Skip to content →

neverendingbooks Posts

Stirring a cup of coffee

Please allow for a couple of end-of-semester bluesy ramblings. I just finished grading the final test of the last of five courses I lectured this semester.

Most of them went, I believe, rather well.

As always, it was fun to teach an introductory group theory course to second year physics students.

Personally, I did enjoy our Lie theory course the most, given for a mixed public of both mathematics and physics students. We did the spin-group $SU(2)$ and its connection with $SO_3(\mathbb{R})$ in gruesome detail, introduced the other classical groups, and proved complete reducibility of representations. The funnier part was applying this to the $U(1) \times SU(2) \times SU(3)$-representation of the standard model and its extension to the $SU(5)$ GUT.

Ok, but with a sad undertone, was the second year course on representations of finite groups. Sad, because it was the last time I’m allowed to teach it. My younger colleagues decided there’s no place for RT on the new curriculum.

Soit.

The final lecture is often an eye-opener, or at least, I hope it is/was.

Here’s the idea: someone whispers in your ear that there might be a simple group of order $60$. Armed with only the Sylow-theorems and what we did in this course we will determine all its conjugacy classes, its full character table, and finish proving that this mysterious group is none other than $A_5$.

Right now I’m just a tad disappointed only a handful of students came close to solving the same problem for order $168$ this afternoon.

Clearly, I gave them ample extra information: the group only has elements of order $1,2,3,4$ and $7$ and the centralizer of one order $2$ element is the dihedral group of order $8$. They had to determine the number of distinct irreducible representations, that is, the number of conjugacy classes. Try it yourself (Solution at the end of this post).

For months I felt completely deflated on Tuesday nights, for I had to teach the remaining two courses on that day.

There’s this first year Linear Algebra course. After teaching for over 30 years it was a first timer for me, and probably for the better. I guess 15 years ago I would have been arrogant enough to insist that the only way to teach linear algebra properly was to do representations of quivers…

Now, I realise that linear algebra is perhaps the only algebra course the majority of math-students will need in their further career, so it is best to tune its contents to the desires of the other colleagues: inproducts, determinants as volumes, Markov-processes and the like.

There are thousands of linear algebra textbooks, the one feature they all seem to lack is conciseness. What kept me going throughout this course was trying to come up with the shortest proofs ever for standard results. No doubt, next year the course will grow on me.

Then, there was a master course on algebraic geometry (which was supposed to be on scheme theory, moduli problems such as the classification of fat points (as in the car crash post, etale topology and the like) which had a bumpy start because class was less prepared on varieties and morphisms than I had hoped for.

Still, judging on the quality of the papers students are beginning to hand in (today I received one doing serious stuff with stacks) we managed to cover a lot of material in the end.

I’m determined to teach that first course on algebraic geometry myself next year.

Which brought me wondering about the ideal content of such a course.

Half a decade ago I wrote a couple of posts such as Mumford’s treasure map, Grothendieck’s functor of points, Manin’s geometric axis and the like, which are still quite readable.

In the functor of points-post I referred to a comment thread Algebraic geometry without prime ideals at the Secret Blogging Seminar.

As I had to oversee a test this afternoon, I printed out all comments (a full 29 pages!) and had a good time reading them. At the time I favoured the POV advocated by David Ben-Zvi and Jim Borger (functor of points instead of locally ringed schemes).

Clearly they are right, but then so was I when I thought the ‘right’ way to teach linear algebra was via quiver-representations…

We’ll see what I’ll try out next year.

You may have wondered about the title of this post. It’s derived from a paper Raf Bocklandt (of the Korteweg-de Vries Institute in Amsterdam) arXived some days ago: Reflections in a cup of coffee, which is an extended version of a Brouwer-lecture he gave. Raf has this to say about the Brouwer fixed-point theorem.

“The theorem is usually explained in worldly terms by looking at a cup of coffee. In this setting it states that no matter how you stir your cup, there will always be a point in the liquid that did not change position and if you try to move that part by further stirring you will inevitably move some other part back into its original position. Legend even has it that Brouwer came up with the idea while stirring in a real cup, but whether this is true we’ll never know. What is true however is that Brouwers refections on the topic had a profound impact on mathematics and would lead to lots of new developments in geometry.”

I wish you all a pleasant end of 2016 and a much better 2017.

As to the 168-solution: Sylow says there are 8 7-Sylows giving 48 elements of order 7. The centralizer of each of them must be $C_7$ (given the restriction on the order of elements) so two conjugacy classes of them. Similarly each conjugacy class of an order 3 element must contain 56 elements. There is one conjugacy class of an order 2 element having 21 elements (because the centralizer is $D_4$) giving also a conjugacy class of an order 4 element consisting of 42 elements. Together with the identity these add up to 168 so there are 6 irreducible representations.

Leave a Comment

Where are Grothendieck’s writings? (2)

A couple of days ago, there was yet another article by Philippe Douroux on Grothendieck’s Lasserre writings “Inestimables mathématiques, avez-vous donc un prix?” in the French newspaper Liberation.

Not that there is much news to report.

I’ve posted on this before: Grothendieck’s gribouillis, Grothendieck’s gribouillis (2), and more recently Where are Grothendieck’s writings?

In that last post I claimed that the five metallic cases containing Grothendieck’s Lasserre notes were in a white building behind the police station of the sixth arrondissement of Paris.

I was wrong.

There’s a detail in Douroux’ articles I forgot to follow-up before.

Here’s the correct location:

What went wrong?

Here’s my ‘translation’ of part of chapter 46 of Douroux’ book “Alexandre Grothendieck, sur les traces du dernier genie des mathematiques”:

“On November 13th 2015, while the terrorist-attacks on the Bataclan and elsewhere were going on, a Mercedes break with on board Alexandre Jr. Grothendieck and Jean-Bernard, a librarian specialised in ancient writings, was approaching Paris from Lasserre. On board: 5 metallic cases, 2 red ones, 1 green and 2 blues.

At about 2 into the night they arrived at the ‘commissariat du Police’ of the 6th arrondissement. Jean-Bernard pushed open a heavy blue carriage porch, crossed the courtyard opened a second door and then a third one and delivered the cases.”

It all seemed to fit together: the ‘commissariat’ has a courtyard (but then, so do most buildings in the neighborhood) and has a blue carriage porch:

portepolicejpg

What went wrong?

I should have trusted Google-translate instead.

It translates the original text “…il garait sa voiture pres du commissariat…” more correctly into “…he parked his car near the police station…”. ‘Near’ as apposed to ‘at’…

We should have looked for a location close to the police station.

And, I should have looked up “Jean-Bernard, a librarian specialised in ancient writings”.

Who is Jean-Bernard?

In Douroux’ latest article there’s this sentence:

“Dès lors, on comprend mieux le travail de Jean-Bernard Gillot, libraire à Paris et expert en livres anciens et manuscrits scientifiques pour lequel les cinq malles contenant les écrits de Lasserre représentent l’affaire d’une vie.”

I’m not even going to make an attempt at translation, you know which tool to use if needed. Suffice it to say that the mysterious Jean-Bernard is no other than Jean-Bernard Gillot.

jbgillotjpg

In 2005, Jean-Bernard Gillot took over the Librairie Alain Brieux, specialising in ancient scientific books and objects. Here’s a brief history of this antiques shop.

Relevant to our quest is that it is located 48, rue Jacob in Paris, just around the corner of the Police Station of the 6th arrondissement.

And, there is a beautiful heavy blue carriage porch, leading to an interior courtyard…

portelibrairiejpg

A quick look at the vast amount of scientific objects (such as these Napier’s bones) indicates that there must be adequate and ample storage space in the buildings behind the shop.

This is where the five metallic cases containing the Lasserre writings are at this moment.

What’s next?

We’re lightyears removed from Maltsiniotis’ optimistic vision, broadcast at the Grothendieck conference in Montpellier last year, that the BNF would acquire the totality of the writings and make them available to the mathematical community at large.

Apart from Maltsiniotis’ cursory inventory of (part of) the 93.000 pages, nobody knows what’s inside these five boxes, making it impossible to put a price tag on them.

Perhaps, the family should grant some bloggers access to the cases, in return for a series of (live)posts on what they’ll find inside…?!

One Comment

how much to spend on (cat)books?

My favourite tags on MathOverflow are big-lists, big-picture, soft-question,
reference-request and the like.

Often, answers to such tagged questions contain sound reading advice, style: “road-map to important result/theory X”.

Two more K to go, so let’s spend some more money.

[section_title text=”Category theory”]

One of the problems with my master course on algebraic geometry is that the students are categorical virgins.

They’ve been studying specific categories, functors, natural transformations and more all over their bachelor years, without knowing the terminology.

It then helps to illustrate these concepts with examples. For example that the determinant is a natural transformation, or that $\mathbb{C}[t]$ represents the functor forgetting the ring structure.

The more examples the merrier. I like Riehl’s example that in the category of graphs, the complete graph $K_n$ represents the functor assigning to a graph the set of all its $n$-colourings.

So, I had a look at the MathOverflow question Is Mac Lane still the best place to learn category theory?.

It is always a good idea to support authors offering a free online version of their book.

Abstract and Concrete Categories: The Joy of Cats by J. Adamek,H. Herrlich and G. Strecker. Blurb: “This up-to-date introductory treatment employs the language of category theory to explore the theory of structures. Its unique approach stresses concrete categories, and each categorical notion features several examples that clearly illustrate specific and general cases.”

Free online version : The Joy of Cats

Category Theory for the Sciences by David Spivak. Blurb: “Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs — categories in disguise. After explaining the “big three” concepts of category theory — categories, functors, and natural transformations — the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions.”

Free online version: Category theory for scientists

Category Theory in Context by Emily Riehl. Blurb: “Suitable for advanced undergraduates and graduate students in mathematics, the text provides tools for understanding and attacking difficult problems in algebra, number theory, algebraic geometry, and algebraic topology. Drawing upon a broad range of mathematical examples from the categorical perspective, the author illustrates how the concepts and constructions of category theory arise from and illuminate more basic mathematical ideas. ”

Free online version: Category theory in context

Now, for the heavier stuff.

If I want to study Jacob Lurie’s books “Higher Topoi Theory”, “Derived AG”, what prerequisites should I have?

Simplicial Objects in Algebraic Topology by Peter May. Blurb: “Since it was first published in 1967, Simplicial Objects in Algebraic Topology has been the standard reference for the theory of simplicial sets and their relationship to the homotopy theory of topological spaces. ”

Free online version: Simplicial Objects in Algebraic Topology (h/t David Roberts via the comments)

A Concise Course in Algebraic Topology by Peter May. Blurb: “J. Peter May’s approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. ”

Free online version: A Concise Course in Algebraic Topology

Or in Lurie’s words: “To read Higher Topos Theory, you’ll need familiarity with ordinary category theory and with the homotopy theory of simplicial sets (Peter May’s book “Simplicial Objects in Algebraic Topology” is a good place to learn the latter). Other topics (such as classical topos theory) will be helpful for motivation.”

He also has a suggestion for the classic topos theory stuff:

“”Sheaves in Geometry and Logic” by Moerdijk and MacLane is a pretty good read (as is Uncle John, but I’ve never seen topos theory in there).”

I’ve had this book on permanent loan from our library over the past two years, so it’s about time to have my own copy.

Sheaves in Geometry and Logic: A First Introduction to Topos Theory by Mac Lane and Moerdijk. Blurb: “Sheaves arose in geometry as coefficients for cohomology and as descriptions of the functions appropriate to various kinds of manifolds. Sheaves also appear in logic as carriers for models of set theory. This text presents topos theory as it has developed from the study of sheaves. Beginning with several examples, it explains the underlying ideas of topology and sheaf theory as well as the general theory of elementary toposes and geometric morphisms and their relation to logic.”

Higher Topos Theory by Jacob Lurie. Blurb: “Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory’s new language. The result is a powerful theory with applications in many areas of mathematics.”

Free online version: Higher topos theory

Although it is unlikely that I can use this left-over money from a grant to pre-order a book, let’s try

Theories, Sites, Toposes: Relating and studying mathematical theories through topos-theoretic ‘bridges’ by Olivia Caramello. Blurb: “According to Grothendieck, the notion of topos is “the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures”. It is what he had “conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an “essence” which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things”. ”

And, as I also teach a course on the history of mathematics, let’s include:

Tool and Object: A History and Philosophy of Category Theory by Ralph Krömer. Blurb: “This book describes the history of category theory whereby illuminating its symbiotic relationship to algebraic topology, homological algebra, algebraic geometry and mathematical logic and elaboratively develops the connections with the epistemological significance.”

One Comment

let’s spend 3K on (math)books

Santa gave me 3000 Euros to spend on books. One downside: I have to give him my wish-list before monday. So, I’d better get started. Clearly, any further suggestions you might have will be much appreciated, either in the comments below or more directly via email.

Today I’ll focus on my own interests: algebraic geometry, non-commutative geometry and representation theory. I do own a fair amount of books already which accounts for the obvious omissions in the lists below (such as Hartshorne, Mumford or Eisenbud-Harris in AG, Fulton-Harris in RT or the ‘bibles’ in NCG).

[section_title text=”Algebraic geometry”]

Here, I base myself on (and use quotes from) the excellent answer by Javier Alvarez to the MathOverflow post Best Algebraic Geometry text book? (other than Hartshorne).

In no particular order:

Lectures on Curves, Surfaces and Projective Varieties by Ettore Carletti, Dionisio Gallarati, and Giacomo Monti Bragadin and Mauro C. Beltrametti.
“which starts from the very beginning with a classical geometric style. Very complete (proves Riemann-Roch for curves in an easy language) and concrete in classic constructions needed to understand the reasons about why things are done the way they are in advanced purely algebraic books. There are very few books like this and they should be a must to start learning the subject. (Check out Dolgachev’s review.)”

A Royal Road to Algebraic Geometry by Audun Holme. “This new title is wonderful: it starts by introducing algebraic affine and projective curves and varieties and builds the theory up in the first half of the book as the perfect introduction to Hartshorne’s chapter I. The second half then jumps into a categorical introduction to schemes, bits of cohomology and even glimpses of intersection theory.”

Liu Qing – “Algebraic Geometry and Arithmetic Curves”. “It is a very complete book even introducing some needed commutative algebra and preparing the reader to learn arithmetic geometry like Mordell’s conjecture, Faltings’ or even Fermat-Wiles Theorem.”

Görtz; Wedhorn – Algebraic Geometry I, Schemes with Examples and Exercises. labeled ‘the best on schemes’ by Alvarez. “Tons of stuff on schemes; more complete than Mumford’s Red Book. It does a great job complementing Hartshorne’s treatment of schemes, above all because of the more solvable exercises.”

Kollár – Lectures on Resolution of Singularities. “Great exposition, useful contents and examples on topics one has to deal with sooner or later.”

Kollár; Mori – Birational Geometry of Algebraic Varieties. “Considered as harder to learn from by some students, it has become the standard reference on birational geometry.”

And further, as a follow-up on their previous book on the computational side of AG:

Using Algebraic Geometry by Cox, Little and O’Shea.

[section_title text=”Non-commutative geometry”]

ncgbookspng

Noncommutative Geometry and Particle Physics by Walter van Suijlekom. Blurb: “This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.”

An Invitation To Noncommutative Geometry by Matilde Marcolli. Blurb: “This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.”

Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory. Blurb: “This collection of expository articles grew out of the workshop “Number Theory and Physics” held in March 2009 at The Erwin Schrödinger International Institute for Mathematical Physics, Vienna. The common theme of the articles is the influence of ideas from noncommutative geometry (NCG) on subjects ranging from number theory to Lie algebras, index theory, and mathematical physics. Matilde Marcolli’s article gives a survey of relevant aspects of NCG in number theory, building on an introduction to motives for beginners by Jorge Plazas and Sujatha Ramdorai.”

Feynman Motives by Matilde Marcolli. Blurb: “This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives.” But then, check out Matilde’s recent FaceBook status-update.

[section_title text=”Representation theory”]

repthybookspng

An Introduction to the Langlands Program by J. Bernstein (editor). Blurb: “This book presents a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Each of the twelve chapters focuses on a particular topic devoted to special cases of the program. The book is suitable for graduate students and researchers.”

Representation Theory of Finite Groups: An Introductory Approach by Benjamin Steinberg.

Representation Theory of Finite Monoids by Benjamin Steinberg. Blurb: “This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study.”

How am I doing? 914 dollars…

Way to go, same exercise tomorrow. Again, suggestions/warnings welcome!

Leave a Comment

human-, computer- and fairy-chess

It was fun following the second game last night in real time. Carlsen got a winning endgame with two bishops against a rook, but blundered with 62. Bg4?? (winning was Kf7), resulting in stalemate.

There was this hilarious message around move 60:

“The computer has just announced that white mates in 31 moves. Of course, the only two people in the building who don’t benefit from that knowledge are behind the pieces.”

[section_title text=”Alice’s game from ‘Through the Looking-Glass'”]

The position below comes from the preface of Lewis Carroll’s Through the Looking-Glass



The old notation for files is used:

a = QR (queen’s side rook)
b = QKt (queen’s side knight)
c = QB (queen’s side bishop)
d = Q (queen)
e = K (king)
f = KB (king’s side bishop)
g = KKt (king’s side knight)
h = KR (king’s side rook)

Further, the row-number depends on whose playing (they both count starting from their own side). Here’s an animated version of the game:



And a very strange game it is.

White makes consecutive moves, which is allowed in some versions of fairy chess.

And, as the late Martin Gardner explains in his book The Annotated Alice:

“The most serious violation of chess rules occurs near the end of the
problem, when the White King is placed in check by the Red Queen without
either side taking account of the fact. “Hardly a move has a sane purpose,
from the point of view of chess,” writes Mr. Madan. It is true that both sides
play an exceedingly careless game, but what else could one expect from the
mad creatures behind the mirror? At two points the White Queen passes up
a chance to checkmate and on another occasion she flees from the Red
Knight when she could have captured him. Both oversights, however, are in
keeping with her absent-mindedness.”

In fact, the whole game reflects the book’s story (Alice is the white pawn travelling to the other side of the board), with book-pages associated to the positions listed on the left. Martin Gardner on this:

“Considering the staggering difficulties involved in dovetailing a chess
game with an amusing nonsense fantasy, Carroll does a remarkable job. At
no time, for example, does Alice exchange words with a piece that is not
then on a square alongside her own. Queens bustle about doing things while
their husbands remain relatively fixed and impotent, just as in actual chess
games. The White Knight’s eccentricities fit admirably the eccentric way in
which Knights move; even the tendency of the Knights to fall off their
horses, on one side or the other, suggests the knight’s move, which is two
squares in one direction followed by one square to the right or left. In order
to assist the reader in integrating the chess moves with the story, each move
will be noted in the text at the precise point where it occurs.”

The starting position is in itself an easy chess-problem: white mates in 3, as explained by Gardner:

” It is amusing to note that it is the Red Queen who persuades Alice to advance along her file to the eighth square. The Queen is protecting herself with this advice, for white has at the outset an easy, though inelegant, checkmate in three moves.
The White Knight first checks at KKt.3. If the Red King moves to either Q6
or Q5, white can mate with the Queen at QB3. The only alternative is for
the Red King to move to K4. The White Queen then checks on QB5,
forcing the Red King to K3. The Queen then mates on Q6. This calls, of
course, for an alertness of mind not possessed by either the Knight or
Queen. ”

Leave a Comment

NaNoWriMo (3)

In 2001, Eugenia Cheng gave an interesting after-dinner talk Mathematics and Lego: the untold story. In it she compared math research to fooling around with lego. A quote:

“Lego: the universal toy. Enjoyed by people of all ages all over the place. The idea is simple and brilliant. Start with some basic blocks that can be joined together. Add creativity, imagination and a bit of ingenuity. Build anything.

Mathematics is exactly the same. We start with some basic building blocks and ways of joining them together. And then we use creativity, and, yes, imagination and certainly ingenuity, and try to build anything.”

She then goes on to explain category theory, higher dimensional topology, and the process of generalisation in mathematics, whole the time using lego as an analogy. But, she doesn’t get into the mathematics of lego, perhaps because the talk was aimed at students and researchers of all levels and all disciplines.

There are plenty of sites promoting lego in the teaching of elementary mathematics, here’s just one link-list-page: “27 Fantastic LEGO Math Learning Activities for All Ages”. I’m afraid ‘all ages’ here means: under 10…

lego-math-teaching-children-alycia-zimmerman-fb__700-png

Can one do better?

Everyone knows how to play with lego, which shapes you can build, and which shapes are simply impossible.

Can one tap into this subconscious geometric understanding to explain more advanced ideas such as symmetry, topological spaces, sheaves, categories, perhaps even topos theory… ?

Let’s continue our

[section_title text=”imaginary iterview”]

Question: What will be the opening scene of your book?

Alice posts a question on Lego-stackexchenge. She wants help to get hold of all imaginary lego shapes, including shapes impossible to construct in three-dimensional space, such as gluing two shapes over some internal common sub-shape, or Escher like constructions, and so on.

escherlego

Question: And does she get help?

At first she only gets snide remarks, style: “brush off your French and wade through SGA4”.

Then, she’s advised to buy a large notebook and jot down whatever she can tell about shapes that one can construct.

If you think about this, you’ll soon figure out that you can only add new bricks along the upper or lower bricks of the shape. You may call these the boundary of the shape, and soon you’ll be doing topology, and forming coproducts.

These ‘legal’ lego shapes form what some of us would call a category, with a morphism from $A$ to $B$ for each different way one can embed shape $A$ into $B$.

Of course, one shouldn’t use this terminology, but rather speak of different instruction-manuals to get $B$ out of $A$ (the morphisms), stapling two sets of instructions together (the compositions), and the empty instruction-sheet (the identity morphism).

Question: But can one get to the essence of categorical results in this way?

Take Yoneda’s lemma. In the case of lego shapes it says that you know a shape once you know all morphisms into it from whatever shape.

For any coloured brick you’re given the number of ways this brick sits in that shape, so you know all the shape’s bricks. Then you may try for combination of two bricks, and so on. It sure looks like you’re going to be able to reconstruct the shape from all this info, but this quickly get rather messy.

But then, someone tells you the key argument in Yoneda’s proof: you only have to look for the shape to which the identity morphism is assigned. Bingo!

Question: Wasn’t your Alice interested in the ‘illegal’ or imaginary shapes?

Once you get to Yoneda, the rest follows routinely. You define presheaves on this category, figure out that you get a whole bunch of undesirable things, bring in Grothendieck topologies to be the policing agency weeding out that mess, and keep only the sheaves, which are exactly the desired imaginary shapes.

Question: Your book’s title is ‘Primes and other imaginary shapes’. How do you get from Lego shapes to prime numbers?

By the standard Gödelian trick: assign a prime number to each primitive coloured brick, and to a shape the product of the brick-primes.

That number is a sort of code of the shape. Shapes sharing the same code are made up from the same set of bricks.

Take the set of all strictly positive natural numbers partially ordered by divisibility, then this code is a functor from Lego shapes to numbers. If we extend this to imaginary shapes, we’ll rapidly end up at Connes’ arithmetic site, supernatural numbers, adeles and the recent realisation that the set of all prime numbers does have a geometric shape, but one with infinitely many dimensions.

primenumbers

Not sure yet how to include all of this, but hey, early days.

Question: So, shall we continue this interview at a later date?

No way, I’d better start writing.

Leave a Comment

Ulysses and LaTeX

If you’re a mathematician chances are that your text-editor of choice will be TeXShop, the perfect environment for writing papers. Even when writing a massive textbook, most of us stick to this or a similar LaTeX-frontend. The order of chapters in such a book is usually self-evident, and it is enough to use one TeX-file per chapter.

If you’re a blogger, chances are you spend a lot of writing time within the WordPress-editor. If you have a math-blog, there’s no longer the issue of including TeX-output images in some laborious way, thanks to MathJax. Even for a longer series of blog-posts there’s no problem staying within the WordPress-environment.

However, if you’re reckless enough to want to write a novel, or a math-book for a larger audience, you may need different equipment.

You will have to be able to follow story-lines, to follow your main characters throughout the plot, get word counts on scenes and chapters, jot down ideas and results from research, but most of all: you will have to be able to remain focussed just on your writing, as far away as possible from all bells and whistles and thrills of internet and preview-on-the-go editors.

In short, you may consider moving all of your writing to Ulysses.

I’ve been an early adopter from the days their iPad-app was called Daedalus, which I found cute, being a pathetic Joyce-fan. However, the app’s iCloud syncing sucked, but it is now replaced by the Ulysses.app which works like magic, syncing every keystroke between iPad, iPhone and whatever Mac you use as your workhorse.

But, what if you want to write about math and are unwilling to ban all LaTeX-formulas from your text.

Well, I’ve tried everything, including the approach below (in a faulty way), and figured it was impossible due to the fact that Ulysses is a MarkDown editor in which underscores are entirely different from indices.

Fortunately, yesterday Eline Steffens posted “Writing Mathematical Equations in Ulysses” showing me what I did wrong.

If you want MathJax to parse your text you need to include the standard code in your header. What I missed was that you have to include it as a ‘Raw source block’ (under ‘Markup’ in Ulysses).

Further, I forgot to prepend dollar-signs with a tilde, which works as an escape character in Ulysses so that all underscores are safe within the LaTeX-boundaries.

But now it works like a charm.

Ulysses is able to export your text in a variety of ways. You can preview it as HTML, including all rendered LaTex, and you can export directly either to Medium (on which I should begin to cross-post stuff asap) or your own WordPress-site.

In fact, I wrote this in Ulysses, then clicked the export-icon, choose ‘Publishing’ and NeverEndingBooks, and bingo I was able to post it as a draft. I can even fill in categories and tags, even add the featured image appearing at the top of this post, check everything in WordPress-admin and hit: “Publish”.

I guess I’ll be doing all my non-paper writing from now on entirely in Ulysses.

Leave a Comment

NaNoWriMo (2)

Two more days to go in the NaNoWriMo 2016 challenge. Alas, it was clear from the outset that I would fail, bad.

I didn’t have a sound battle plan. Hell, I didn’t even have a a clue which book to write…

But then, I may treat myself to a SloWriMo over the Christmas break.

For I’ve used this month to sketch the vaguest possible outlines of an imaginary book.

ulysses2

[section_title text=”An imaginary interview”]

Question: What is the title of your book?

I don’t know for sure, but my working title is Primes and other imaginary shapes.

Question: What will the cover-illustration look like?

At the moment I would settle for something like this:

Question: Does your book have an epigraph?

That’s an easy one. Whenever this works out, I’ll use for the opening quote:

[quote name=”David Spivak in ‘Presheaf, the cobbler'”]God willing, I will get through SGA 4 and Lurie’s book on Higher Topos Theory.
[/quote]

Question: Any particular reason?

Sure. That’s my ambition for this book, but perhaps I’ll save Lurie’s stuff for the sequel.

Question: As you know, Emily Riehl has a textbook out: Category Theory in Context. Here’s a recent tweet of hers:

Whence the question: does your book have a protagonist?

Well, I hope someone gave Emily the obvious reply: Yoneda! As you know, category theory is a whole bunch of definitions, resulting in one hell of a lemma.

But to your question, yes there’ll be a main character and her name is Alice.

I know, i know, an outrageous cliché, but at least I can guarantee there’ll be no surprise appearances of Bob.

These days, Alices don’t fall in rabbit holes, or crawl through looking-glasses. They just go online and encounter weird and wondrous creatures. I need her to be old enough to set up a Facebook and other social accounts.

My mental image of Alice is that of the archetypical STEM-girl

In her younger years she was a lot like Lewis Carroll’s Alice. In ten years time she’ll be a copy-cat Alice Butler, the heroine of Scarlett Thomas’ novel PopCo.

Question: What will be the opening scene of your book?

Alice will post a question on Lego-stackexchenge, and yes, to my surprise such a site really exists

(to be continued, perhaps)

Leave a Comment

Grothendieck topologies as functors to Top

Either this is horribly wrong, or it must be well-known. So I guess I’m asking for either a rebuttal or a reference.

Take a ‘smallish’ category $\mathbf{C}$. By this I mean that for every object $C$ the collection of all maps ending in $C$ must be a set. On this set, let’s call it $y(C)$ for Yoneda’s sake, we can define a pre-order $f \leq g$ if there is a commuting diagram

$\xymatrix{D \ar[rr]^f \ar[rd]_h & & C \\ & E \ar[ru]_g &}$

A sieve $S$ on $C$ is the same thing as a downset in $y(C)$ with respect to this pre-order. Composition with $h : D \rightarrow C$ gives a map $h : y(D) \rightarrow y(C)$ such that $h^{-1}(S)$ is a downset (or, sieve) in $y(D)$ whenever $S$ is a downset in $y(C)$.

A Grothendieck topology on $\mathbf{C}$ is a function $J$ which assigns to every object $C$ a collection $J(C)$ of sieves on $C$ satisfying:

  • $y(C) \in J(C)$,
  • if $S \in J(C)$ then $h^{-1}(S) \in J(D)$ for every morphism $h : D \rightarrow C$,
  • a sieve $R$ on $C$ is in $J(C)$ if there is a sieve $S \in J(C)$ such that $h^{-1}(R) \in J(D)$ for all morphisms $h : D \rightarrow C$ in $S$.

From this it follows for all downsets $S$ and $T$ in $y(C)$ that if $S \subset T$ and $S \in J(C)$ then $T \in J(C)$ and if both $S,T \in J(C)$ then also $S \cap T \in J(C)$.

In other words, the collection $\mathcal{J}_C = \{ \emptyset \} \cup J(C)$ defines an ordinary topology on $y(C)$, and the second condition implies that we have a covariant functor

$\mathbf{J} : \mathbf{C} \rightarrow \mathbf{Top}$ sending $C \mapsto (y(C),\mathcal{J}_C)$

That is, one can view a Grothendieck topology as a functor to ordinary topological spaces.

Furher, the topos of sheaves on the site $(\mathbf{C},J)$ seems to fit in nicely. To a sheaf

$A : \mathbf{C}^{op} \rightarrow \mathbf{Sets}$

one associates a functor of flabby sheaves $\mathcal{A}(C)$ on $(y(C),\mathcal{J}_C)$ having as stalks

$\mathcal{A}(C)_h = Im(A(h))$ for all points $h : D \rightarrow C$ in $y(C)$

and as sections on the open set $S \subset y(C)$ all functions of the form

$s_a : S \rightarrow \bigsqcup_{h \in S} \mathcal{A}(C)_h$ where $s_a(h)=A(h)(a)$ for some $a \in A(C)$.

2 Comments

le lemme de la Gare du Nord

Theorems have the tendency to pop into existence when you least expect them: taking a bath, during your sleep, dreaming away during a dull lecture, waiting for an airplane, bicycling, whatever.

One of the most famous (and useful) lemmas was dreamed up in the Parisian Gare du Nord station, during a conversation between Saunders Mac Lane (then in his mid 40ties) and a young Japanese mathematician, half his age, Nobuo Yoneda.

Here’s the story:

Yoneda’s story

In the announcement of the death of his friend Yoneda on the catlist, the computer scientist Yoshiki Kinoshita writes:

“Prof. Yoneda was born on 28 March, 1930. He studied mathematics in the University of Tokyo; in the last year of his studies he followed the seminar of Prof. Shokiti Iyanaga, where he became interested in algebraic topology.

Soon after that (or maybe when he was still an undergraduate), Prof. Samuel Eilenberg visited Japan, and Yoneda traveled around Japan with him, as a translator and guide. At that time, he was exposed to the Cartan-Eilenberg book, which was still in galley form.

Later, he got a Fulbright scholarship and he visited Princeton, to study with Eilenberg. Those days, the Yen was still very weak, so even the Fulbright money was not enough to support even a modest living in U.S. Therefore, he worked as a proofreader at a European publisher (Elsevier? NorthHolland? maybe American), to earn money for the study in U.S. Even 25 years later, he seemed to be proud of his professional skill as a proofreader, which he gained then.

When he arrived in Princeton, Eilenberg had moved (sabbatical?) to France (or maybe, Eilenberg left US just after Yoneda’s arrival). So, Yoneda went to France a year later.

At that time, Saunders Mac Lane was visiting category theorists, apparently to obtain information to write his book (or former survey), and he met the young Yoneda, among others.

The interview started in a Cafe at Gare du Nord, and went on and on, and was continued even in Yoneda’s train until its departure. The contents of this talk was later named by Mac Lane as Yoneda lemma. So, the famous Yoneda lemma was born in Gare du Nord.

This must have been a good memory for Yoneda; I heard him tell this story many times. I do not know whether Mac Lane managed to leave the train before departure!”

Mac Lane’s story

In his obituary of Yoneda, Saunders Mac Lane also recalls the story as I learned from this tweet by Emily Riehl:


Emily also quotes part of the article in the section on Yoneda’s lemma in her excellent book Categories in Context.

At the time, Mac Lane was in his late 80ties and it is not clear whether this obituary is based on his own recollections or on the catlist-posting by Kinoshita.

Here’s the full version:

“Yoneda enjoyed relating the story of the origins of this lemma, as follows.

He had guided Samuel Eilenberg during Eilenberg’s visit to Japan, and in the process learned homological algebra.

Soon Yoneda spent a year in France (apparently in 1954 and 1955).

There he met Saunders Mac Lane. Mac Lane, then visiting Paris, was anxious to learn from Yoneda, and commenced an interview with Yoneda in a café at Gare du Nord.

The interview was continued on Yoneda’s train until its departure. In its course, Mac Lane learned about the lemma and subsequently baptized it.”

When was the Yoneda lemma born?

Remains the problem of putting an approximate date on this interview.

We know that Mac Lane was in France in the summer and fall of 1954. Thanks to this page maintained by John Baez we know that Mac Lane gave two lectures at the Colloque Henri Poincaré in Paris at the Institut Henri Poincaré in oktober 1954.

We also know that Mac Lane was a guest at the summer Bourbaki meeting which was held from august 17 till august 31, 1954 in Murols.

In this photograph taken at the meeting we see from left to right: Roger Godement, Jean Dieudonné, André Weil, Saunders Mac Lane and Jean-Pierre Serre.

Sadly, the Bourbaki-report (la Tribu) of the Murols-congress is not yet in the public domain (the pre-1954 reports can be found here), so it is a bit difficult to get hold of a full list of people present, or what exactly was discussed at that meeting.

Still, in a footnote to a paper on Gerhard Hochschild we find that Gerhard Hochschild and John Tate were in Murols as “foreigh visitors”, Saunders Mac Lane attended as “efficiency expert” (more on this below), and … Iyanaga (Yoneda’s Ph.D. adviser) and Yoshida (probably they meant Kosaku Yosida) attended as “honorable foreign visitors”.

Both Japanese mathematicians were on their way to the ICM in Amsterdam, which was held from september 2nd till september 9th 1954. Incidentally, Iyanaga chaired the invited address given by Andre Weil on wednesday 8th, titled “Abstract vs. classical algebraic geometry”.

Presumably, Yoneda was taking a train at the gare du Nord on his way to meat his adviser Iyanaga, to or from the Bourbaki meeting in Murols. My best guess is that the Yoneda lemma was born in the gare du Nord mid august 1954.

Mac Lane, the efficiency expert

What was Mac Lane’s role at the Bourbaki Murols-congress?

According to him there had been a heated argument at a previous Bourbaki-congress on using the terminology “exact sequence”. Mac Lane took it upon himself to convince the Bourbaki-members to embrace the use of category theory, perhaps by explaining the brand new Yoneda-lemma.

He failed miserably. Here’s what Weil wrote to Chevalley about it:

“As you know, my honourable colleague Mac Lane supports the idea that every structural notion necessarily comes equipped with a notion of homomorphism. […] What on earth does he hope to deduce from this kind of considerations?”

Mac Lane attributes his failure to convince Bourbaki (or at least Weil) to “perhaps my command of the French language was inadequate to the task of persuasion”.

I find it striking that top-mathematicians such as Andre Weil failed to see the importance of morphisms between objects even as late as the mid 50ties.

7 Comments