysis’, and not yet Bourbaki, whence the confusion.

Do we take the Capoulade-1934 meeting as the origin of the Bourbaki group (in which case the founding-members would be Cartan, Chevalley, De Possel, Delsarte, Dieudonne, and Weil), or was the Bourbaki-group founded at the Besse-congress in 1935 (when Cartan, Chevalley, Coulomb, De Possel, Dieudonne, Mandelbrojt, and Weil were present)?

Here’s a summary of which people were present at all meetings from December 1934 until the second Chancay-congress in September 1939, taken from Gatien Ricotier ‘Projets collectifs et personnels autour de Bourbaki dans les années 1930 à 1950′:

07-1935 is the Besse-congress, 09-1936 is the ‘Escorial’-congress (or Chancay 1) and 09-1937 is the second Chancay-congress. The ten dates prior to July 1935 are the proto-Bourbaki meetings.

Even though Delsarte was not present at the Besse-1935 congress, and De Possel moved to Algiers and left Bourbaki in 1941, I assume most people would agree that the six people present at the first Capoulade-meeting (Cartan, Chevalley, De Possel, Delsarte, Dieudonne, and Weil) should certainly be counted among the Bourbaki founding members.

What about the others?

We can safely eliminate Dubreil: he was present at just one proto-Bourbaki meeting and left the group in April 1935.

Also Leray’s case is straightforward: he was even excluded from the Besse-meeting as he didn’t contribute much to the group, and later he vehemently opposed Bourbaki, as we’ve seen.

Coulomb’s role seems to restrict to securing a venue for the Besse-meeting as he was ‘physicien-adjoint’ at the ‘Observatoire Physique du Globe du Puy-de-Dome’.



Because of this he could rarely attend the Julia-seminar or Bourbaki-meetings, and his interest in mathematical physics was a bit far from the themes pursued in the seminar or by Bourbaki. It seems he only contributed one small text, in the form of a letter. Due to his limited attendance, even after officially been asked to replace Dubreil, he can hardly be counted as a founding member.

This leaves Szolem Mandelbrojt and Charles Ehresmann.

We’ve already described Mandelbrojt as the odd-man-out among the early Bourbakis. According to the Bourbaki archive he only contributed one text. On the other hand, he also played a role in organising the Besse-meeting and in providing financial support for Bourbaki. Because he was present already early on (from the second proto-Bourbaki meeting) until the Chancay-1937 meeting, some people will count him among the founding members.

Personally I wouldn’t call Charles Ehresmann a Bourbaki founding member because he joined too late in the process (March 1936). Still, purists (those who argue that Bourbaki was founded at Besse) will say that at that meeting he was put forward to replace Jean Leray, and later contributed actively to Bourbaki’s meetings and work, and for that reason should be included among the founding members.

What do you think?

How many Bourbaki founding members are there? Six (the Capoulade-gang), seven (+Mandelbrojt), eight (+Mandelbrojt and Ehresmann), or do you still think there were nine of them?

One Comment

TØP PhotoShop mysteries

Suppose you’re writing a book, and for the duration of that project you keep a certain photo as your desktop-background. I guess we might assume that picture to be inspirational for your writing process.

If you PhotoShopped it to add specific elements, might we assume these extra bits to play a crucial role in your story?

Now, let’s turn to Twenty One Pilots and the creation process of their album Trench, released on October 5, 2018

We know from this tweet (from August 19th, 2018) that Tyler Joseph’s desktop-background picture was a photoshopped version of the classic Bourbaki-1938 photo on the left below, given it Trench-yellow, and added a bearded man in the doorway (photo on the right)




And we know from this interview (from September 5th, 2018) that, apart from the bearded man, he also replaced in the lower left corner the empty chair by a sitting person (lower photo).

The original photo features on the Wikipedia page on Nicolas Bourbaki, and as Tyler Joseph has revealed that Blurryface‘s real name is Nicolas Bourbaki (for whatever reason), and that he appears in the lyrics of Morph on Trench, this may make some sense.

But, of the seven people in the picture only three were founding members of Bourbaki: Weil, Diedonne and Delsarte. Ehresmann entered later, replacing Jean Leray, and Pison and Chabauty were only guinea pigs at that moment (they later entered Bourbaki, Chabauty briefly and Pison until 1950), and finally, Simonne Weil never was a member.

There’s another strange thing about the original picture. All of them, but Andre and Simone Weil, look straight into the camera, the Weil’s seem to be more focussed on something happening to the right.

Now, TØP has something with the number 9. There are nine circles on the cover of Blurryface (each representing one of a person’s insecurities, it seems), there are nine towers in the City of Dema, nine Bishops, etc.



So, from their perspective it makes sense to Photoshop two extra people in, and looking at the original there are two obvious places to place them: in the empty doorway, and on the empty chair.

But, who are they, and what is their significance?

1. The bearded man in the doorway

As far as I know, nobody knows who he is. From a Bourbaki point of view it can only be one person: Elie Cartan.

We know he was present at the 1938 Bourbaki Dieulefit/Beauvallon meeting, and that he was kind of a father figure to Bourbaki. Among older French mathematicians he was one of few (perhaps the only one) respected by all of Bourbaki.

But, bearded man is definitely not Elie Cartan…

If bearded man exists and has a Wikipedia page, the photo should be on that page. So, if you find him, please leave a comment.

Previous in this series I made a conjecture about him, but I’m not at all sure.

2. Why, of all people, Szolem Mandelbrojt?

We know from this Twentyonepilots subReddit post that the man sitting on the previously empty chair in none other than Bourbaki founding member Szolem Mandelbrojt, shopped in from this other iconic early Bourbaki-photo from the 1937 Chancay-meeting.

Let me tell you why this surprises me.

Szolem Mandelbrojt was atypical among the first Bourbaki-gang in many ways: he was the only one who didn’t graduate from the ENS, he was a bit older than the rest, he was the only one who was a full Professor (at Clermont-Ferrand) whereas the others were ‘maitre de conference’, he was the only one who didn’t contribute actively in the Julia seminar (the proto-Bourbaki seminar) nor much to the Bourbaki-congresses either for that matter, etc. etc.

Most of all, I don’t think he would feel particularly welcome at the 1938 congress. Here’s why.



(Jacques Hadamard (left), and Henri Lebesgue (right))

From Andre Weil’s autobiography (page 120):

Hadamard’s retirement left his position open. I thought myself not unworthy of succeeding him; my friends, especially Cartan and Delsarte, encouraged me to a candidate. It seemed to me that Lebesgue, who was the only mathematician left at the College de France, did not find my candidacy out of place. He even let me know that it was time to begin my ‘campaign visits’.

But the Bourbaki-campaign against a hierarchy of scientific prizes instituted by Jean Perrin (the so called ‘war of the medals’) interfered with his personal campaign. (Perhaps more important was that Mandelbrojt did his Ph.D. under Hadamard…)

Again from Weil’s autobiography (page 121):

Finally Lebesque put an end to my visits by telling me that he had decided on Mandelbrojt. It seemed to me that my friends were more disappointed than I at this outcome.

In the spring of 1938, Mandelbrojt succeeded Hadamard at the College de France.

There’s photographic evidence that Mandelbrojt was present at the 1935 Besse-congress and clearly at the 1937-Chancay meeting, but I don’t know that he was even present at Chancay-1936.

The only picture I know of that meeting is the one below. Standing on bench: Chevalley’s nephews, seated Andre Weil and Chevalley’s mother; standing, left to right: Ninette Ehresmann, Rene de Possel, Claude Chavalley, Jacqueline Chavalley, Mirles, Jean Delsarte and Charles Ehresmann.

Of all possible people, Szolem Mandelbrojt would be the miscast at the 1938-meeting. So, why did they shop him in?

– convenience: they had an empty chair in the original picture, another Bourbaki-photo with a guy sitting on such a chair, so why not shop him in?

– mistaken identity: in the subReddit post the sitting guy was mistakenly identified as Claude Chevalley. Now, there is a lot to say about wishing to add Chevalley to the original. He is by far the most likeable of all Bourbakis, so if these nine were ever supposed to be the nine Bishops of Dema, he most certainly would be Keons. But, Chevalley was already in the US at that time, and was advised by the French consul to remain there in view of the situation in Europe. As a result, Chevalley could not obtain a French professorship before the early 50ties.

– a deep hidden clue: remember all that nonsense about Josh Dun’s ‘alma mater’ being that Ukrainian building where Nico and the niners was shot? Well, Szolem Mandelbrojt’s alma mater was the University of Kharkiv in Ukraine. See this post for more details.

3. Is it all about Simone Weil?

If you super-impose the two photographs, pinning Mandelbrojt in both, the left border of the original 1938-picture is an almost perfect mirror for both appearances of Simone Weil. Can she be more important in all of this than we think?

Previous in the Bourbaki&TØP series:

Leave a Comment

From Weil’s foundations to schemes

Last time, we’ve seen that the first time ‘schemes’ were introduced was in ‘La Tribu’ (the internal Bourbaki-account of their congresses) of the May-June 1955 congress in Chicago.

Here, we will focus on the events leading up to that event. If you always thought Grothendieck invented the word ‘schemes’, here’s what Colin McLarty wrote:

“A story says that in a Paris café around 1955 Grothendieck asked his friends “what is a scheme?”. At the time only an undefined idea of “schéma” was current in Paris, meaning more or less whatever would improve on Weil’s foundations.” (McLarty in The Rising Sea)

What were Weil’s foundations of algebraic geometry?

Well, let’s see how Weil defined an affine variety over a field $k$. First you consider a ‘universal field’ $K$ containing $k$, that is, $K$ is an algebraically closed field of infinite transcendence degree over $k$. A point of $n$-dimensional affine space is an $n$-tuple $x=(x_1,\dots,x_n) \in K^n$. For such a point $x$ you consider the field $k(x)$ which is the subfield of $K$ generated by $k$ and the coordinates $x_i$ of $x$.

Alternatively, the field $k(x)$ is the field of fractions of the affine domain $R=k[z_1,\dots,z_n]/I$ where $I$ is the prime ideal of all polynomials $f \in k[z_1,\dots,z_n]$ such that $f(x) = f(x_1,\dots,x_n)=0$.

An affine $k$-variety $V$ is associated to a ‘generic point’ $x=(x_1,\dots,x_n)$, meaning that the field $k(x)$ is a ‘regular extension’ of $k$ (that is, for all field-extensions $k’$ of $k$, the tensor product $k(x) \otimes_k k’$ does not contain zero-divisors.

The points of $V$ are the ‘specialisations’ of $x$, that is, all points $y=(y_1,\dots,y_n)$ such that $f(y_1,\dots,y_n)=0$ for all $f \in I$.

Perhaps an example? Let $k = \mathbb{Q}$ and $K=\mathbb{C}$ and take $x=(i,\pi)$ in the affine plane $\mathbb{C}^2$. What is the corresponding prime ideal $I$ of $\mathbb{Q}[z_1,z_2]$? Well, $i$ is a solution to $z_1^2+1=0$ whereas $\pi$ is transcendental over $\mathbb{Q}$, so $I=(z_1^2+1)$ and $R=\mathbb{Q}[z_1,z_2]/I= \mathbb{Q}(i)[z_2]$.

Is $x=(i,\pi)$ a generic point? Well, suppose it were, then the points of the corresponding affine variety $V$ would be all couples $(\pm i, \lambda)$ with $\lambda \in \mathbb{C}$ which is the union of two lines in $\mathbb{C}^2$. But then $i \otimes 1 + 1 \otimes i$ is a zero-divisor in $\mathbb{Q}(x) \otimes_{\mathbb{Q}} \mathbb{Q}(i)$. So no, it is not a generic point over $\mathbb{Q}$ and does not define an affine $\mathbb{Q}$-variety.

If we would have started with $k=\mathbb{Q}(i)$, then $x=(i,\pi)$ is generic and the corresponding affine variety $V$ consists of all points $(i,\lambda) \in \mathbb{C}^2$.

If this is new to you, consider yourself lucky to be young enough to have learned AG from Fulton’s Algebraic curves, or Hartshorne’s chapter 1 if you were that ambitious.

By 1955, Serre had written his FAC, and Bourbaki had developed enough commutative algebra to turn His attention to algebraic geometry.

La Ciotat congress (February 27th – March 6th, 1955)

With a splendid view on the mediterranean, a small group of Bourbaki members (Henri Cartan (then 51), with two of his former Ph.D. students: Jean-Louis Koszul (then 34), and Jean-Pierre Serre (then 29, and fresh Fields medaillist), Jacques Dixmier (then 31), and Pierre Samuel (then 34), a former student of Zariski’s) discussed a previous ‘Rapport de Geometrie Algebrique'(no. 206) and arrived at some unanimous decisions:

1. Algebraic varieties must be sets of points, which will not change at every moment.
2. One should include ‘abstract’ varieties, obtained by gluing (fibres, etc.).
3. All necessary algebra must have been previously proved.
4. The main application of purely algebraic methods being characteristic p, we will hide nothing of the unpleasant phenomena that occur there.



(Henri Cartan and Jean-Pierre Serre, photo by Paul Halmos)

The approach the propose is clearly based on Serre’s FAC. The points of an affine variety are the maximal ideals of an affine $k$-algebra, this set is equipped with the Zariski topology such that the local rings form a structure sheaf. Abstract varieties are then constructed by gluing these topological spaces and sheaves.

At the insistence of the ‘specialistes’ (Serre, and Samuel who had just written his book ‘Méthodes d’algèbre abstraite en géométrie algébrique’) two additional points are adopted, but with some hesitation. The first being a jibe at Weil:
1. …The congress, being a little disgusted by the artificiality of the generic point, does not want $K$ to be always of infinite transcendent degree over $k$. It admits that generic points are convenient in certain circumstances, but refuses to see them put to all the sauces: one could speak of a coordinate ring or of a functionfield without stuffing it by force into $K$.
2. Trying to include the arithmetic case.

The last point was problematic as all their algebras were supposed to be affine over a field $k$, and they wouldn’t go further than to allow the overfield $K$ to be its algebraic closure. Further, (and this caused a lot of heavy discussions at coming congresses) they allowed their varieties to be reducible.

The Chicago congress (May 30th – June 2nd 1955)

Apart from Samuel, a different group of Bourbakis gathered for the ‘second Caucus des Illinois’ at Eckhart Hall, including three founding members Weil (then 49), Dixmier (then 49) and Chevalley (then 46), and two youngsters, Armand Borel (then 32) and Serge Lang (then 28).

Their reaction to the La Ciotat meeting (the ‘congress of the public bench’) was swift:

(page 1) : “The caucus discovered a public bench near Eckhart Hall, but didn’t do much with it.”
(page 2) : “The caucus did not judge La Ciotat’s plan beyond reproach, and proposed a completely different plan.”

They wanted to include the arithmetic case by defining as affine scheme the set of all prime ideals (or rather, the localisations at these prime ideals) of a finitely generated domain over a Dedekind domain. They continue:

(page 4) : “The notion of a scheme covers the arithmetic case, and is extracted from the illustrious works of Nagata, themselves inspired by the scholarly cogitations of Chevalley. This means that the latter managed to sell all his ideas to the caucus. The Pope of Chicago, very happy to be able to reject very far projective varieties and Chow coordinates, willingly rallied to the suggestions of his illustrious colleague. However, we have not attempted to define varieties in the arithmetic case. Weil’s principle is that it is unclear what will come out of Nagata’s tricks, and that the only stable thing in arithmetic theory is reduction modulo $p$ a la Shimura.”

“Contrary to the decisions of La Ciotat, we do not want to glue reducible stuff, nor call them varieties. … We even decide to limit ourselves to absolutely irreducible varieties, which alone will have the right to the name of varieties.”

The insistence on absolutely irreducibility is understandable from Weil’s perspective as only they will have a generic point. But why does he go along with Chevalley’s proposal of an affine scheme?

In Weil’s approach, a point of the affine variety $V$ determined by a generic point $x=(x_1,\dots,x_n)$ determines a prime ideal $Q$ of the domain $R=k[x_1,\dots,x_n]$, so Chevalley’s proposal to consider all prime ideals (rather than only the maximal ideals of an affine algebra) seems right to Weil.

However in Weil’s approach there are usually several points corresponding to the same prime ideal $Q$ of $R$, namely all possible embeddings of the ring $R/Q$ in that huge field $K$, so whenever $R/Q$ is not algebraic over $k$, there are infinitely Weil-points of $V$ corresponding to $Q$ (whence the La Ciotat criticism that points of a variety were not supposed to change at every moment).

According to Ralf Krömer in his book Tool and Object – a history and philosophy of category theory this shift from Weil-points to prime ideals of $R$ may explain Chevalley’s use of the word ‘scheme’:

(page 164) : “The ‘scheme of the variety’ denotes ‘what is invariant in a variety’.”

Another time we will see how internal discussion influenced the further Bourbaki congresses until Grothendieck came up with his ‘hyperplan’.

Leave a Comment

The birthplace of schemes

Wikipedia claims:

“The word scheme was first used in the 1956 Chevalley Seminar, in which Chevalley was pursuing Zariski’s ideas.”

and refers to the lecture by Chevalley ‘Les schemas’, given on December 12th, 1955 at the ENS-based ‘Seminaire Henri Cartan’ (in fact, that year it was called the Cartan-Chevalley seminar, and the next year Chevalley set up his own seminar at the ENS).

Items recently added to the online Bourbaki Archive give us new information on time and place of the birth of the concept of schemes.

From May 30th till June 2nd 1955 the ‘second caucus des Illinois’ Bourbaki-congress was held in ‘le grand salon d’Eckhart Hall’ at the University of Chicago (Weil’s place at that time).

Only six of the Bourbaki members were present:

  • Jean Dieudonne (then 49), the scribe of the Bourbaki-gang.
  • Andre Weil (then 49), called ‘Le Pape de Chicago’ in La Tribu, and responsible for his ‘Foundations of Algebraic Geometry’.
  • Claude Chevalley (then 46), who wanted a better, more workable version of algebraic geometry. He was just nominated professor at the Sorbonne, and was prepping for his seminar on algebraic geometry (with Cartan) in the fall.
  • Pierre Samuel (then 34), who studied in France but got his Ph.D. in 1949 from Princeton under the supervision of Oscar Zariski. He was a Bourbaki-guinea pig in 1945, and from 1947 attended most Bourbaki congresses. He just got his book Methodes d’algebre abstraite en geometrie algebrique published.
  • Armand Borel (then 32), a Swiss mathematician who was in Paris from 1949 and obtained his Ph.D. under Jean Leray before moving on to the IAS in 1957. He was present at 9 of the Bourbaki congresses between 1955 and 1960.
  • Serge Lang (then 28), a French-American mathematician who got his Ph.D. in 1951 from Princeton under Emil Artin. In 1955, he just got a position at the University of Chicago, which he held until 1971. He attended 7 Bourbaki congresses between 1955 and 1960.

The issue of La Tribu of the Eckhart-Hall congress is entirely devoted to algebraic geometry, and starts off with a bang:

“The Caucus did not judge the plan of La Ciotat above all reproaches, and proposed a completely different plan.

I – Schemes
II – Theory of multiplicities for schemes
III – Varieties
IV – Calculation of cycles
V – Divisors
VI – Projective geometry
etc.”

In the spring of that year (February 27th – March 6th, 1955) a Bourbaki congress was held ‘Chez Patrice’ at La Ciotat, hosting a different group of Bourbaki members (Samuel was the singleton intersection) : Henri Cartan (then 51), Jacques Dixmier (then 31), Jean-Louis Koszul (then 34), and Jean-Pierre Serre (then 29, and fresh Fields medaillist).

In the La Ciotat-Tribu,nr. 35 there are also a great number of pages (page 14 – 25) used to explain a general plan to deal with algebraic geometry. Their summary (page 3-4):

“Algebraic Geometry : She has a very nice face.

Chap I : Algebraic varieties
Chap II : The rest of Chap. I
Chap III : Divisors
Chap IV : Intersections”

There’s much more to say comparing these two plans, but that’ll be for another day.

We’ve just read the word ‘schemes’ for the first (?) time. That unnumbered La Tribu continues on page 3 with “where one explains what a scheme is”:

So, what was their first idea of a scheme?

Well, you had your favourite Dedekind domain $D$, and you considered all rings of finite type over $D$. Sorry, not all rings, just all domains because such a ring $R$ had to have a field of fractions $K$ which was of finite type over $k$ the field of fractions of your Dedekind domain $D$.

They say that Dedekind domains are the algebraic geometrical equivalent of fields. Yeah well, as they only consider $D$-rings the geometric object associated to $D$ is the terminal object, much like a point if $D$ is an algebraically closed field.

But then, what is this geometric object associated to a domain $R$?

In this stage, still under the influence of Weil’s focus on valuations and their specialisations, they (Chevalley?) take as the geometric object $\mathbf{Spec}(R)$, the set of all ‘spots’ (taches), that is, local rings in $K$ which are the localisations of $R$ at prime ideals. So, instead of taking the set of all prime ideals, they prefer to take the set of all stalks of the (coming) structure sheaf.

But then, speaking about sheaves is rather futile as there is no trace of any topology on this set, then. Also, they make a big fuss about not wanting to define a general schema by gluing together these ‘affine’ schemes, but then they introduce a notion of ‘apparentement’ of spots which basically means the same thing.

It is still very early days, and there’s a lot more to say on this, but if no further documents come to light, I’d say that the birthplace of ‘schemes’, that is , the place where the first time there was a documented consensus on the notion, is Eckhart Hall in Chicago.

Leave a Comment

The (somewhat less) Secret Bourbaki Archive

It has been many, many years since I’ve last visited the Bourbaki Archives.

The underground repository of the Bourbaki Secret Archives is a storage facility built beneath the cave of the former Capoulade Cafe. Given its sporadic use by staff and scholars, the entire space – including the Gallery of all intermediate versions of every damned Bourbaki book, the section reserved to Bourbaki’s internal notes, such as his Diktats, and all numbers of La Tribu, and the Miscellania, containing personal notes and other prullaria once belonging to its members – is illuminated by amber lighting activated only when movement is detected by strategically placed sensors, and is guarded by a private security firm, hired by the ACNB.

This description (based on that of the Vatican Secret Archives in the book The Magdalene Reliquary by Gary McAvoy) is far from the actual situation. The Bourbaki Archive has been pieced together from legates donated by some of its former members (including Delsarte, Weil, de Possel, Cartan, Samuel, and others), and consist of well over a hundredth labeled carton and plastic cases, fitting easily in a few standard white Billy Ikea bookcases.

The publicly available Bourbaki Archive is even much smaller. The Association des collaborateurs de Nicolas Bourbaki has strong opinions on which items can be put online. For years the available issues of La Tribu were restricted to those before 1953. I was once told that one of the second generation Bourbaki-members vetoed further releases.

As a result, we only had the fading (and often coloured) memories of Bourbaki-members to rely on if we wanted to reconstruct key events, for example, Bourbaki’s reluctance to include category theory in its works. Rather than to work on source material, we had to content ourselves with interviews, such as this one, the relevant part starts at 51.40 into the clip. See here for some other interesting time-slots.

On a recent visit to the Bourbaki Archives I was happy to see that all volumes of “La Tribu” (the internal newsletter of Bourbaki) are now online from 1940 until 1960.

Okay, it’s not the entire story yet but, for all you Grothendieck aficionados out there, it should be enough as G resigned from Bourbaki in 1960 with this letter (see here for a translation).

Grothendieck was present at just twelve Bourbaki congresses in the period between 1955 and 1960 (he was also present as a ‘cobaye’ at a 1951 congress in Nancy).

The period 1955-60 was crucial in the modern development of algebraic geometry. Serre’s ‘FAC’ was published, as was Grothendieck’s ‘Tohoku-paper’, there was the influential Chevalley seminar, and the internal Bourbaki-fight about categories and the functorial view.

Perhaps the definite paper on the later issue is Ralf Kromer’s La ‘Machine de Grothendieck’ se fonde-t-elle seulement sur les vocables metamathematiques? Bourbaki et les categories au cours des annees cinquante.

Kromer had access to most issues of La Tribu until 1962 (from the Delsarte archive in Nancy), but still felt the need to justify his use of these sources to the ACNB (footnote 9 of his paper):

“L’autorisation que j’ai obtenue par le Comité scientifique des Archives de la création des mathématiques, unité du CNRS qui fut chargée jusqu’en 2003 de la mise à disposition de ces archives, me donne également le droit d’utiliser les sources datant des années postérieures à l’année 1953, que j’avais consultées auparavant aux Archives Jean Delsarte, soit avant que l’ACNB (Association des Collaborateurs de Nicolas Bourbaki) ne rende publique sa décision d’ouvrir ses archives et ne décide des parties qui seraient consultables.

J’ai ainsi bénéficié d’une occasion qui ne se présenterait sans doute plus aujourd’hui, mais c’est en toute légitimité que je puis m’appuyer sur cette riche documentation. Toutefois, la collection des Archives Jean Delsarte étant à son tour limitée aux années antérieures à 1963, je n’ai pu étudier la discussion ultérieure.”

The Association des Collaborateurs de Nicolas Bourbaki made retirement from active B-membership mandatory at the age of 50. One might expect of it to open up all documents in its archives which are older than fifty years.

Meanwhile, we’ll have a go at the 1940-1960 issues of La Tribu.

Leave a Comment

Grothendieck’s Café

“A story says that in a Paris café around 1955 Grothendieck asked his friends “what is a scheme?”. At the time only an undefined idea of “schéma” was current in Paris, meaning more or less whatever would improve on Weil’s foundations.” (McLarty in The Rising Sea)

Finding that particular café in Paris, presumably in the 5th arrondissement, seemed like looking for a needle in a haystack.

Until now.

In trying to solve the next riddle in Bourbaki’s death announcement:

A reception will be held at the Bar ‘The Direct Products’, at the crossroads of the Projective Resolutions (formerly Koszul square)

I’ve been reading Mathematics, a novel by Jacques Roubaud (the guy responsible for the announcement) on Parisian math-life in the 50ties and 60ties.

It turns out that the poor Bourbakistas had very little choice if they wanted to have a beer (or coffee) after attending a seminar at the IHP.

On page 114, Roubaud writes:

“Père Plantin presided over his bar, which presided over the Lhomond/Ulm street corner. It is an obvious choice. rue Pierre-et-Marie-Curie had no bars; rue d’Ulm had no bars in eyeshot either. If we emerged, as we did, on this side of the Institut Henri Poincaré (for doing so on the other side would have meant fraternizing with the Spanish and Geography students in the cafés on rue Saint-Jacques, which was out of the question), we had no choice. Café Plantin had a hegemony.”

It is unclear to me whether Plantin was once actually the name of the café, or that it’s just Roubaud’s code-word for it. At other places in the book, e.g. on pages 82 and 113, he consistently writes “Plantin”, between quotes.

Today, the café on the crossroads of rue d’Ulm (where the Ecole Normal Superieure is located) and de rue Lhomond is the Interlude Café

and here’s what Roubaud has to say about it, or rather about the situation in 1997, when the French version of his book was published:

the thing that would currently be found at the very same corner of rues Lhomond/Ulm would not be what I am here terming “Plantin”.”

So, we can only hope that the Café ‘Aux Produits Directs’ was a lot cosier, way back then.

But let us return to Grothendieck’s “What is a scheme?” story.

Now that we have a fair idea of location, what about a possible date? Here’s a suggestion: this happened on monday december 12th, 1955, and, one of the friends present must have been Cartier.

Here’s why.

The very first time the word “schéma” was uttered, in Paris, at an official seminar talk, was during the Cartan seminar of 1955/56 on algebraic geometry.

The lecturer was Claude Chevalley, and the date was december 12th 1955.


I’m fairly certain Grothendieck and Cartier attended and that Cartier was either briefed before or understood the stuff at once (btw. he gave another talk on schemes, a year later at the Chevalley seminar).

A couple of days later, on december 15th, Grothendieck sends a letter to his pal Serre (who must have been out of Paris for otherwise they’d phone each other) ending with:



Note the phrase: I am exploiting him most profitably. Yes, by asking him daft questions over a pint at Café “Plantin”

Leave a Comment

the birthday of Grothendieck topologies

This is the story of the day the notion of ‘neighbourhood’ changed forever (at least in the geometric sense).

For ages a neighbourhood of a point was understood to be an open set of the topology containing that point. But on that day, it was demonstrated that the topology of choice of algebraic geometry, the Zariski topology, needed a drastic upgrade.

This ultimately led to the totally new notion of Grothendieck topologies, which aren’t topological spaces at all.

Formally, the definition of Grothendieck topologies was cooked up in the fall of 1961 when Grothendieck visited Zariski, Mike Artin and David Mumford in Harvard.

The following spring, Mike Artin ran a seminar resulting in his lecture notes on, yes, Grothendieck topologies.

But, paradigm shifts like this need a spark, ‘une bougie d’allumage’, and that moment of insight happened quite a few years earlier.

It was a sunny spring monday afternoon at the Ecole Normal Superieure. Jean-Pierre Serre was giving the first lecture in the 1958 Seminaire Claude Chevalley which that year had Chow rings as its topic.

That day, april 21st 1958, Serre was lecturing on algebraic fibre bundles:

He had run into a problem.

If a Lie group $G$ acts freely on a manifold $M$, then the set of $G$-orbits $M/G$ is again a manifold and the quotient map $\pi : M \rightarrow M/G$ is a principal $G$-fibre bundle meaning that for sufficiently small open sets $U$ of $M/G$ we have diffeomorphisms

$\pi^{-1}(U) \simeq U \times G$

that is, locally (but not globally) $M$ is just a product manifold of $G$ with another manifold and the $G$-orbits are all of the form $\{ u \} \times G$.

The corresponding situation in algebraic geometry would be this: a nice, say reductive, algebraic group $G$ acting freely on a nice, say smooth, algebraic variety $X$. In this case one can form again an orbit space $X/G$ which is again a (smooth) algebraic variety but the natural quotient map $\pi : X \rightarrow X/G$ rarely has this local product property…

The reason being that the Zariski topology on $X/G$ is way too coarse, it doesn’t have enough open sets to enforce this local product property.

(For algebraists: let $A$ be an Azumaya algebra of rank $n^2$ over $\mathbb{C}[X]$, then the representation variety $\mathbf{rep}_n(A)$ is a principal $\mathbf{PGL}_n$-bundle over $X$ but is only local trivial in the Zariski topology when $A$ is a trivial Azumaya algebra, that is, $End_{\mathbb{C}[X]}(P)$ for a rank $n$ projective module $P$ over $\mathbb{C}[X]$.)

But, Serre had come up with a solution.

He was going to study fibre bundles which were locally ‘isotrivial’, meaning that they had the required local product property but only after extending them over an unamified cover $Y \rightarrow X$ (what we now call, an etale cover) and he was able to clasify such fibre bundles by a laborious way (which we now call the first etale cohomology group).

The story goes that Grothendieck, sitting in the public, immediately saw that these etale extensions were the correct generalization of the usual (Zariski) localizations and that he could develop a cohomology theory out of them in all dimensions.

According to Colin McLarty Serre was ‘absolutely unconvinced’, since he felt he had ‘brutally forced’ the bundles to yield the $H^1$’s.

We will never known what Serre actually wrote on the blackboard on april 21st 1958.

The above scanned image tells it is an expanded version of the original talk, written up several months later after the ICM-talk by Grothendieck in Edinburgh.

By that time, Grothendieck had shown Serre that his method indeed gives cohomology in all dimensions,and convinced him that this etale cohomology was likely to be the “true cohomology needed to prove the Weil conjectures”.

Leave a Comment

If Bourbaki=WikiLeaks then Weil=Assange

In an interview with readers of the Guardian, December 3rd 2010, Julian Assange made a somewhat surprising comparison between WikiLeaks and Bourbaki, sorry, The Bourbaki (sic) :

“I originally tried hard for the organisation to have no face, because I wanted egos to play no part in our activities. This followed the tradition of the French anonymous pure mathematians, who wrote under the collective allonym, “The Bourbaki”. However this quickly led to tremendous distracting curiosity about who and random individuals claiming to represent us. In the end, someone must be responsible to the public and only a leadership that is willing to be publicly courageous can genuinely suggest that sources take risks for the greater good. In that process, I have become the lightening rod. I get undue attacks on every aspect of my life, but then I also get undue credit as some kind of balancing force.”

Analogies are never perfect, but perhaps Assange should have taken it a bit further and studied the history of the pre-war Bourbakistas in order to avoid problems that led to the eventual split-up.

Clearly, if Bourbaki=WikiLeaks, then Assange plays the role of Andre Weil. Both of them charismatic leaders, convincing the group around them that for the job at hand to succeed, it is best to work as a collective so that individual contributions cannot be traced.

At first this works well. Both groups make progress and gain importance, also to the outside world. But then, internal problems surface, questioning the commitment of ‘the leader’ to the original project.

In the case of the Bourbakis, Claude Chevalley and Rene de Possel dropped that bombshell at the second Chancay-meeting in 1937 with a 2 page pamphlet 7 theses de Chancay.

“Criticism on the state of affairs :

  • in general, a certain aging of Bourbaki, which manifests itself in a tendency to neglect internal lively opposition in favor of pursuing visible external succes ((failed) completion of versions, artificial agreement among members of the group).
  • in particular, often the working method appears to be that of suffocating any objections in official meetings (via interruptions, not listening, etc. etc.). This tendency didn’t exist at the Besse meeting, began to manifest itself at the Escorial-meeting and got even worse here at Chancay. Bourbaki-members don’t pay attention to discussions and the principle of unanimous decision-making is replaced in reality by majority rule.”

Sounds familiar? Perhaps stretching the analogy a bit one might say that Claude Chevalley’s and Rene de Possel’s role within Bourbaki is similar to that of respectively Birgitta Jónsdóttir and Daniel Domscheit-Berg within WikiLeaks.

This criticism will be neglected and at the following Bourbaki-meeting in Dieulefit (neither Chevalley nor de Possel were present) hardly any work gets done, largely due to the fact that Andre Weil is more concerned about his personal safety and escapes during the meeting for a couple of days to Switserland, fearing an imminent invasion.

After the Dieulefit-meeting, even though Bourbaki’s fame is spreading, work on the manuscripts is halted because all members are reserve-officers in the French army and have to prepare for war.

Except for Andre Weil, who’s touring the world with a clear “Bourbaki, c’est moi!” message, handing out Bourbaki name-cards or invitations to Betti Bourbaki’s wedding… That Andre and Eveline Weil are traveling as Mr. and Mrs. Bourbaki is perhaps best illustrated by the thank-you note, left on their journey through Finland.

If it were not for the fact that the other members had more pressing matters to deal with, Weil’s attitude would have resulted in more people dropping out of the group, or continuing the work under another name, a bit like what happens to WikiLeaks and OpenLeaks today.

Leave a Comment

Who was ‘le P. Adique’?

Last year we managed to solve the first few riddles of the Bourbaki code, but several mysteries still remain. For example, who was the priest performing the Bourbaki-Petard wedding ceremony? The ‘faire part’ identifies him as ‘le P. Adique, de l’Ordre des Diophantiens’.

As with many of these Bourbaki-jokes, this riddle too has several layers. There is the first straightforward mathematical interpretation of the p-adic numbers $latex \hat{\mathbb{Z}}_p$ being used in the study of Diophantine problems.

For example, the local-global, or Hasse principle, asserting that an integral quadratic form has a solution if and only if there are solutions over all p-adic numbers. Helmut Hasse was a German number theorist, held in high esteem by the Bourbaki group.

After graduating from the ENS in 1929, Claude Chevalley spent some time at the University of Marburg, studying under Helmut Hasse. Hasse had come to Marburg when Kurt Hensel (who invented the p-adic numbers in 1902) retired in 1930.

Hasse picked up a question from E. Artin’s dissertation about the zeta function of an algebraic curve over a finite field and achieved the first breakthrough establishing the conjectured property for zeta functions of elliptic curves (genus one).

Extending this result to higher genus was the principal problem Andre Weil was working on at the time of the wedding-card-joke. In 1940 he would be able to settle the general case. What we now know as the Hasse-Weil theorem implies that the number N(p) of rational points of an elliptic curve over the finite field Z/pZ, where p is a prime, can differ from the mean value p+1 by at most twice the square root of p.

So, Helmut Hasse is a passable candidate for the first-level, mathematical, decoding of ‘le P. adique’.

However, there is often a deeper and more subtle reading of a Bourbaki-joke, intended to be understood only by the select inner circle of ‘normaliens’ (graduates of the Ecole Normale Superieure). Usually, this second-level interpretation requires knowledge of events or locations within the 5-th arrondissement of Paris, the large neighborhood of the ENS.

For an outsider (both non-Parisian and non-normalien) decoding this hidden message is substantially harder and requires a good deal of luck.

As it happens, I’m going through a ‘Weil-phase’ and just started reading the three main Weil-biographies : Andre Weil the Apprenticeship of a Mathematician, Chez les Weil : André et Simone by Sylvie Weil and La vie de Simone Weil by Simone Petrement.


[abp:3764326506] [abp:2283023696] [abp:2213599920]

From page 35 of ‘Chez les Weil’ : “Après la guerre, pas tout de suite mais en 1948, toute la famille avait fini par revenir à Paris, rue Auguste-Comte, en face des jardins du Luxembourg.” Sylvie talks about the Parisian apartment of her grandparents (father and mother of Andre and Simone) and I wanted to know its exact location.

More details are given on page 103 of ‘La vie de Simone Weil’. The apartment consists of the 6th and 7th floor of a building on the Montagne Sainte-Geneviève. The Weils bought it before it was even built and when they moved in, in may 1929, it was still unfinished. Compensating this, the apartment offered a splendid view of the Sacre-Coeur, the Eiffel-tower, la Sorbonne, Invalides, l’Arc de Triomphe, Pantheon, the roofs of the Louvre, le tout Paris quoi…

As to its location : “Juste au-dessous de l’appartement se trouvent l’Ecole des mines et les serres du Luxembourg, avec la belle maison ancienne où mourut Leconte de Lisle.” This and a bit of googling allows one to deduce that the Weils lived at 3, rue Auguste-Comte (the W on the map below).

Crossing the boulevard Saint-Michel, one enters the 5-th arrondissement via the … rue de l’Abbe de l’Epee…
We did deduce before that the priest might be an abbot (‘from the order of the Diophantines’) and l’Epee is just ‘le P.’ pronounced in French (cheating one egue).

Abbé Charles-Michel de l’Épée lived in the 18th century and has become known as the “Father of the Deaf” (compare this to Diophantus who is called “Father of Algebra”). Épée turned his attention toward charitable services for the poor, and he had a chance encounter with two young deaf sisters who communicated using a sign language. Épée decided to dedicate himself to the education and salvation of the deaf, and, in 1760, he founded a school which became in 1791 l’Institution Nationale des Sourds-Muets à Paris. It was later renamed the Institut St. Jacques (compare Rue St. Jacques) and then renamed again to its present name: Institut National de Jeunes Sourds de Paris located at 254, rue Saint-Jacques (the A in the map below) just one block away from the Schola Cantorum at 269, rue St. Jacques, where the Bourbaki-Petard wedding took place (the S in the map).

Completing the map with the location of the Ecole Normale (the E) I was baffled by the result. If the Weil apartment stands for West, the Ecole for East and the Schola for South, surely there must be an N (for N.Bourbaki?) representing North. Suggestions anyone?

Leave a Comment