Skip to content →

Category: stories

The subway singularity

The Boston subway is a complex system, spreading out from a focus at Park Street.

On March 3rd, the Boylston shuttle went into service, tying together the seven principal lines, on four different levels.

A day later, train 86 went missing on the Cambridge-Dorchester line.

The Harvard algebraist R. Tupelo suggested the train might have hit a node, a singularity. By adding the Boylston shuttle, the connectivity of the subway system had become infinite…

Never heard of this tragic incident?

Time to read up on A.J. Deutsch’s classic ‘A subway named Moebius’ from 1950. A 12 page pdf of this short story is available via the Rio Rancho Math Camp.

The ‘explanation’ given in the story is that the Moebius strip has a singularity. Before you yell that this is impossible, have a look at this or that.

A ‘non spatial network’ where ‘an exclusion principle operates’, Deutsch’s story says.

Here’s another take.

The train took the exceptional fiber branch, instead of remaining on the desingularisation?

Whatever really happened, it’s a fun read, mathematics clashing with bureaucracy.

In 1996 Gustavo Mosquera directed the film ‘Moebius’, set in Buenos Aires, loosely based on Deutsch’s story.

Here’s the full version (90 min.), with subtitles. Have fun!

MOEBIUS dirigido por Gustavo Mosquera from Universidad del Cine on Vimeo.

Leave a Comment

Where are Grothendieck’s writings? (2)

A couple of days ago, there was yet another article by Philippe Douroux on Grothendieck’s Lasserre writings “Inestimables mathématiques, avez-vous donc un prix?” in the French newspaper Liberation.

Not that there is much news to report.

I’ve posted on this before: Grothendieck’s gribouillis, Grothendieck’s gribouillis (2), and more recently Where are Grothendieck’s writings?

In that last post I claimed that the five metallic cases containing Grothendieck’s Lasserre notes were in a white building behind the police station of the sixth arrondissement of Paris.

I was wrong.

There’s a detail in Douroux’ articles I forgot to follow-up before.

Here’s the correct location:

What went wrong?

Here’s my ‘translation’ of part of chapter 46 of Douroux’ book “Alexandre Grothendieck, sur les traces du dernier genie des mathematiques”:

“On November 13th 2015, while the terrorist-attacks on the Bataclan and elsewhere were going on, a Mercedes break with on board Alexandre Jr. Grothendieck and Jean-Bernard, a librarian specialised in ancient writings, was approaching Paris from Lasserre. On board: 5 metallic cases, 2 red ones, 1 green and 2 blues.

At about 2 into the night they arrived at the ‘commissariat du Police’ of the 6th arrondissement. Jean-Bernard pushed open a heavy blue carriage porch, crossed the courtyard opened a second door and then a third one and delivered the cases.”

It all seemed to fit together: the ‘commissariat’ has a courtyard (but then, so do most buildings in the neighborhood) and has a blue carriage porch:

portepolicejpg

What went wrong?

I should have trusted Google-translate instead.

It translates the original text “…il garait sa voiture pres du commissariat…” more correctly into “…he parked his car near the police station…”. ‘Near’ as apposed to ‘at’…

We should have looked for a location close to the police station.

And, I should have looked up “Jean-Bernard, a librarian specialised in ancient writings”.

Who is Jean-Bernard?

In Douroux’ latest article there’s this sentence:

“Dès lors, on comprend mieux le travail de Jean-Bernard Gillot, libraire à Paris et expert en livres anciens et manuscrits scientifiques pour lequel les cinq malles contenant les écrits de Lasserre représentent l’affaire d’une vie.”

I’m not even going to make an attempt at translation, you know which tool to use if needed. Suffice it to say that the mysterious Jean-Bernard is no other than Jean-Bernard Gillot.

jbgillotjpg

In 2005, Jean-Bernard Gillot took over the Librairie Alain Brieux, specialising in ancient scientific books and objects. Here’s a brief history of this antiques shop.

Relevant to our quest is that it is located 48, rue Jacob in Paris, just around the corner of the Police Station of the 6th arrondissement.

And, there is a beautiful heavy blue carriage porch, leading to an interior courtyard…

portelibrairiejpg

A quick look at the vast amount of scientific objects (such as these Napier’s bones) indicates that there must be adequate and ample storage space in the buildings behind the shop.

This is where the five metallic cases containing the Lasserre writings are at this moment.

What’s next?

We’re lightyears removed from Maltsiniotis’ optimistic vision, broadcast at the Grothendieck conference in Montpellier last year, that the BNF would acquire the totality of the writings and make them available to the mathematical community at large.

Apart from Maltsiniotis’ cursory inventory of (part of) the 93.000 pages, nobody knows what’s inside these five boxes, making it impossible to put a price tag on them.

Perhaps, the family should grant some bloggers access to the cases, in return for a series of (live)posts on what they’ll find inside…?!

One Comment

NaNoWriMo (3)

In 2001, Eugenia Cheng gave an interesting after-dinner talk Mathematics and Lego: the untold story. In it she compared math research to fooling around with lego. A quote:

“Lego: the universal toy. Enjoyed by people of all ages all over the place. The idea is simple and brilliant. Start with some basic blocks that can be joined together. Add creativity, imagination and a bit of ingenuity. Build anything.

Mathematics is exactly the same. We start with some basic building blocks and ways of joining them together. And then we use creativity, and, yes, imagination and certainly ingenuity, and try to build anything.”

She then goes on to explain category theory, higher dimensional topology, and the process of generalisation in mathematics, whole the time using lego as an analogy. But, she doesn’t get into the mathematics of lego, perhaps because the talk was aimed at students and researchers of all levels and all disciplines.

There are plenty of sites promoting lego in the teaching of elementary mathematics, here’s just one link-list-page: “27 Fantastic LEGO Math Learning Activities for All Ages”. I’m afraid ‘all ages’ here means: under 10…

lego-math-teaching-children-alycia-zimmerman-fb__700-png

Can one do better?

Everyone knows how to play with lego, which shapes you can build, and which shapes are simply impossible.

Can one tap into this subconscious geometric understanding to explain more advanced ideas such as symmetry, topological spaces, sheaves, categories, perhaps even topos theory… ?

Let’s continue our

[section_title text=”imaginary iterview”]

Question: What will be the opening scene of your book?

Alice posts a question on Lego-stackexchenge. She wants help to get hold of all imaginary lego shapes, including shapes impossible to construct in three-dimensional space, such as gluing two shapes over some internal common sub-shape, or Escher like constructions, and so on.

escherlego

Question: And does she get help?

At first she only gets snide remarks, style: “brush off your French and wade through SGA4”.

Then, she’s advised to buy a large notebook and jot down whatever she can tell about shapes that one can construct.

If you think about this, you’ll soon figure out that you can only add new bricks along the upper or lower bricks of the shape. You may call these the boundary of the shape, and soon you’ll be doing topology, and forming coproducts.

These ‘legal’ lego shapes form what some of us would call a category, with a morphism from $A$ to $B$ for each different way one can embed shape $A$ into $B$.

Of course, one shouldn’t use this terminology, but rather speak of different instruction-manuals to get $B$ out of $A$ (the morphisms), stapling two sets of instructions together (the compositions), and the empty instruction-sheet (the identity morphism).

Question: But can one get to the essence of categorical results in this way?

Take Yoneda’s lemma. In the case of lego shapes it says that you know a shape once you know all morphisms into it from whatever shape.

For any coloured brick you’re given the number of ways this brick sits in that shape, so you know all the shape’s bricks. Then you may try for combination of two bricks, and so on. It sure looks like you’re going to be able to reconstruct the shape from all this info, but this quickly get rather messy.

But then, someone tells you the key argument in Yoneda’s proof: you only have to look for the shape to which the identity morphism is assigned. Bingo!

Question: Wasn’t your Alice interested in the ‘illegal’ or imaginary shapes?

Once you get to Yoneda, the rest follows routinely. You define presheaves on this category, figure out that you get a whole bunch of undesirable things, bring in Grothendieck topologies to be the policing agency weeding out that mess, and keep only the sheaves, which are exactly the desired imaginary shapes.

Question: Your book’s title is ‘Primes and other imaginary shapes’. How do you get from Lego shapes to prime numbers?

By the standard Gödelian trick: assign a prime number to each primitive coloured brick, and to a shape the product of the brick-primes.

That number is a sort of code of the shape. Shapes sharing the same code are made up from the same set of bricks.

Take the set of all strictly positive natural numbers partially ordered by divisibility, then this code is a functor from Lego shapes to numbers. If we extend this to imaginary shapes, we’ll rapidly end up at Connes’ arithmetic site, supernatural numbers, adeles and the recent realisation that the set of all prime numbers does have a geometric shape, but one with infinitely many dimensions.

primenumbers

Not sure yet how to include all of this, but hey, early days.

Question: So, shall we continue this interview at a later date?

No way, I’d better start writing.

Leave a Comment

NaNoWriMo (2)

Two more days to go in the NaNoWriMo 2016 challenge. Alas, it was clear from the outset that I would fail, bad.

I didn’t have a sound battle plan. Hell, I didn’t even have a a clue which book to write…

But then, I may treat myself to a SloWriMo over the Christmas break.

For I’ve used this month to sketch the vaguest possible outlines of an imaginary book.

ulysses2

[section_title text=”An imaginary interview”]

Question: What is the title of your book?

I don’t know for sure, but my working title is Primes and other imaginary shapes.

Question: What will the cover-illustration look like?

At the moment I would settle for something like this:

Question: Does your book have an epigraph?

That’s an easy one. Whenever this works out, I’ll use for the opening quote:

[quote name=”David Spivak in ‘Presheaf, the cobbler'”]God willing, I will get through SGA 4 and Lurie’s book on Higher Topos Theory.
[/quote]

Question: Any particular reason?

Sure. That’s my ambition for this book, but perhaps I’ll save Lurie’s stuff for the sequel.

Question: As you know, Emily Riehl has a textbook out: Category Theory in Context. Here’s a recent tweet of hers:

Whence the question: does your book have a protagonist?

Well, I hope someone gave Emily the obvious reply: Yoneda! As you know, category theory is a whole bunch of definitions, resulting in one hell of a lemma.

But to your question, yes there’ll be a main character and her name is Alice.

I know, i know, an outrageous cliché, but at least I can guarantee there’ll be no surprise appearances of Bob.

These days, Alices don’t fall in rabbit holes, or crawl through looking-glasses. They just go online and encounter weird and wondrous creatures. I need her to be old enough to set up a Facebook and other social accounts.

My mental image of Alice is that of the archetypical STEM-girl

In her younger years she was a lot like Lewis Carroll’s Alice. In ten years time she’ll be a copy-cat Alice Butler, the heroine of Scarlett Thomas’ novel PopCo.

Question: What will be the opening scene of your book?

Alice will post a question on Lego-stackexchenge, and yes, to my surprise such a site really exists

(to be continued, perhaps)

Leave a Comment

le lemme de la Gare du Nord

Theorems have the tendency to pop into existence when you least expect them: taking a bath, during your sleep, dreaming away during a dull lecture, waiting for an airplane, bicycling, whatever.

One of the most famous (and useful) lemmas was dreamed up in the Parisian Gare du Nord station, during a conversation between Saunders Mac Lane (then in his mid 40ties) and a young Japanese mathematician, half his age, Nobuo Yoneda.

Here’s the story:

Yoneda’s story

In the announcement of the death of his friend Yoneda on the catlist, the computer scientist Yoshiki Kinoshita writes:

“Prof. Yoneda was born on 28 March, 1930. He studied mathematics in the University of Tokyo; in the last year of his studies he followed the seminar of Prof. Shokiti Iyanaga, where he became interested in algebraic topology.

Soon after that (or maybe when he was still an undergraduate), Prof. Samuel Eilenberg visited Japan, and Yoneda traveled around Japan with him, as a translator and guide. At that time, he was exposed to the Cartan-Eilenberg book, which was still in galley form.

Later, he got a Fulbright scholarship and he visited Princeton, to study with Eilenberg. Those days, the Yen was still very weak, so even the Fulbright money was not enough to support even a modest living in U.S. Therefore, he worked as a proofreader at a European publisher (Elsevier? NorthHolland? maybe American), to earn money for the study in U.S. Even 25 years later, he seemed to be proud of his professional skill as a proofreader, which he gained then.

When he arrived in Princeton, Eilenberg had moved (sabbatical?) to France (or maybe, Eilenberg left US just after Yoneda’s arrival). So, Yoneda went to France a year later.

At that time, Saunders Mac Lane was visiting category theorists, apparently to obtain information to write his book (or former survey), and he met the young Yoneda, among others.

The interview started in a Cafe at Gare du Nord, and went on and on, and was continued even in Yoneda’s train until its departure. The contents of this talk was later named by Mac Lane as Yoneda lemma. So, the famous Yoneda lemma was born in Gare du Nord.

This must have been a good memory for Yoneda; I heard him tell this story many times. I do not know whether Mac Lane managed to leave the train before departure!”

Mac Lane’s story

In his obituary of Yoneda, Saunders Mac Lane also recalls the story as I learned from this tweet by Emily Riehl:


Emily also quotes part of the article in the section on Yoneda’s lemma in her excellent book Categories in Context.

At the time, Mac Lane was in his late 80ties and it is not clear whether this obituary is based on his own recollections or on the catlist-posting by Kinoshita.

Here’s the full version:

“Yoneda enjoyed relating the story of the origins of this lemma, as follows.

He had guided Samuel Eilenberg during Eilenberg’s visit to Japan, and in the process learned homological algebra.

Soon Yoneda spent a year in France (apparently in 1954 and 1955).

There he met Saunders Mac Lane. Mac Lane, then visiting Paris, was anxious to learn from Yoneda, and commenced an interview with Yoneda in a café at Gare du Nord.

The interview was continued on Yoneda’s train until its departure. In its course, Mac Lane learned about the lemma and subsequently baptized it.”

When was the Yoneda lemma born?

Remains the problem of putting an approximate date on this interview.

We know that Mac Lane was in France in the summer and fall of 1954. Thanks to this page maintained by John Baez we know that Mac Lane gave two lectures at the Colloque Henri Poincaré in Paris at the Institut Henri Poincaré in oktober 1954.

We also know that Mac Lane was a guest at the summer Bourbaki meeting which was held from august 17 till august 31, 1954 in Murols.

In this photograph taken at the meeting we see from left to right: Roger Godement, Jean Dieudonné, André Weil, Saunders Mac Lane and Jean-Pierre Serre.

Sadly, the Bourbaki-report (la Tribu) of the Murols-congress is not yet in the public domain (the pre-1954 reports can be found here), so it is a bit difficult to get hold of a full list of people present, or what exactly was discussed at that meeting.

Still, in a footnote to a paper on Gerhard Hochschild we find that Gerhard Hochschild and John Tate were in Murols as “foreigh visitors”, Saunders Mac Lane attended as “efficiency expert” (more on this below), and … Iyanaga (Yoneda’s Ph.D. adviser) and Yoshida (probably they meant Kosaku Yosida) attended as “honorable foreign visitors”.

Both Japanese mathematicians were on their way to the ICM in Amsterdam, which was held from september 2nd till september 9th 1954. Incidentally, Iyanaga chaired the invited address given by Andre Weil on wednesday 8th, titled “Abstract vs. classical algebraic geometry”.

Presumably, Yoneda was taking a train at the gare du Nord on his way to meat his adviser Iyanaga, to or from the Bourbaki meeting in Murols. My best guess is that the Yoneda lemma was born in the gare du Nord mid august 1954.

Mac Lane, the efficiency expert

What was Mac Lane’s role at the Bourbaki Murols-congress?

According to him there had been a heated argument at a previous Bourbaki-congress on using the terminology “exact sequence”. Mac Lane took it upon himself to convince the Bourbaki-members to embrace the use of category theory, perhaps by explaining the brand new Yoneda-lemma.

He failed miserably. Here’s what Weil wrote to Chevalley about it:

“As you know, my honourable colleague Mac Lane supports the idea that every structural notion necessarily comes equipped with a notion of homomorphism. […] What on earth does he hope to deduce from this kind of considerations?”

Mac Lane attributes his failure to convince Bourbaki (or at least Weil) to “perhaps my command of the French language was inadequate to the task of persuasion”.

I find it striking that top-mathematicians such as Andre Weil failed to see the importance of morphisms between objects even as late as the mid 50ties.

7 Comments

NaNoWriMo (1)

Some weeks ago I did register to be a participant of NaNoWriMo 2016. It’s a belated new-year’s resolution.

When PS (pseudonymous sister), always eager to fill a 10 second silence at family dinners, asked

(PS) And Lieven, what are your resolutions for 2016?

she didn’t really expect an answer (for decades my generic reply has been: “I’m not into that kinda nonsense”)

(Me) I want to write a bit …

stunned silence

(PS) … Oh … good … you mean for work, more papers perhaps?

(Me) Not really, I hope to write a book for a larger audience.

(PS) Really? … Ok … fine … (appropriate silence) … Now, POB (pseudonymous other brother), what are your plans for 2016?

nanowrimo_2016_webbanner_participant

If you don’t know what NaNoWriMo is all about: the idea is to write a “book” (more like a ‘shitty first draft’ of half a book) consisting of 50.000 words in November.

We’re 5 days into the challenge, and I haven’t written a single word…

Part of the problem is that I’m in the French mountains, and believe me, there always more urgent or fun things to do here than to find a place of my own and start writing.

A more fundamental problem is that I cannot choose between possible book-projects.

Here’s one I will definitely not pursue:

“The Grothendieck heist”

“A group of hackers uses a weapon of Math destruction to convince Parisian police that a terrorist attack is imminent in the 6th arrondissement. By a cunning strategy they are then able to enter the police station and get to the white building behind it to obtain some of Grothendieck’s writings.

A few weeks later three lengthy articles hit the arXiv, claiming to contain a proof of the Riemann hypothesis, by partially dismantling topos theory.

Bi-annual conferences are organised around the globe aimed at understanding this weird new theory, etc. etc. (you get the general idea).

The papers are believed to have resulted from the Grothendieck heist. But then, similar raids are carried out in Princeton and in Cambridge UK and a sinister plan emerges… “

Funny as it may be to (ab)use a story to comment on the current state of affairs in mathematics, I’m not known to be the world’s most entertaining story teller, so I’d better leave the subject of math-thrillers to others.

Here’s another book-idea:

“The Bourbaki travel guide”

The idea is to hunt down places in Paris and in the rest of France which were important to Bourbaki, from his birth in 1934 until his death in 1968.

This includes institutions (IHP, ENS, …), residences, cafes they frequented, venues of Bourbaki meetings, references in La Tribu notices, etc.

This should lead to some nice Parisian walks (in and around the fifth arrondissement) and a couple of car-journeys through la France profonde.

Of course, also some of the posts I wrote on possible solutions of the riddles contained in Bourbaki’s wedding announcement and the avis de deces will be included.

Here the advantage is that I have already a good part of the raw material. Of course it still has to be followed up by in-situ research, unless I want to turn it into a ‘virtual math traveler ’s guide’ so that anyone can check out the places on G-maps rather than having to go to France.

I’m still undecided about this project. Is there a potential readership for this? Is it worth the effort? Can’t it wait until I retire and will spend even more time in France?

Here’s yet another idea:

“Mr. Yoneda takes the Tokyo-subway”

This is just a working title, others are “the shape of prime numbers”, or “schemes for hipsters”, or “toposes for fashionistas”, or …

This should be a work-out of the sga4hipsters meme. Is it really possible to explain schemes, stacks, Grothendieck topologies and toposes to a ‘general’ public?

At the moment I’m re-reading Eugenia Cheng’s “Cakes, custard and category theory”. As much as I admire her fluent writing style it is difficult for me to believe that someone who didn’t knew the basics of it before would get an adequate understanding of category theory after reading it.

It is often frustrating how few of mathematics there is in most popular maths books. Can’t one do better? Or is it just inherent in the format? Can one write a Cheng-style book replacing the recipes by more mathematics?

The main problem here is to find good ‘real-life’ analogies for standard mathematical concepts such as topological spaces, categories, sheaves etc.

The tentative working title is based on a trial text I wrote trying to explain Yoneda’s lemma by taking a subway-network as an example of a category. I’m thinking along similar lines to explain topological spaces via urban-wide wifi-networks, and so on.

But al this is just the beginning. I’ll consider this a success only if I can get as far as explaining the analogy between prime numbers and knots via etale fundamental groups…

If doable, I have no doubt it will be time well invested. My main problem here is finding an appropriate ‘voice’.

At first I wanted to go along with the hipster-gimmick and even learned some the appropriate lingo (you know, deck, fin, liquid etc.) but I don’t think it will work for me, and besides it would restrict the potential readers.

Then, I thought of writing it as a series of children’s stories. It might be fun to try to explain SGA4 to a (as yet virtual) grandchild. A bit like David Spivak’s short but funny text “Presheaf the cobbler”.

Once again, all suggestions or advice are welcome, either as a comment here or privately over email.

Perhaps, I’ll keep you informed while stumbling along NaNoWriMo.

At least I wrote 1000 words today…

Leave a Comment

Where’s Bourbaki’s tomb?

In according to Groth IV.22 we tried to solve one of the riddles contained in Roubaud’s announcement of Bourbaki’s death.

Today, we’ll try our hands on the next one: where was Bourbaki buried?

The death announcement gives this fairly opaque clue:

“The burial will take place in the cemetery for Random Functions (metro stations Markov and Gödel) on Saturday, November 23, 1968 at 3 o’clock in the afternoon.”

What happened on November 23rd 1968?

Bourbaki died on November 11th, 1968 (exactly 50 years after the end of WW1). Perhaps an allusion to the mandatory retirement age for members of Bourbaki, as suggested by the Canulars Bourbaki.

Be that as it may, I believe this date was chosen because it is conveniently close to the intended time of the burial.

But then, what’s so special about November 23rd, 1968?

Well, is there a more suitable moment to burry Bourbaki than during a Seminaire Bourbaki? And, yes, in the fall of 1968 the seminar was organised from saturday 23rd till monday 25th of november:


So, where would all of Bourbaki’s close family be at 3 o’clock on that particular saturday? Right, at l’Institut Henri Poincare.

But, it’s hard to view the IHP as a cemetery. Besides, it’s nowhere close to two metro stations as a quick look on the map shows. The closest one is the RER-station at the Luxembourg gardens, but the RER-line didn’t exist in 1968.

(True Parisians may object that the Gare du Luxembourg was at the time the terminus of the Ligne de Sceaux which has a fascinating history, but let’s try to remain on track…)

If the first clue is the Institut Henri Poincare, then if we are looking for a cemetery, we might ask:

Where’s Poincare’s tomb?

Jules Henri Poincare is burried in the family tomb at the Montparnasse cemetery

He’s not the only mathematician buried there. Évariste Galois, Jean Victor Poncelet, Joseph Liouville, Charles Hermite, and Gaston Darboux also found their last resting place in Montparnasse.

In fact, there are at least 104 mathematicians buried at Montparnasse.

This is hardly surprising as the Montparnasse cemetery is close to the IHP, the Collège de France, the Sorbonne, the “rue d’Ulm” aka the ENS, l’Observatoire and until 1976 l’École polytechnique.

Here’s a map with pointers to some of these tombs:

So, the Montparnasse cemetery appears to be a plausible place to host Bourbaki’s tomb.

But, what about the other “clues”?

“Cemetery of random functions (metro stations Markov and Gödel)”

There are several references lo logic, set theory and applied mathematics in Bourbaki’s death announcement. Why?

Roubaud (and many with him) feel that the Bourbaki enterprise failed miserably in these areas.

He writes on page 49 of his book Mathematics, a novel:

“But Bourbaki, that ‘collective mathematician”, as Raymond Queneau put it, also had a good knowledge of the current state of mathematics at the time when his Treatise was being composed; with, of course, a few “gaps”:

for example, probability, which was considered to be just an “applied” brand of measure theory”; and logic, especially logic, which was made almost a pariah because of (so it was rumored) the premature death of Herbrand, who, in the generation of founders, Normaliens to a man, had studied under Hilbert, and thus had been associated with his meteoric rise; in sum, logic had died in a climbing accident along with Herbrand.”

This might explain the cemetery of “random functions” and the metro stations named after the logicians and set theorists Kurt Gödel and A.A. Markov or the father of stochastic processes Andrey Markov.

Is there more into these references?

Probably not, but just to continue with our silly game, the two metro stations closest to the Montparnasse cemetery are Raspail and Edgar Quinet.

Now, François-Vincent Raspail was a French chemist, naturalist, physician, physiologist, attorney, and socialist politician.

More relevant to our quest is that the Centre d’analyse et de mathématique sociales (CAMS) was based at 54, boulevard Raspail. The mission statement on their website tells that this institute is clearly devoted to all applications of mathematics. That is, “Raspail” may be another pointer to applied mathematics and random functions.

As for the other metro station, Edgar Quinet was a French historian and intellectual. Is there a connection to logic or set theory? Well, sort of. The Encyclopedia Britannica has this to say about Edgar Quinet:

“His rhetorical power was altogether superior to his logical power, and the natural consequence is that his work is full of contradictions.”

I rest my case.

Leave a Comment

Hasse = “le P. Adique, de l’Ordre des Diophantiens”

The Bourbaki wedding invitation is probably the most effective branding- and marketing-campaign in the history of mathematics.

It contains this, seemingly opaque, paragraph:

The trivial isomorphism will be given to them by P. Adic, of the Diophantine Order, at the Principal Cohomology of the Universal Variety, the 3 Cartember, year VI, at the usual hour.

It was pretty easy to decode the date of the wedding “3 Cartember, year VI” to be June 3rd, 1939, and (a bit more difficult) the wedding place “the Principal Cohomology of the Universal Variety” as the l’église royale Notre-Dame du Val-de-Grâce in Paris.

The identity of the celebrating priest “P. Adic, of the Diophantine Order” remained unclear. The most likely suspect was Helmut Hasse, but I couldn’t place him in Paris on June 3rd, 1939.



Hasse is the central figure in the picture above, taken in Oberwolfach in 1952, before one of his cars. Here’s another picture of car-freak Hasse (trains were to Andre Weil what cars were to Helmut Hasse). Both pictures are from the MFO photo collection.

Thanks to Peter Roquette’s publishing of Helmut Hasse’s letters we can now prove that Hasse was not in Paris on that particular day (however, he was there a couple of days earlier) but Weil had every reason to believe he might be there at the time he wrote the wedding invitation.

When was the wedding invitation written?

Frank Smithies recalls the spring 1939 period in Cambridge as follows :

“The climax of the academic year, as far as we were concerned, came in the Easter term. André Weil, Claude Chabauty, and Louis Bouckaert (from Louvain) were all in Cambridge, and the proposal was mooted that a marriage should be arranged between Bourbaki’s daughter Betti and Hector Pétard; the marriage announcement was duly printed in the canonical French style – on it Pétard was described as the ward of Ersatz Stanislas Pondiczery – and it was circulated to the friends of both parties. A couple of weeks later the Weils, Louis Bouckaert, Max Krook (a South African astrophysicist), Ralph and myself made a river excursion to Grantchester by punt and canoe to have tea at the Red Lion; there is a photograph of Ralph and myself, with our triumphantly captured lion between us and André Weil looking benevolently on.”

We know that this picture is taken on May 13th 1939 so the wedding-invitation was drawn up around mid april 1939.

“What did Weil know about Hasse’s visit to Paris?”

Hasse had been invited by Julia to give a series of lectures at the Institut Henri Poincare in 1938, but Hasse postponed his trip to Paris until May 1939.

In his letter to Hasse of January 20th 1939, Andre Weil writes:

“It is quite unfortunate that you couldn’t accept your invitation to Paris before this year, because last year all our number-theorists would have been present. By a sad coincidence all of us will be on travel this coming May (except for Chevalley perhaps who might have returned from the US by then). Pisot will be in Gottingen, Chabauty in Manchester visiting Mordell and I will be in Cambridge as I obtained a travel grant for England and Scandinavia.”

Clearly, Weil was aware of the upcoming visit of Hasse to Paris at the end of May, and there was no reason for him to assume that he wouldn’t be able to stay a weekend longer.

What do we know of Hasse’s visit to Paris?

Because Julia was exhausted and was on a three months sick leave, Elie Cartan took over the job of organising Hasse’s lecture series. In a letter of April 25th 1939 he proposes some possible dates, to which Hasse replies on April 30th 1939:

In it he fixes for the first time the dates of his talks which will be on “New results in the arithmetic of algebraic function fields” and consist of three lectures:

– On Friday 19th 1939: “Generalities: the group of divisor classes and the multiplier ring”

– On Saturday 20th 1939: “Rational and integral points on algebraic curves over the integers”

– On Tuesday 23rd 1939: “Rational points on algebraic curves with coefficient mod p”

He also mentions that he would stay for 15 days in Paris, arriving on May 17th, in time for the Jubilee Conference for Elie Cartan, scheduled on May 18th.

Weil must have known that Hasse would be present at the Cartan-fest and give a series of lectures in the following weeks. He had every reason to believe that Hasse would still be in Paris on Saturday June 3rd.

Where was Hasse on June 3rd 1939?

Back at home, as on that very day he wrote a letter to Henri Cartan, thanking him for an enjoyable day’s stay in Strasbourg, on the way back from Paris, on June 1st 1939:

If you want to catch up with previous posts on the Bourbaki wedding, you might want to download the booklet The Bourbaki Code.

Leave a Comment

according to Groth. IV.22

At the Bourbaki Seminar in November 1968 the participants were handed the following (premature) announcement of Bourbaki’s death.



The French text can be found at the Canulars Bourbaki, and the English translation below is from Maurice Mashaal’s book Bourbaki, a secret society of mathematicians, page 115.

I’ve underlined a couple of riddles in the text.

———-

The Cantor, Hilbert, and Noether families;
The Cartan, Chevalley, Dieudonne, and Weil families;
The Bruhat, Dixmier, Godement, Samuel, and Schwartz families;
The Cartier, Grothendieck, Malgrange, and Serre families;
The Demazure, Douady, Giraud, and Verdier families;
The Right-Filtering and Strict-Epimorphism families;
Mesdemoiselles Adele and Idele;

regret to announce the death of Monsieur

NICOLAS BOURBAKI

Respectively their father, brother, son, grandson, great-grandson, and grand-cousin.

He died piously in his home on November 11, 1968 (on the anniversary of great victory) in his home in Nancago.

The burial will take place in the cemetery for Random Functions (metro stations Markov and Goedel) on Saturday, November 23, 1968 at 3 o’clock in the afternoon.

A reception will be held at the bar The Direct Products, at the crossroads of the Projective Resolutions (formerly Koszul square).

Following the wish of the departed, His Eminence the Cardinal Aleph I will hold a mass in Our Lady of Universal Problems in the presence of representatives from all equivalence classes and from all (algebraically closed) fields. The students from l’Ecole Normale Superieure and the Chern classes will observe a minute of silence.

No flowers or wreath products.

For God is the Alexandrov compactification of the universe.” Groth. IV.22

———-

This announcement is clearly inspired by the faire-part of Betti Bourbaki’s wedding (with Hector Petard), written by Andre Weil and Claude Chabauty in the spring of 1939.

Some years ago I wrote a couple of posts on possible solutions of the riddles contained in that faire-part, a pdf-version can be downloaded as the Bourbaki code. (Note to self: repost some of those and add new material!)

Whereas the wedding announcement was concocted by members of Bourbaki, this is not the case for this death announcement. It was written by the mathematician and writer Jacques Roubaud, a member of the literary group OuLiPo.

In 1997 he wrote the novel ‘Mathematique’ (now available in English translation). In it, he recalls his mathematical years, from his first lecture at the IHP in 1952 till the 70ties. It contains an insiders view on Parisian mathematics in the 50ties and 60ties, dominated largely by Bourbaki, and offers clues to decrypt some of the riddles in the death announcement.

Today, we’ll consider the final one

For God is the Alexandrov compactification of the universe.Groth. IV.22

Can we make sense of the ‘reference’ Groth. IV.22?

Does it refer to EGA IV?

Roubaud’s motif (pardon the expression) for writing the announcement of Bourbaki’s death in 1968 can be read between the lines in his book Mathematics, a novel from which all quotes below are taken.

page 146: “I was invited by Raymond Queneau to join the Oulipo and I met FLL in the fall of 1966. By then, I had reached the end of my passion for Bourbaki, after being one of their most faithful and credulous readers for many years.”

page 73: “The “biography” of that many-headed beast, Bourbaki, is still to be written. It would be a fascinating but arduous task. Here, I shall say only what is strictly necessary to my own entreprise. Having reached his dotage after 1968, “he” is for all intents and purposes now dead.”

By 1968, Bourbaki had become an institution dominating French mathematics and so had to die after the May 1968 revolt.

But, Roubaud had found a new prophet to follow…

page 284: “It was a book of mathematics. It had just been published. It was in a large format, with a blue cover. Its title was Elements of Algebraic Geometry (affectionately and familiarly abbreviated, in French, to EGA). Its author: Grothendieck.

page 285: “For I had so immersed mself in Bourbakism that such a text, the fruit of its final flowering, the monumental work of he who could be considered as Dr. Frankenstein-Bourbaki’s Monster, and which had been drafted according to the group’s inimitable stylistic norms, here applied, in its prose, in a heightened, frenetic way, ran through my mind like honey, no, like nectar, an intellectual ambrosia. Just thinking about it now fills me with stupefaction. I was someone who managed to read EGA with pleasure – worse, with delight. For any normal mathematician today, such an affirmation would seem as perverse as adoring an American soft drink.”

Roubaud was reading EGAs like others would read Nicki French thrillers, one per year:

(1960) : “Éléments de géométrie algébrique: I. Le langage des schémas”

(1961) : “Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes”

(1961) : “Eléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie”

(1963) : “Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Seconde partie”

(1964) : “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie”

(1965) : “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Seconde partie”

(1966) : “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Troisième partie”

(1967) : “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie”

It was now november 1968, and Roubaud was hoping that another sequel would be published soon. As the last one ended with section IV.21, this new volume would start with IV.22, and, no doubt, contain more divine mathematics…

However, Pieter Belmans objected that it was planned from the outset for EGA4 to consist of 21 chapters, and no more. Surely, Roubaud knew about this…

ADDED october 4th: Pieter has done some further digging on this issue in his post According to Groth IV.22.

Can it refer to SGA IV?

Luckily, there is another option. Grothendieck ran the Séminaire de Géométrie Algébrique du Bois Marie at the IHES from 1962 to 1969.

SGA4 was about “Théorie des topos et cohomologie étale des schémas” (Topos theory and étale cohomology) and ran in 1963–1964. A decade later the notes were published in Springer’s Lecture Notes in Mathematics 269, 270 and 305, 1972/3.

The topic of SGA4 (topos theory) is clearly closer in spirit to the fake biblical quote on the topological nature of God than that of EGA4 which was about the local structure of schemes and their morphisms.

The original notes were published in fascicles by the IHÉS, most of which went through two or three revisions, and were published as the seminar proceeded. So, Roubaud had access to them in the later 60ties.

The original versions, as well as their re-published LaTeX versions can be found here.

Again, we face the problem that there are not enough chapters, only 19 in this case.

Fortunately, we can search the LaTeX-ed version for references to the Alexandroff compactification, and there is just a single one:

This is in the first lecture on Presheaves by Grothendieck and Verdier. More precisely, it is in section 2 (Univers et espèces de structures) of the Appendix, which is labeled

II. Appendice : Univers (by N. Bourbaki (*))

So, the paragraph on the Alexandroff compactification is in SGA IV,II.2, or, if we read 22 as II.2 this might explain Groth. IV.22.

We have found a reference in SGA IV including “Bourbaki”, “the univers” and “Alexandroff compactification”.

But then, who dreamed up this topological definition of God?

Jean-Paul Benzecri

Dieu est le compactifié d’Alexandrof de l’univers.Jean-Paul Benzecri

Jean-Paul Benzécri is a French statistician who has been professor at Université Pierre-et-Marie-Curie in Paris. In the 60ties he was a professor at the university of Rennes where he was a colleague of Roubaud.

Jacques Roubaud has another book on his reminiscences as a mathematician, Impératif catégorique. Unfortunately, this book is not (yet) translated into English.

In section 80, La déesse Fortune ne se montra pas envers moi avare de ses bienfaits, he tells about his years at the University of Rennes where also his friend and topos-theorist Jean Bénabou was at the time. Bénabou and Benzécri knew each other from their student days at the Ecole Normale.

Benzécri had a very strict catholic family background, and in the 50ties he attended the Centre Richelieu des étudiants catholiques.

.

He liked to explain his axiom as follows:

“Of course, God created the univers. But, he created it locally compact and not compact. That it, left on its own, the universe would suffer a serious structural defect which could only be repaired by introducing a point at infinity, which marks the presence of the divine.”

Leave a Comment

Did Nöbeling discover toposes?

Chasing one story, one sometimes tumbles into a different one. For some time I’m trying to debunk the story that Wolfgang Krull was close to inventing the notion of schemes in the early 1930’s.

I guess my first encounter with it was through The Rising Sea: Grothendieck
on simplicity and generality I
by Colin McLarty which contains:

“From Emmy Noether’s viewpoint, then, it was natural to look at prime ideals instead of classical and generic points as we would more likely say today, to identify points with prime ideals. Her associate Wolfgang Krull did this. He gave a lecture in Paris before the Second World War on algebraic geometry taking all prime ideals as points, and using a Zariski topology. He did this over any ring, not only polynomial rings like $\mathbb{C}[x, y]$. The generality was obvious from the Noether viewpoint, since all the properties needed for the definition are common to all rings. The expert audience laughed at him and he abandoned the idea.”

The story seems to be due to Jurgen Neukirch’s ‘Erinnerungen an Wolfgang Krull’ published in ‘Wolfgang Krull : Gesammelte Abhandlungen’ (P. Ribenboim, editor).

This rumour is quickly ruled out as Parisian pre-war mathematical life only involves the Hadamard- and Julia-seminars and they are very well documented.

A more thorough investigation was carried out by Theo Raedschelders who contacted Karl-Otto Stöhr (a former student of Krull) and this is what he had to say about it:

“I remember that Prof. Krull once told to me, that in the early thirties he proposed in a talk that in algebraic geometry a larger number of points should be taken in consideration, namely points corresponding to the prime ideals of commutative rings. I always thought that this talk did happen at some place in Germany. He further mentioned that the mathematician Nöbeling in the audience argued that this idea would not be of any help to understand italian algebraic geometry.

I had never heard of Nöbeling, so here’s where this story takes a turn…

[section_title text=”The Vienna Mathematical Seminar”]

Wien 1938 und der Exodus der Mathematik is a fascinating account of Vienna mathematical life in the years leading up to WW2.

Karl menger was a central figure in the Vienna Mathematical Institute and founded its Mathematical Seminar. He gathered around him a brilliant group of young mathematicians including Kurt Gödel, Abraham Wald, Franz Alt and Olga Taussky.



Merger made important contributions to topology, including the “Menger sponge” and mathematical logic.

He seems to have been the first person to raise the idea of a point-free definition of the concept of topological space (aka ‘pointless topology’). In his 1928 book Dimensionstheorie, he defined the concept of space without referring to the points of an underlying set, but rather using pieces or, as he liked to say, “lumps”.

Georg Nöbeling was one of the first students and closest collaborators of Menger, finishing his Ph.D. in 1931 on a generalisation of Menger’s embedding problem.



In 1933 he moved to Erlangen, where Krull was a professor at the time. No doubt they discussed Krull’s invention of what we now know as the Zariski topology and Nöbeling may have said he didn’t believe it to be of any use in studying Italian geometry.

In Peter Johnstone’s historical account of the pre-history of topos theory The point of pointless topology there is no mention of Menger’s work. To him, the idea that points are secondary in a topological space required the prior development of lattice theory, which was developed in the mid 30-ties by Stone.

Stone’s lattice-theoretical approach to general topology found its final presentation in Georg Nöbeling’s 1954 book “Grundlagen der analytischen Topologie”. In fact, Nöbeling’s book could be seen as marking the end of the lattice-theoretical phase of pointless topology. A couple of years later locales and toposes where introduced.

So, did Nöbeling invent topos theory as some say Krull invented scheme theory? No, of course not, they both lacked the crucial ingredient of sheaf theory.

Still, it is fair to say that the Zariski topology was probably discovered by Krull in the early 30-ties and that Menger introduced ‘pointless topology’ in the late 20-ties, years ahead of the lattice-theoretic approach.

If you want to read more on this, please consult the paper by Mathieu Bélanger and Jean-Pierre MarquisMenger and Nöbeling on pointless topology.

Leave a Comment