Skip to content →

neverendingbooks Posts

Monstrous frustrations

Thanks for clicking through… I guess.

If nothing else, it shows that just as much as the stock market is fueled by greed, mathematical reasearch is driven by frustration (or the pleasure gained from knowing others to be frustrated).

I did spend the better part of the day doing a lengthy, if not laborious, calculation, I’ve been postponing for several years now. Partly, because I didn’t know how to start performing it (though the basic strategy was clear), partly, because I knew beforehand the final answer would probably offer me no further insight.

Still, it gives the final answer to a problem that may be of interest to anyone vaguely interested in Moonshine :

What does the Monster see of the modular group?

I know at least two of you, occasionally reading this blog, understand what I was trying to do and may now wonder how to repeat the straightforward calculation. Well the simple answer is : Google for the number 97239461142009186000 and, no doubt, you will be able to do the computation overnight.

One word of advice : don’t! Get some sleep instead, or make love to your partner, because all you’ll get is a quiver on nine vertices (which is pretty good for the Monster) but having an horrible amount of loops and arrows…

If someone wants the details on all of this, just ask. But, if you really want to get me exited : find a moonshine reason for one of the following two numbers :

$791616381395932409265430144165764500492= 2^2 * 11 * 293 * 61403690769153925633371869699485301 $

(the dimension of the monster-singularity upto smooth equivalence), or,

$1575918800531316887592467826675348205163= 523 * 1655089391 * 15982020053213 * 113914503502907 $

(the dimension of the moduli space).

One Comment

Arnold’s trinities

Referring to the triple of exceptional Galois groups $L_2(5),L_2(7),L_2(11) $ and its connection to the Platonic solids I wrote : “It sure seems that surprises often come in triples…”. Briefly I considered replacing triples by trinities, but then, I didnt want to sound too mystic…

David Corfield of the n-category cafe and a dialogue on infinity (and perhaps other blogs I’m unaware of) pointed me to the paper Symplectization, complexification and mathematical trinities by Vladimir I. Arnold. (Update : here is a PDF-conversion of the paper)

The paper is a write-up of the second in a series of three lectures Arnold gave in june 1997 at the meeting in the Fields Institute dedicated to his 60th birthday. The goal of that lecture was to explain some mathematical dreams he had.

The next dream I want to present is an even more fantastic set of theorems and conjectures. Here I also have no theory and actually the ideas form a kind of religion rather than mathematics.
The key observation is that in mathematics one encounters many trinities. I shall present a list of examples. The main dream (or conjecture) is that all these trinities are united by some rectangular “commutative diagrams”.
I mean the existence of some “functorial” constructions connecting different trinities. The knowledge of the existence of these diagrams provides some new conjectures which might turn to be true theorems.

Follows a list of 12 trinities, many taken from Arnold’s field of expertise being differential geometry. I’ll restrict to the more algebraically inclined ones.

1 : “The first trinity everyone knows is”

where $\mathbb{H} $ are the Hamiltonian quaternions. The trinity on the left may be natural to differential geometers who see real and complex and hyper-Kaehler manifolds as distinct but related beasts, but I’m willing to bet that most algebraists would settle for the trinity on the right where $\mathbb{O} $ are the octonions.

2 : The next trinity is that of the exceptional Lie algebras E6, E7 and E8.

with corresponding Dynkin-Coxeter diagrams

Arnold has this to say about the apparent ubiquity of Dynkin diagrams in mathematics.

Manin told me once that the reason why we always encounter this list in many different mathematical classifications is its presence in the hardware of our brain (which is thus unable to discover a more complicated scheme).
I still hope there exists a better reason that once should be discovered.

Amen to that. I’m quite hopeful human evolution will overcome the limitations of Manin’s brain…

3 : Next comes the Platonic trinity of the tetrahedron, cube and dodecahedron



Clearly one can argue against this trinity as follows : a tetrahedron is a bunch of triangles such that there are exactly 3 of them meeting in each vertex, a cube is a bunch of squares, again 3 meeting in every vertex, a dodecahedron is a bunch of pentagons 3 meeting in every vertex… and we can continue the pattern. What should be a bunch a hexagons such that in each vertex exactly 3 of them meet? Well, only one possibility : it must be the hexagonal tiling (on the left below). And in normal Euclidian space we cannot have a bunch of septagons such that three of them meet in every vertex, but in hyperbolic geometry this is still possible and leads to the Klein quartic (on the right). Check out this wonderful post by John Baez for more on this.



4 : The trinity of the rotation symmetry groups of the three Platonics

where $A_n $ is the alternating group on n letters and $S_n $ is the symmetric group.

Clearly, any rotation of a Platonic solid takes vertices to vertices, edges to edges and faces to faces. For the tetrahedron we can easily see the 4 of the group $A_4 $, say the 4 vertices. But what is the 4 of $S_4 $ in the case of a cube? Well, a cube has 4 body-diagonals and they are permuted under the rotational symmetries. The most difficult case is to see the $5 $ of $A_5 $ in the dodecahedron. Well, here’s the solution to this riddle



there are exactly 5 inscribed cubes in a dodecahedron and they are permuted by the rotations in the same way as $A_5 $.

7 : The seventh trinity involves complex polynomials in one variable

the Laurant polynomials and the modular polynomials (that is, rational functions with three poles at 0,1 and $\infty $.

8 : The eight one is another beauty

Here ‘numbers’ are the ordinary complex numbers $\mathbb{C} $, the ‘trigonometric numbers’ are the quantum version of those (aka q-numbers) which is a one-parameter deformation and finally, the ‘elliptic numbers’ are a two-dimensional deformation. If you ever encountered a Sklyanin algebra this will sound familiar.

This trinity is based on a paper of Turaev and Frenkel and I must come back to it some time…

The paper has some other nice trinities (such as those among Whitney, Chern and Pontryagin classes) but as I cannot add anything sensible to it, let us include a few more algebraic trinities. The first one attributed by Arnold to John McKay

13 : A trinity parallel to the exceptional Lie algebra one is

between the 27 straight lines on a cubic surface, the 28 bitangents on a quartic plane curve and the 120 tritangent planes of a canonic sextic curve of genus 4.

14 : The exceptional Galois groups

explained last time.

15 : The associated curves with these groups as symmetry groups (as in the previous post)

where the ? refers to the mysterious genus 70 curve. I’ll check with one of the authors whether there is still an embargo on the content of this paper and if not come back to it in full detail.

16 : The three generations of sporadic groups

Do you have other trinities you’d like to worship?

Leave a Comment

bloomsday 2 : BistroMath

Exactly one year ago this blog was briefly renamed MoonshineMath. The concept being that it would focus on the mathematics surrounding the monster group & moonshine. Well, I got as far as the Mathieu groups…

After a couple of months, I changed the name back to neverendingbooks because I needed the freedom to post on any topic I wanted. I know some people preferred the name MoonshineMath, but so be it, anyone’s free to borrow that name for his/her own blog.

Today it’s bloomsday again, and, as I’m a cyclical guy, I have another idea for a conceptual blog : the bistromath chronicles (or something along this line).

Here’s the relevant section from the Hitchhikers guide

Bistromathics itself is simply a revolutionary new way of understanding the behavior of numbers. …
Numbers written on restaurant checks within the confines of restaurants do not follow the same mathematical laws as numbers written on any other pieces of paper in any other parts of the Universe.
This single statement took the scientific world by storm. It completely revolutionized it.So many mathematical conferences got hold in such good restaurants that many of the finest minds of a generation died of obesity and heart failure and the science of math was put back by years.

Right, so what’s the idea? Well, on numerous occasions Ive stated that any math-blog can only survive as a group-blog. I did approach a lot of people directly, but, as you have noticed, without too much success… Most of them couldnt see themselves contributing to a blog for one of these reasons : it costs too much energy and/or it’s way too inefficient. They say : career-wise there are far cleverer ways to spend my energy than to write a blog. And… there’s no way I can argue against this.

Whence plan B : set up a group-blog for a fixed amount of time (say one year), expect contributors to write one or two series of about 4 posts on their chosen topic, re-edit the better series afterwards and turn them into a book.

But, in order to make a coherent book proposal out of blog-post-series, they’d better center around a common theme, whence the BistroMath ploy. Imagine that some of these forgotten “restaurant-check-notes” are discovered, decoded and explained. Apart from the mathematics, one is free to invent new recepies or add descriptions of restaurants with some mathematical history, etc. etc.

One possible scenario (but I’m sure you will have much better ideas) : part of the knotation is found on a restaurant-check of some Italian restaurant. This allow to explain Conway’s theory of rational tangles, give the perfect way to cook spaghetti to experiment with tangles and tell the history of Manin’s Italian restaurant in Bonn where (it is rumoured) the 1998 Fields medals were decided…

But then, there is no limit to your imagination as long as it somewhat fits within the framework. For example, I’d love to read the transcripts of a chat-session in SecondLife between Dedekind and Conway on the construction of real numbers… I hope you get the drift.

I’m not going to rename neverendingbooks again, but am willing to set up the BistroMath blog provided

  • Five to ten people are interested to participate
  • At least one book-editor shows an interest
    update : (16/06) contacted by first publisher

You can leave a comment or, if you prefer, contact me via email (if you’re human you will have no problem getting my address…).

Clearly, people already blogging are invited and are allowed to cross-post (in fact, that’s what I will do if it ever gets so far). Finally, if you are not willing to contribute blog-posts but like the idea and are willing to contribute to it in any other way, we are still auditioning for chanting monks

The small group of monks who had taken up hanging around the major research institutes singing strange chants to the effect that the Universe was only a figment of its own imagination were eventually given a street theater grant and went away.

And, if you do not like this idea, there will be another bloomsday-idea next year…

One Comment

F_un and braid groups

Recall that an n-braid consists of n strictly descending elastic strings connecting n inputs at the top (named 1,2,…,n) to n outputs at the bottom (labeled 1,2,…,n) upto isotopy (meaning that we may pull and rearrange the strings in any way possible within 3-dimensional space). We can always change the braid slightly such that we can divide the interval between in- and output in a number of subintervals such that in each of those there is at most one crossing.

n-braids can be multiplied by putting them on top of each other and connecting the outputs of the first braid trivially to the inputs of the second. For example the 5-braid on the left can be written as $B=B_1.B_2 $ with $B_1 $ the braid on the top 3 subintervals and $B_2 $ the braid on the lower 5 subintervals.

In this way (and using our claim that there can be at most 1 crossing in each subinterval) we can write any n-braid as a word in the generators $\sigma_i $ (with $1 \leq i < n $) being the overcrossing between inputs i and i+1. Observe that the undercrossing is then the inverse $\sigma_i^{-1} $. For example, the braid on the left corresponds to the word

$\sigma_1^{-1}.\sigma_2^{-1}.\sigma_1^{-1}.\sigma_2.\sigma_3^{-1}.\sigma_4^{-1}.\sigma_3^{-1}.\sigma_4 $

Clearly there are relations among words in the generators. The easiest one we have already used implicitly namely that $\sigma_i.\sigma_i^{-1} $ is the trivial braid. Emil Artin proved in the 1930-ies that all such relations are consequences of two sets of ‘obvious’ relations. The first being commutation relations between crossings when the strings are far enough from each other. That is we have

$\sigma_i . \sigma_j = \sigma_j . \sigma_i $ whenever $|i-j| \geq 2 $


=

The second basic set of relations involves crossings using a common string

$\sigma_i.\sigma_{i+1}.\sigma_i = \sigma_{i+1}.\sigma_i.\sigma_{i+1} $


=

Starting with the 5-braid at the top, we can use these relations to reduce it to a simpler form. At each step we have outlined to region where the relations are applied


=
=
=

These beautiful braid-pictures were produced using the braid-metapost program written by Stijn Symens.

Tracing a string from an input to an output assigns to an n-braid a permutation on n letters. In the above example, the permutation is $~(1,2,4,5,3) $. As this permutation doesn’t change under applying basic reduction, this gives a group-morphism

$\mathbb{B}_n \rightarrow S_n $

from the braid group on n strings $\mathbb{B}_n $ to the symmetric group. We have seen before that the symmetric group $S_n $ has a F-un interpretation as the linear group $GL_n(\mathbb{F}_1) $ over the field with one element. Hence, we can ask whether there is also a F-un interpretation of the n-string braid group and of the above group-morphism.

Kapranov and Smirnov suggest in their paper that the n-string braid group $\mathbb{B}_n \simeq GL_n(\mathbb{F}_1[t]) $ is the general linear group over the polynomial ring $\mathbb{F}_1[t] $ over the field with one element and that the evaluation morphism (setting t=0)

$GL_n(\mathbb{F}_1[t]) \rightarrow GL_n(\mathbb{F}1) $ gives the groupmorphism $\mathbb{B}_n \rightarrow S_n $

The rationale behind this analogy is a theorem of Drinfeld‘s saying that over a finite field $\mathbb{F}_q $, the profinite completion of $GL_n(\mathbb{F}_q[t]) $ is embedded in the fundamental group of the space of q-polynomials of degree n in much the same way as the n-string braid group $\mathbb{B}_n $ is the fundamental group of the space of complex polynomials of degree n without multiple roots.

And, now that we know the basics of absolute linear algebra, we can give an absolute braid-group representation

$\mathbb{B}_n = GL_n(\mathbb{F}_1[t]) \rightarrow GL_n(\mathbb{F}_{1^n}) $

obtained by sending each generator $\sigma_i $ to the matrix over $\mathbb{F}_{1^n} $ (remember that $\mathbb{F}_{1^n} = (\mu_n)^{\bullet} $ where $\mu_n = \langle \epsilon_n \rangle $ are the n-th roots of unity)

$\sigma_i \mapsto \begin{bmatrix}
1_{i-1} & & & \\
& 0 & \epsilon_n & \\
& \epsilon_n^{-1} & 0 & \\
& & & 1_{n-1-i} \end{bmatrix} $

and it is easy to see that these matrices do indeed satisfy Artin’s defining relations for $\mathbb{B}_n $.

5 Comments

Galois’ last letter

“Ne pleure pas, Alfred ! J’ai besoin de tout mon courage pour mourir à vingt ans!”

We all remember the last words of Evariste Galois to his brother Alfred. Lesser known are the mathematical results contained in his last letter, written to his friend Auguste Chevalier, on the eve of his fatal duel. Here the final sentences :



Tu prieras publiquement Jacobi ou Gauss de donner leur avis non sur la verite, mais sur l’importance des theoremes.
Apres cela il se trouvera, j’espere, des gens qui trouvent leur profis a dechiffrer tout ce gachis.
Je t’embrasse avec effusion.
E. Galois, le 29 Mai 1832

A major result contained in this letter concerns the groups $L_2(p)=PSL_2(\mathbb{F}_p) $, that is the group of $2 \times 2 $ matrices with determinant equal to one over the finite field $\mathbb{F}_p $ modulo its center. $L_2(p) $ is known to be simple whenever $p \geq 5 $. Galois writes that $L_2(p) $ cannot have a non-trivial permutation representation on fewer than $p+1 $ symbols whenever $p > 11 $ and indicates the transitive permutation representation on exactly $p $ symbols in the three ‘exceptional’ cases $p=5,7,11 $.

Let $\alpha = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} $ and consider for $p=5,7,11 $ the involutions on $\mathbb{P}^1_{\mathbb{F}_p} = \mathbb{F}_p \cup { \infty } $ (on which $L_2(p) $ acts via Moebius transformations)

$\pi_5 = (0,\infty)(1,4)(2,3) \quad \pi_7=(0,\infty)(1,3)(2,6)(4,5) \quad \pi_{11}=(0,\infty)(1,6)(3,7)(9,10)(5,8)(4,2) $

(in fact, Galois uses the involution $~(0,\infty)(1,2)(3,6)(4,8)(5,10)(9,7) $ for $p=11 $), then $L_2(p) $ leaves invariant the set consisting of the $p $ involutions $\Pi = { \alpha^{-i} \pi_p \alpha^i~:~1 \leq i \leq p } $. After mentioning these involutions Galois merely writes :

Ainsi pour le cas de $p=5,7,11 $, l’equation modulaire s’abaisse au degre p.
En toute rigueur, cette reduction n’est pas possible dans les cas plus eleves.

Alternatively, one can deduce these permutation representation representations from group isomorphisms. As $L_2(5) \simeq A_5 $, the alternating group on 5 symbols, $L_2(5) $ clearly acts transitively on 5 symbols.

Similarly, for $p=7 $ we have $L_2(7) \simeq L_3(2) $ and so the group acts as automorphisms on the projective plane over the field on two elements $\mathbb{P}^2_{\mathbb{F}_2} $ aka the Fano plane, as depicted on the left.

This finite projective plane has 7 points and 7 lines and $L_3(2) $ acts transitively on them.

For $p=11 $ the geometrical object is a bit more involved. The set of non-squares in $\mathbb{F}_{11} $ is

${ 1,3,4,5,9 } $

and if we translate this set using the additive structure in $\mathbb{F}_{11} $ one obtains the following 11 five-element sets

${ 1,3,4,5,9 }, { 2,4,5,6,10 }, { 3,5,6,7,11 }, { 1,4,6,7,8 }, { 2,5,7,8,9 }, { 3,6,8,9,10 }, $

$ { 4,7,9,10,11 }, { 1,5,8,10,11 }, { 1,2,6,9,11 }, { 1,2,3,7,10 }, { 2,3,4,8,11 } $

and if we regard these sets as ‘lines’ we see that two distinct lines intersect in exactly 2 points and that any two distinct points lie on exactly two ‘lines’. That is, intersection sets up a bijection between the 55-element set of all pairs of distinct points and the 55-element set of all pairs of distinct ‘lines’. This is called the biplane geometry.

The subgroup of $S_{11} $ (acting on the eleven elements of $\mathbb{F}_{11} $) stabilizing this set of 11 5-element sets is precisely the group $L_2(11) $ giving the permutation representation on 11 objects.

An alternative statement of Galois’ result is that for $p > 11 $ there is no subgroup of $L_2(p) $ complementary to the cyclic subgroup

$C_p = { \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}~:~x \in \mathbb{F}_p } $

That is, there is no subgroup such that set-theoretically $L_2(p) = F \times C_p $ (note this is of courese not a group-product, all it says is that any element can be written as $g=f.c $ with $f \in F, c \in C_p $.

However, in the three exceptional cases we do have complementary subgroups. In fact, set-theoretically we have

$L_2(5) = A_4 \times C_5 \qquad L_2(7) = S_4 \times C_7 \qquad L_2(11) = A_5 \times C_{11} $

and it is a truly amazing fact that the three groups appearing are precisely the three Platonic groups!

Recall that here are 5 Platonic (or Scottish) solids coming in three sorts when it comes to rotation-automorphism groups : the tetrahedron (group $A_4 $), the cube and octahedron (group $S_4 $) and the dodecahedron and icosahedron (group $A_5 $). The “4” in the cube are the four body diagonals and the “5” in the dodecahedron are the five inscribed cubes.

That is, our three ‘exceptional’ Galois-groups correspond to the three Platonic groups, which in turn correspond to the three exceptional Lie algebras $E_6,E_7,E_8 $ via McKay correspondence (wrt. their 2-fold covers). Maybe I’ll detail this latter connection another time. It sure seems that surprises often come in triples…

Finally, it is well known that $L_2(5) \simeq A_5 $ is the automorphism group of the icosahedron (or dodecahedron) and that $L_2(7) $ is the automorphism group of the Klein quartic.

So, one might ask : is there also a nice curve connected with the third group $L_2(11) $? Rumour has it that this is indeed the case and that the curve in question has genus 70… (to be continued).

Reference

Bertram Kostant, “The graph of the truncated icosahedron and the last letter of Galois”

Leave a Comment

Absolute linear algebra

Today we will define some basic linear algebra over the absolute fields $\mathbb{F}_{1^n} $ following the Kapranov-Smirnov document. Recall from last time that $\mathbb{F}_{1^n} = \mu_n^{\bullet} $ and that a d-dimensional vectorspace over this field is a pointed set $V^{\bullet} $ where $V $ is a free $\mu_n $-set consisting of n.d elements. Note that in absolute linear algebra we are not allowed to have addition of vectors and have to define everything in terms of scalar multiplication (or if you want, the $\mu_n $-action). In the hope of keeping you awake, we will include an F-un interpretation of the power residue symbol.

Direct sums of vectorspaces are defined via $V^{\bullet} \oplus W^{\bullet} = (V \bigsqcup W)^{\bullet} $, that is, correspond to the disjoint union of free $\mu_n $-sets. Consequently we have that $dim(V^{\bullet} \oplus W^{\bullet}) = dim(V^{\bullet}) + dim(W^{\bullet}) $.

For tensor-product we start with $V^{\bullet} \times W^{\bullet} = (V \times W)^{\bullet} $ the vectorspace cooresponding to the Cartesian product of free $\mu_n $-sets. If the dimensions of $V^{\bullet} $ and $W^{\bullet} $ are respectively d and e, then $V \times W $ consists of n.d.n.e elements, so is of dimension n.d.e. In order to have a sensible notion of tensor-products we have to eliminate the n-factor. We do this by identifying $~(x,y) $ with $(\epsilon_n x, \epsilon^{-1} y) $ and call the corresponding vectorspace $V^{\bullet} \otimes W^{\bullet} $. If we denote the image of $~(x,y) $ by $x \otimes w $ then the identification merely says we can pull the $\mu_n $-action through the tensor-sign, as we’d like to do. With this definition we do indeed have that $dim(V^{\bullet} \otimes W^{\bullet}) = dim(V^{\bullet}) dim(W^{\bullet}) $.

Recall that any linear automorphism $A $ of an $\mathbb{F}_{1^n} $ vectorspace $V^{\bullet} $ with basis ${ b_1,\ldots,b_d } $ (representants of the different $\mu_n $-orbits) is of the form $A(b_i) = \epsilon_n^{k_i} b_{\sigma(i)} $ for some powers of the primitive n-th root of unity $\epsilon_n $ and some permutation $\sigma \in S_d $. We define the determinant $det(A) = \prod_{i=1}^d \epsilon_n^{k_i} $. One verifies that the determinant is multiplicative and independent of the choice of basis.

For example, scalar-multiplication by $\epsilon_n $ gives an automorphism on any $d $-dimensional $\mathbb{F}_{1^n} $-vectorspace $V^{\bullet} $ and the corresponding determinant clearly equals $det = \epsilon_n^d $. That is, the det-functor remembers the dimension modulo n. These mod-n features are a recurrent theme in absolute linear algebra. Another example, which will become relevant when we come to reciprocity laws :

Take $n=2 $. Then, a $\mathbb{F}_{1^2} $ vectorspace $V^{\bullet} $ of dimension d is a set consisting of 2d elements $V $ equipped with a free involution. Any linear automorphism $A~:~V^{\bullet} \rightarrow V^{\bullet} $ is represented by a $d \times d $ matrix having one nonzero entry in every row and column being equal to +1 or -1. Hence, the determinant $det(A) \in \{ +1,-1 \} $.

On the other hand, by definition, the linear automorphism $A $ determines a permutation $\sigma_A \in S_{2d} $ on the 2d non-zero elements of $V^{\bullet} $. The connection between these two interpretations is that $det(A) = sgn(\sigma_A) $ the determinant gives the sign of the permutation!

For a prime power $q=p^k $ with $q \equiv 1~mod(n) $, we have seen that the roots of unity $\mu_n \subset \mathbb{F}_q^* $ and hence that $\mathbb{F}_q $ is a vectorspace over $\mathbb{F}_{1^n} $. For any field-unit $a \in \mathbb{F}_q^* $ we have the power residue symbol

$\begin{pmatrix} a \\ \mathbb{F}_q \end{pmatrix}_n = a^{\frac{q-1}{n}} \in \mu_n $

On the other hand, multiplication by $a $ is a linear automorphism on the $\mathbb{F}_{1^n} $-vectorspace $\mathbb{F}_q $ and hence we can look at its F-un determinant $det(a \times) $. The F-un interpretation of a classical lemma by Gauss asserts that the power residue symbol equals $det(a \times) $.

An $\mathbb{F}_{1^n} $-subspace $W^{\bullet} $ of a vectorspace $V^{\bullet} $ is a subset $W \subset V $ consisting of full $\mu_n $-orbits. Normally, in defining a quotient space we would say that two V-vectors are equivalent when their difference belongs to W and take equivalence classes. However, in absolute linear algebra we are not allowed to take linear combinations of vectors…

The only way out is to define $~(V/W)^{\bullet} $ to correspond to the free $\mu_n $-set $~(V/W) $ obtained by identifying all elements of W with the zero-element in $V^{\bullet} $. But… this will screw-up things if we want to interpret $\mathbb{F}_q $-vectorspaces as $\mathbb{F}_{1^n} $-spaces whenever $q \equiv 1~mod(n) $.

For this reason, Kapranov and Smirnov invent the notion of an equivalence $f~:~X^{\bullet} \rightarrow Y^{\bullet} $ between $\mathbb{F}_{1^n} $-spaces to be a linear map (note that this means a set-theoretic map $X \rightarrow Y^{\bullet} $ such that the invers image of 0 consists of full $\mu_n $-orbits and is a $\mu_n $-map elsewhere) satisfying the properties that $f^{-1}(0) = 0 $ and for every element $y \in Y $ we have that the number of pre-images $f^{-1}(y) $ is congruent to 1 modulo n. Observe that under an equivalence $f~:~X^{\bullet} \rightarrow Y^{\bullet} $ we have that $dim(X^{\bullet}) \equiv dim(Y^{\bullet})~mod(n) $.

This then allows us to define an exact sequence of $\mathbb{F}_{1^n} $-vectorspaces to be

[tex]\xymatrix{0 \ar[r] & V_1^{\bullet} \ar[r]^{\alpha} & V^{\bullet} \ar[r]^{\beta} & V_2^{\bullet} \ar[r] & 0}[/tex]

with $\alpha $ a set-theoretic inclusion, the composition $\beta \circ \alpha $ to be the zero-map and with the additional assumption that the map induced by $\beta $

$~(V/V_1)^{\bullet} \rightarrow V_2^{\bullet} $

is an equivalence. For an exact sequence of spaces as above we have the congruence relation on their dimensions $dim(V_1)+dim(V_2) \equiv dim(V)~mod(n) $.

More importantly, if as before $q \equiv 1~mod(n) $ and we use the embedding $\mu_n \subset \mathbb{F}_q^* $ to turn usual $\mathbb{F}_q $-vectorspaces into absolute $\mathbb{F}_{1^n} $-spaces, then an ordinary exact sequence of $\mathbb{F}_q $-vectorspaces remains exact in the above definition.

2 Comments

The F_un folklore

All esoteric subjects have their own secret (sacred) texts. If you opened the Da Vinci Code (or even better, the original The Holy blood and the Holy grail) you will known about a mysterious collection of documents, known as the “Dossiers secrets“, deposited in the Bibliothèque nationale de France on 27 April 1967, which is rumoured to contain the mysteries of the Priory of Sion, a secret society founded in the middle ages and still active today…

The followers of F-un, for $\mathbb{F}_1 $ the field of one element, have their own collection of semi-secret texts, surrounded by whispers, of which they try to decode every single line in search of enlightenment. Fortunately, you do not have to search the shelves of the Bibliotheque National in Paris, but the depths of the internet to find them as huge, bandwidth-unfriendly, scanned documents.

The first are the lecture notes “Lectures on zeta functions and motives” by Yuri I. Manin of a course given in 1991.

One can download a scanned version of the paper from the homepage of Katia Consani as a huge 23.1 Mb file. Of F-un relevance is the first section “Absolute Motives?” in which

“…we describe a highly speculative picture of analogies between arithmetics over $\mathbb{F}_q $ and over $\mathbb{Z} $, cast in the language reminiscent of Grothendieck’s motives. We postulate the existence of a category with tensor product $\times $ whose objects correspond not only to the divisors of the Hasse-Weil zeta functions of schemes over $\mathbb{Z} $, but also to Kurokawa’s tensor divisors. This neatly leads to teh introduction of an “absolute Tate motive” $\mathbb{T} $, whose zeta function is $\frac{s-1}{2\pi} $, and whose zeroth power is “the absolute point” which is teh base for Kurokawa’s direct products. We add some speculations about the role of $\mathbb{T} $ in the “algebraic geometry over a one-element field”, and in clarifying the structure of the gamma factors at infinity.” (loc.cit. p 1-2)

I’d welcome links to material explaining this section to people knowing no motives.

The second one is the unpublished paper “Cohomology determinants and reciprocity laws : number field case” by Mikhail Kapranov and A. Smirnov.

This paper features in blog-posts at the Arcadian Functor, in John Baez’ Weekly Finds and in yesterday’s post at Noncommutative Geometry.

You can download every single page (of 15) as a separate file from here. But, in order to help spreading the Fun-gospel, I’ve made these scans into a single PDF-file which you can download as a 2.6 Mb PDF. In the introduction they say :

“First of all, it is an old idea to interpret combinatorics of finite sets as the $q \rightarrow 1 $ limit of linear algebra over the finite field $\mathbb{F}_q $. This had lead to frequent consideration of the folklore object $\mathbb{F}_1 $, the “field with one element”, whose vector spaces are just sets. One can postulate, of course, that $\mathbf{spec}(\mathbb{F}_1) $ is the absolute point, but the real problem is to develop non-trivial consequences of this point of view.”

They manage to deduce higher reciprocity laws in class field theory within the theory of $\mathbb{F}_1 $ and its field extensions $\mathbb{F}_{1^n} $. But first, let us explain how they define linear algebra over these absolute fields.

Here is a first principle : in doing linear algebra over these fields, there is no additive structure but only scalar multiplication by field elements. So, what are vector spaces over the field with one element? Well, as scalar multiplication with 1 is just the identity map, we have that a vector space is just a set. Linear maps are just set-maps and in particular, a linear isomorphism of a vector space onto itself is a permutation of the set. That is, linear algebra over $\mathbb{F}_1 $ is the same as combinatorics of (finite) sets.

A vector space over $\mathbb{F}_1 $ is just a set; the dimension of such a vector space is the cardinality of the set. The general linear group $GL_n(\mathbb{F}_1) $ is the symmetric group $S_n $, the identification via permutation matrices (having exactly one 1 in every row and column)

Some people prefer to view an $\mathbb{F}_1 $ vector space as a pointed set, the special element being the ‘origin’ $0 $ but as $\mathbb{F}_1 $ doesnt have a zero, there is also no zero-vector. Still, in later applications (such as defining exact sequences and quotient spaces) it is helpful to have an origin. So, let us denote for any set $S $ by $S^{\bullet} = S \cup { 0 } $. Clearly, linear maps between such ‘extended’ spaces must be maps of pointed sets, that is, sending $0 \rightarrow 0 $.

The field with one element $\mathbb{F}_1 $ has a field extension of degree n for any natural number n which we denote by $\mathbb{F}_{1^n} $ and using the above notation we will define this field as :

$\mathbb{F}_{1^n} = \mu_n^{\bullet} $ with $\mu_n $ the group of all n-th roots of unity. Note that if we choose a primitive n-th root $\epsilon_n $, then $\mu_n \simeq C_n $ is the cyclic group of order n.

Now what is a vector space over $\mathbb{F}_{1^n} $? Recall that we only demand units of the field to act by scalar multiplication, so each ‘vector’ $\vec{v} $ determines an n-set of linear dependent vectors $\epsilon_n^i \vec{v} $. In other words, any $\mathbb{F}_{1^n} $-vector space is of the form $V^{\bullet} $ with $V $ a set of which the group $\mu_n $ acts freely. Hence, $V $ has $N=d.n $ elements and there are exactly $d $ orbits for the action of $\mu_n $ by scalar multiplication. We call $d $ the dimension of the vectorspace and a basis consists in choosing one representant for every orbits. That is, $~B = { b_1,\ldots,b_d } $ is a basis if (and only if) $V = { \epsilon_n^j b_i~:~1 \leq i \leq d, 1 \leq j \leq n } $.

So, vectorspaces are free $\mu_n $-sets and hence linear maps $V^{\bullet} \rightarrow W^{\bullet} $ is a $\mu_n $-map $V \rightarrow W $. In particular, a linear isomorphism of $V $, that is an element of $GL_d(\mathbb{F}_{1^n}) $ is a $\mu_n $ bijection sending any basis element $b_i \rightarrow \epsilon_n^{j(i)} b_{\sigma(i)} $ for a permutation $\sigma \in S_d $.

An $\mathbb{F}_{1^n} $-vectorspace $V^{\bullet} $ is a free $\mu_n $-set $V $ of $N=n.d $ elements. The dimension $dim_{\mathbb{F}_{1^n}}(V^{\bullet}) = d $ and the general linear group $GL_d(\mathbb{F}_{1^n}) $ is the wreath product of $S_d $ with $\mu_n^{\times d} $, the identification as matrices with exactly one non-zero entry (being an n-th root of unity) in every row and every column.

This may appear as a rather sterile theory, so let us give an extremely important example, which will lead us to our second principle for developing absolute linear algebra.

Let $q=p^k $ be a prime power and let $\mathbb{F}_q $ be the finite field with $q $ elements. Assume that $q \cong 1~mod(n) $. It is well known that the group of units $\mathbb{F}_q^{\ast} $ is cyclic of order $q-1 $ so by the assumption we can identify $\mu_n $ with a subgroup of $\mathbb{F}_q^{\ast} $.

Then, $\mathbb{F}_q = (\mathbb{F}_q^{\ast})^{\bullet} $ is an $\mathbb{F}_{1^n} $-vectorspace of dimension $d=\frac{q-1}{n} $. In other words, $\mathbb{F}_q $ is an $\mathbb{F}_{1^n} $-algebra. But then, any ordinary $\mathbb{F}_q $-vectorspace of dimension $e $ becomes (via restriction of scalars) an $\mathbb{F}_{1^n} $-vector space of dimension $\frac{e(q-1)}{n} $.

Next time we will introduce more linear algebra definitions (including determinants, exact sequences, direct sums and tensor products) in the realm the absolute fields $\mathbb{F}_{1^n} $ and remarkt that we have to alter the known definitions as we can only use the scalar-multiplication. To guide us, we have the second principle : all traditional results of linear algebra over $\mathbb{F}_q $ must be recovered from the new definitions under the vector-space identification $\mathbb{F}_q = (\mathbb{F}_q^{\ast})^{\bullet} = \mathbb{F}_{1^n} $ when $n=q-1 $. (to be continued)

One Comment

Looking for F_un

There are only a handful of human activities where one goes to extraordinary lengths to keep a dream alive, in spite of overwhelming evidence : religion, theoretical physics, supporting the Belgian football team and … mathematics.

In recent years several people spend a lot of energy looking for properties of an elusive object : the field with one element $\mathbb{F}_1 $, or in French : “F-un”. The topic must have reached a level of maturity as there was a conference dedicated entirely to it : NONCOMMUTATIVE GEOMETRY AND GEOMETRY OVER THE FIELD WITH ONE ELEMENT.

In this series I’d like to find out what the fuss is all about, why people would like it to exist and what it has to do with noncommutative geometry. However, before we start two remarks :

The field $\mathbb{F}_1 $ does not exist, so don’t try to make sense of sentences such as “The ‘field with one element’ is the free algebraic monad generated by one constant (p.26), or the universal generalized ring with zero (p.33)” in the wikipedia-entry. The simplest proof is that in any (unitary) ring we have $0 \not= 1 $ so any ring must contain at least two elements. A more highbrow version : the ring of integers $\mathbb{Z} $ is the initial object in the category of unitary rings, so it cannot be an algebra over anything else.

The second remark is that several people have already written blog-posts about $\mathbb{F}_1 $. Here are a few I know of : David Corfield at the n-category cafe and at his old blog, Noah Snyder at the secret blogging seminar, Kea at the Arcadian functor, AC and K. Consani at Noncommutative geometry and John Baez wrote about it in his weekly finds.

The dream we like to keep alive is that we will prove the Riemann hypothesis one fine day by lifting Weil’s proof of it in the case of curves over finite fields to rings of integers.

Even if you don’t know a word about Weil’s method, if you think about it for a couple of minutes, there are two immediate formidable problems with this strategy.

For most people this would be evidence enough to discard the approach, but, we mathematicians have found extremely clever ways for going into denial.

The first problem is that if we want to think of $\mathbf{spec}(\mathbb{Z}) $ (or rather its completion adding the infinite place) as a curve over some field, then $\mathbb{Z} $ must be an algebra over this field. However, no such field can exist…

No problem! If there is no such field, let us invent one, and call it $\mathbb{F}_1 $. But, it is a bit hard to do geometry over an illusory field. Christophe Soule succeeded in defining varieties over $\mathbb{F}_1 $ in a talk at the 1999 Arbeitstagung and in a more recent write-up of it : Les varietes sur le corps a un element.

We will come back to this in more detail later, but for now, here’s the main idea. Consider an existent field $k $ and an algebra $k \rightarrow R $ over it. Now study the properties of the functor (extension of scalars) from $k $-schemes to $R $-schemes. Even if there is no morphism $\mathbb{F}_1 \rightarrow \mathbb{Z} $, let us assume it exists and define $\mathbb{F}_1 $-varieties by requiring that these guys should satisfy the properties found before for extension of scalars on schemes defined over a field by going to schemes over an algebra (in this case, $\mathbb{Z} $-schemes). Roughly speaking this defines $\mathbb{F}_1 $-schemes as subsets of points of suitable $\mathbb{Z} $-schemes.

But, this is just one half of the story. He adds to such an $\mathbb{F}_1 $-variety extra topological data ‘at infinity’, an idea he attributes to J.-B. Bost. This added feature is a $\mathbb{C} $-algebra $\mathcal{A}_X $, which does not necessarily have to be commutative. He only writes : “Par ignorance, nous resterons tres evasifs sur les proprietes requises sur cette $\mathbb{C} $-algebre.”

The algebra $\mathcal{A}_X $ originates from trying to bypass the second major obstacle with the Weil-Riemann-strategy. On a smooth projective curve all points look similar as is clear for example by noting that the completions of all local rings are isomorphic to the formal power series $k[[x]] $ over the basefield, in particular there is no distinction between ‘finite’ points and those lying at ‘infinity’.

The completions of the local rings of points in $\mathbf{spec}(\mathbb{Z}) $ on the other hand are completely different, for example, they have residue fields of different characteristics… Still, local class field theory asserts that their quotient fields have several common features. For example, their Brauer groups are all isomorphic to $\mathbb{Q}/\mathbb{Z} $. However, as $Br(\mathbb{R}) = \mathbb{Z}/2\mathbb{Z} $ and $Br(\mathbb{C}) = 0 $, even then there would be a clear distinction between the finite primes and the place at infinity…

Alain Connes came up with an extremely elegant solution to bypass this problem in Noncommutative geometry and the Riemann zeta function. He proposes to replace finite dimensional central simple algebras in the definition of the Brauer group by AF (for Approximately Finite dimensional)-central simple algebras over $\mathbb{C} $. This is the origin and the importance of the Bost-Connes algebra.

We will come back to most of this in more detail later, but for the impatient, Connes has written a paper together with Caterina Consani and Matilde Marcolli Fun with $\mathbb{F}_1 $ relating the Bost-Connes algebra to the field with one element.

6 Comments

NSF annual report – the comic book version

Annual reports of organizations often make extremely dry reading. With available word processing tools, however, several agencies try to make their report at least visually pleasing. A good example is the 2007 annual report of the NSF (USA). It has an attractive cover (left) and has a couple of daring inside pages, such as the one on the right.



I’ve been a researcher with the Flemish National Science Foundation FWO from 1980 till 2000, when I’ve opted for a professorship rather than keeping my permanent research position with them. At the time, it seemed like a sensible move to make, but I’m beginning to have my doubts… The FWO definitely rocks! Single handedly they’ve taken the art of science-organization-reporting to galactic levels with their 2007 year book. Here is the cover



based on the comic book series Jommeke. So what? They have an (arguably) even more attractive cover-picture…

The point is that they maintain this gimmick throughout the entire report! If you don’t believe me, download the entire book from the link above. But as it is over 1Mb, I’ll provide you with two generic illustrations : on the left a typical (as in “every”) page and even pie-charts are way too dry for the FWO-admins so they solved it (right)



Probably the message they want to broadcast is : you guys can easily beat us at science, but we still have the best comic-books!!!

I bet, next year they’ll base their report on the series Spike and Suzy (Suske&Wiske for the rest of us) and the year after they’ll probably go for Tintin (that is, if Flandres can forget by then that Herge was a French speaking Belgian). I’m confident that in 2009 the FWO will spend most of its energy debating this issue…

Leave a Comment

Dedekind or Klein ?

The black&white psychedelic picture on the left of a tessellation of the hyperbolic upper-halfplane, was called the Dedekind tessellation in this post, following the reference given by John Stillwell in his excellent paper Modular Miracles, The American Mathematical Monthly, 108 (2001) 70-76.

But is this correct terminology? Nobody else uses it apparently. So, let’s try to track down the earliest depiction of this tessellation in the literature…

Stillwell refers to Richard Dedekind‘s 1877 paper “Schreiben an Herrn Borchard uber die Theorie der elliptische Modulfunktionen”, which appeared beginning of september 1877 in Crelle’s journal (Journal fur die reine und angewandte Mathematik, Bd. 83, 265-292).

There are a few odd things about this paper. To start, it really is the transcript of a (lengthy) letter to Herrn Borchardt (at first, I misread the recipient as Herrn Borcherds which would be really weird…), written on June 12th 1877, just 2 and a half months before it appeared… Even today in the age of camera-ready-copy it would probably take longer.

There isn’t a single figure in the paper, but, it is almost impossible to follow Dedekind’s arguments without having a mental image of the tessellation. He gives a fundamental domain for the action of the modular group $\Gamma = PSL_2(\mathbb{Z}) $ on the hyperbolic upper-half plane (a fact already known to Gauss) and goes on in section 3 to give a one-to-one mapping between this domain and the complex plane using what he calls the ‘valenz’ function $v $ (which is our modular function $j $, making an appearance in moonshine, and responsible for the black&white tessellation, the two colours corresponding to pre-images of the upper or lower half-planes).

Then there is this remarkable opening sentence.

Sie haben mich aufgefordert, eine etwas ausfuhrlichere Darstellung der Untersuchungen auszuarbeiten, von welchen ich, durch das Erscheinen der Abhandlung von Fuchs veranlasst, mir neulich erlaubt habe Ihnen eine kurze Ubersicht mitzuteilen; indem ich Ihrer Einladung hiermit Folge leiste, beschranke ich mich im wesentlichen auf den Teil dieser Untersuchungen, welcher mit der eben genannten Abhandlung zusammenhangt, und ich bitte Sie auch, die Ubergehung einiger Nebenpunkte entschuldigen zu wollen, da es mir im Augenblick an Zeit fehlt, alle Einzelheiten auszufuhren.

Well, just try to get a paper (let alone a letter) accepted by Crelle’s Journal with an opening line like : “I’ll restrict to just a few of the things I know, and even then, I cannot be bothered to fill in details as I don’t have the time to do so right now!” But somehow, Dedekind got away with it.

So, who was this guy Borchardt? How could this paper be published so swiftly? And, what might explain this extreme ‘je m’en fous’-opening ?

Carl Borchardt was a Berlin mathematician whose main claim to fame seems to be that he succeeded Crelle in 1856 as main editor of the ‘Journal fur reine und…’ until 1880 (so in 1877 he was still in charge, explaining the swift publication). It seems that during this time the ‘Journal’ was often referred to as “Borchardt’s Journal” or in France as “Journal de M Borchardt”. After Borchardt’s death, the Journal für die Reine und Angewandte Mathematik again became known as Crelle’s Journal.

As to the opening sentence, I have a toy-theory of what was going on. In 1877 a bitter dispute was raging between Kronecker (an editor for the Journal and an important one as he was the one succeeding Borchardt when he died in 1880) and Cantor. Cantor had published most of his papers at Crelle and submitted his latest find : there is a one-to-one correspondence between points in the unit interval [0,1] and points of d-dimensional space! Kronecker did everything in his power to stop that paper to the extend that Cantor wanted to retract it and submit it elsewhere. Dedekind supported Cantor and convinced him not to retract the paper and used his influence to have the paper published in Crelle in 1878. Cantor greatly resented Kronecker’s opposition to his work and never submitted any further papers to Crelle’s Journal.

Clearly, Borchardt was involved in the dispute and it is plausible that he ‘invited’ Dedekind to submit a paper on his old results in the process. As a further peace offering, Dedekind included a few ‘nice’ words for Kronecker

Bei meiner Versuchen, tiefer in diese mir unentbehrliche Theorie einzudringen und mir einen einfachen Weg zu den ausgezeichnet schonen Resultaten von Kronecker zu bahnen, die leider noch immer so schwer zuganglich sind, enkannte ich sogleich…

Probably, Dedekind was referring to Kronecker’s relation between class groups of quadratic imaginary fields and the j-function, see the miracle of 163. As an added bonus, Dedekind was elected to the Berlin academy in 1880…

Anyhow, no visible sign of ‘Dedekind’s’ tessellation in the 1877 Dedekind paper, so, we have to look further. I’m fairly certain to have found the earliest depiction of the black&white tessellation (if you have better info, please drop a line). Here it is

It is figure 7 in Felix Klein‘s paper “Uber die Transformation der elliptischen Funktionen und die Auflosung der Gleichungen funften Grades” which appeared in may 1878 in the Mathematische Annalen (Bd. 14 1878/79). He even adds the j-values which make it clear why black triangles should be oriented counter-clockwise and white triangles clockwise. If Klein would still be around today, I’m certain he’d be a metapost-guru.

So, perhaps the tessellation should be called Klein’s tessellation??
Well, not quite. Here’s what Klein writes wrt. figure 7

Diese Figur nun – welche die eigentliche Grundlage fur das Nachfolgende abgibt – ist eben diejenige, von der Dedekind bei seiner Darstellung ausgeht. Er kommt zu ihr durch rein arithmetische Betrachtung.

Case closed : Klein clearly acknowledges that Dedekind did have this picture in mind when writing his 1877 paper!

But then, there are a few odd things about Klein’s paper too, and, I do have a toy-theory about this as well… (tbc)

3 Comments