Skip to content →

Category: stories

Where’s Bourbaki’s tomb?

In according to Groth IV.22 we tried to solve one of the riddles contained in Roubaud’s announcement of Bourbaki’s death.

Today, we’ll try our hands on the next one: where was Bourbaki buried?

The death announcement gives this fairly opaque clue:

“The burial will take place in the cemetery for Random Functions (metro stations Markov and Gödel) on Saturday, November 23, 1968 at 3 o’clock in the afternoon.”

What happened on November 23rd 1968?

Bourbaki died on November 11th, 1968 (exactly 50 years after the end of WW1). Perhaps an allusion to the mandatory retirement age for members of Bourbaki, as suggested by the Canulars Bourbaki.

Be that as it may, I believe this date was chosen because it is conveniently close to the intended time of the burial.

But then, what’s so special about November 23rd, 1968?

Well, is there a more suitable moment to burry Bourbaki than during a Seminaire Bourbaki? And, yes, in the fall of 1968 the seminar was organised from saturday 23rd till monday 25th of november:


So, where would all of Bourbaki’s close family be at 3 o’clock on that particular saturday? Right, at l’Institut Henri Poincare.

But, it’s hard to view the IHP as a cemetery. Besides, it’s nowhere close to two metro stations as a quick look on the map shows. The closest one is the RER-station at the Luxembourg gardens, but the RER-line didn’t exist in 1968.

(True Parisians may object that the Gare du Luxembourg was at the time the terminus of the Ligne de Sceaux which has a fascinating history, but let’s try to remain on track…)

If the first clue is the Institut Henri Poincare, then if we are looking for a cemetery, we might ask:

Where’s Poincare’s tomb?

Jules Henri Poincare is burried in the family tomb at the Montparnasse cemetery

He’s not the only mathematician buried there. Évariste Galois, Jean Victor Poncelet, Joseph Liouville, Charles Hermite, and Gaston Darboux also found their last resting place in Montparnasse.

In fact, there are at least 104 mathematicians buried at Montparnasse.

This is hardly surprising as the Montparnasse cemetery is close to the IHP, the Collège de France, the Sorbonne, the “rue d’Ulm” aka the ENS, l’Observatoire and until 1976 l’École polytechnique.

Here’s a map with pointers to some of these tombs:

So, the Montparnasse cemetery appears to be a plausible place to host Bourbaki’s tomb.

But, what about the other “clues”?

“Cemetery of random functions (metro stations Markov and Gödel)”

There are several references lo logic, set theory and applied mathematics in Bourbaki’s death announcement. Why?

Roubaud (and many with him) feel that the Bourbaki enterprise failed miserably in these areas.

He writes on page 49 of his book Mathematics, a novel:

“But Bourbaki, that ‘collective mathematician”, as Raymond Queneau put it, also had a good knowledge of the current state of mathematics at the time when his Treatise was being composed; with, of course, a few “gaps”:

for example, probability, which was considered to be just an “applied” brand of measure theory”; and logic, especially logic, which was made almost a pariah because of (so it was rumored) the premature death of Herbrand, who, in the generation of founders, Normaliens to a man, had studied under Hilbert, and thus had been associated with his meteoric rise; in sum, logic had died in a climbing accident along with Herbrand.”

This might explain the cemetery of “random functions” and the metro stations named after the logicians and set theorists Kurt Gödel and A.A. Markov or the father of stochastic processes Andrey Markov.

Is there more into these references?

Probably not, but just to continue with our silly game, the two metro stations closest to the Montparnasse cemetery are Raspail and Edgar Quinet.

Now, François-Vincent Raspail was a French chemist, naturalist, physician, physiologist, attorney, and socialist politician.

More relevant to our quest is that the Centre d’analyse et de mathématique sociales (CAMS) was based at 54, boulevard Raspail. The mission statement on their website tells that this institute is clearly devoted to all applications of mathematics. That is, “Raspail” may be another pointer to applied mathematics and random functions.

As for the other metro station, Edgar Quinet was a French historian and intellectual. Is there a connection to logic or set theory? Well, sort of. The Encyclopedia Britannica has this to say about Edgar Quinet:

“His rhetorical power was altogether superior to his logical power, and the natural consequence is that his work is full of contradictions.”

I rest my case.

Leave a Comment

Hasse = “le P. Adique, de l’Ordre des Diophantiens”

The Bourbaki wedding invitation is probably the most effective branding- and marketing-campaign in the history of mathematics.

It contains this, seemingly opaque, paragraph:

The trivial isomorphism will be given to them by P. Adic, of the Diophantine Order, at the Principal Cohomology of the Universal Variety, the 3 Cartember, year VI, at the usual hour.

It was pretty easy to decode the date of the wedding “3 Cartember, year VI” to be June 3rd, 1939, and (a bit more difficult) the wedding place “the Principal Cohomology of the Universal Variety” as the l’église royale Notre-Dame du Val-de-Grâce in Paris.

The identity of the celebrating priest “P. Adic, of the Diophantine Order” remained unclear. The most likely suspect was Helmut Hasse, but I couldn’t place him in Paris on June 3rd, 1939.



Hasse is the central figure in the picture above, taken in Oberwolfach in 1952, before one of his cars. Here’s another picture of car-freak Hasse (trains were to Andre Weil what cars were to Helmut Hasse). Both pictures are from the MFO photo collection.

Thanks to Peter Roquette’s publishing of Helmut Hasse’s letters we can now prove that Hasse was not in Paris on that particular day (however, he was there a couple of days earlier) but Weil had every reason to believe he might be there at the time he wrote the wedding invitation.

When was the wedding invitation written?

Frank Smithies recalls the spring 1939 period in Cambridge as follows :

“The climax of the academic year, as far as we were concerned, came in the Easter term. André Weil, Claude Chabauty, and Louis Bouckaert (from Louvain) were all in Cambridge, and the proposal was mooted that a marriage should be arranged between Bourbaki’s daughter Betti and Hector Pétard; the marriage announcement was duly printed in the canonical French style – on it Pétard was described as the ward of Ersatz Stanislas Pondiczery – and it was circulated to the friends of both parties. A couple of weeks later the Weils, Louis Bouckaert, Max Krook (a South African astrophysicist), Ralph and myself made a river excursion to Grantchester by punt and canoe to have tea at the Red Lion; there is a photograph of Ralph and myself, with our triumphantly captured lion between us and André Weil looking benevolently on.”

We know that this picture is taken on May 13th 1939 so the wedding-invitation was drawn up around mid april 1939.

“What did Weil know about Hasse’s visit to Paris?”

Hasse had been invited by Julia to give a series of lectures at the Institut Henri Poincare in 1938, but Hasse postponed his trip to Paris until May 1939.

In his letter to Hasse of January 20th 1939, Andre Weil writes:

“It is quite unfortunate that you couldn’t accept your invitation to Paris before this year, because last year all our number-theorists would have been present. By a sad coincidence all of us will be on travel this coming May (except for Chevalley perhaps who might have returned from the US by then). Pisot will be in Gottingen, Chabauty in Manchester visiting Mordell and I will be in Cambridge as I obtained a travel grant for England and Scandinavia.”

Clearly, Weil was aware of the upcoming visit of Hasse to Paris at the end of May, and there was no reason for him to assume that he wouldn’t be able to stay a weekend longer.

What do we know of Hasse’s visit to Paris?

Because Julia was exhausted and was on a three months sick leave, Elie Cartan took over the job of organising Hasse’s lecture series. In a letter of April 25th 1939 he proposes some possible dates, to which Hasse replies on April 30th 1939:

In it he fixes for the first time the dates of his talks which will be on “New results in the arithmetic of algebraic function fields” and consist of three lectures:

– On Friday 19th 1939: “Generalities: the group of divisor classes and the multiplier ring”

– On Saturday 20th 1939: “Rational and integral points on algebraic curves over the integers”

– On Tuesday 23rd 1939: “Rational points on algebraic curves with coefficient mod p”

He also mentions that he would stay for 15 days in Paris, arriving on May 17th, in time for the Jubilee Conference for Elie Cartan, scheduled on May 18th.

Weil must have known that Hasse would be present at the Cartan-fest and give a series of lectures in the following weeks. He had every reason to believe that Hasse would still be in Paris on Saturday June 3rd.

Where was Hasse on June 3rd 1939?

Back at home, as on that very day he wrote a letter to Henri Cartan, thanking him for an enjoyable day’s stay in Strasbourg, on the way back from Paris, on June 1st 1939:

If you want to catch up with previous posts on the Bourbaki wedding, you might want to download the booklet The Bourbaki Code.

Leave a Comment

according to Groth. IV.22

At the Bourbaki Seminar in November 1968 the participants were handed the following (premature) announcement of Bourbaki’s death.



The French text can be found at the Canulars Bourbaki, and the English translation below is from Maurice Mashaal’s book Bourbaki, a secret society of mathematicians, page 115.

I’ve underlined a couple of riddles in the text.

———-

The Cantor, Hilbert, and Noether families;
The Cartan, Chevalley, Dieudonne, and Weil families;
The Bruhat, Dixmier, Godement, Samuel, and Schwartz families;
The Cartier, Grothendieck, Malgrange, and Serre families;
The Demazure, Douady, Giraud, and Verdier families;
The Right-Filtering and Strict-Epimorphism families;
Mesdemoiselles Adele and Idele;

regret to announce the death of Monsieur

NICOLAS BOURBAKI

Respectively their father, brother, son, grandson, great-grandson, and grand-cousin.

He died piously in his home on November 11, 1968 (on the anniversary of great victory) in his home in Nancago.

The burial will take place in the cemetery for Random Functions (metro stations Markov and Goedel) on Saturday, November 23, 1968 at 3 o’clock in the afternoon.

A reception will be held at the bar The Direct Products, at the crossroads of the Projective Resolutions (formerly Koszul square).

Following the wish of the departed, His Eminence the Cardinal Aleph I will hold a mass in Our Lady of Universal Problems in the presence of representatives from all equivalence classes and from all (algebraically closed) fields. The students from l’Ecole Normale Superieure and the Chern classes will observe a minute of silence.

No flowers or wreath products.

For God is the Alexandrov compactification of the universe.” Groth. IV.22

———-

This announcement is clearly inspired by the faire-part of Betti Bourbaki’s wedding (with Hector Petard), written by Andre Weil and Claude Chabauty in the spring of 1939.

Some years ago I wrote a couple of posts on possible solutions of the riddles contained in that faire-part, a pdf-version can be downloaded as the Bourbaki code. (Note to self: repost some of those and add new material!)

Whereas the wedding announcement was concocted by members of Bourbaki, this is not the case for this death announcement. It was written by the mathematician and writer Jacques Roubaud, a member of the literary group OuLiPo.

In 1997 he wrote the novel ‘Mathematique’ (now available in English translation). In it, he recalls his mathematical years, from his first lecture at the IHP in 1952 till the 70ties. It contains an insiders view on Parisian mathematics in the 50ties and 60ties, dominated largely by Bourbaki, and offers clues to decrypt some of the riddles in the death announcement.

Today, we’ll consider the final one

For God is the Alexandrov compactification of the universe.Groth. IV.22

Can we make sense of the ‘reference’ Groth. IV.22?

Does it refer to EGA IV?

Roubaud’s motif (pardon the expression) for writing the announcement of Bourbaki’s death in 1968 can be read between the lines in his book Mathematics, a novel from which all quotes below are taken.

page 146: “I was invited by Raymond Queneau to join the Oulipo and I met FLL in the fall of 1966. By then, I had reached the end of my passion for Bourbaki, after being one of their most faithful and credulous readers for many years.”

page 73: “The “biography” of that many-headed beast, Bourbaki, is still to be written. It would be a fascinating but arduous task. Here, I shall say only what is strictly necessary to my own entreprise. Having reached his dotage after 1968, “he” is for all intents and purposes now dead.”

By 1968, Bourbaki had become an institution dominating French mathematics and so had to die after the May 1968 revolt.

But, Roubaud had found a new prophet to follow…

page 284: “It was a book of mathematics. It had just been published. It was in a large format, with a blue cover. Its title was Elements of Algebraic Geometry (affectionately and familiarly abbreviated, in French, to EGA). Its author: Grothendieck.

page 285: “For I had so immersed mself in Bourbakism that such a text, the fruit of its final flowering, the monumental work of he who could be considered as Dr. Frankenstein-Bourbaki’s Monster, and which had been drafted according to the group’s inimitable stylistic norms, here applied, in its prose, in a heightened, frenetic way, ran through my mind like honey, no, like nectar, an intellectual ambrosia. Just thinking about it now fills me with stupefaction. I was someone who managed to read EGA with pleasure – worse, with delight. For any normal mathematician today, such an affirmation would seem as perverse as adoring an American soft drink.”

Roubaud was reading EGAs like others would read Nicki French thrillers, one per year:

(1960) : “Éléments de géométrie algébrique: I. Le langage des schémas”

(1961) : “Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes”

(1961) : “Eléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie”

(1963) : “Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Seconde partie”

(1964) : “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie”

(1965) : “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Seconde partie”

(1966) : “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Troisième partie”

(1967) : “Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie”

It was now november 1968, and Roubaud was hoping that another sequel would be published soon. As the last one ended with section IV.21, this new volume would start with IV.22, and, no doubt, contain more divine mathematics…

However, Pieter Belmans objected that it was planned from the outset for EGA4 to consist of 21 chapters, and no more. Surely, Roubaud knew about this…

ADDED october 4th: Pieter has done some further digging on this issue in his post According to Groth IV.22.

Can it refer to SGA IV?

Luckily, there is another option. Grothendieck ran the Séminaire de Géométrie Algébrique du Bois Marie at the IHES from 1962 to 1969.

SGA4 was about “Théorie des topos et cohomologie étale des schémas” (Topos theory and étale cohomology) and ran in 1963–1964. A decade later the notes were published in Springer’s Lecture Notes in Mathematics 269, 270 and 305, 1972/3.

The topic of SGA4 (topos theory) is clearly closer in spirit to the fake biblical quote on the topological nature of God than that of EGA4 which was about the local structure of schemes and their morphisms.

The original notes were published in fascicles by the IHÉS, most of which went through two or three revisions, and were published as the seminar proceeded. So, Roubaud had access to them in the later 60ties.

The original versions, as well as their re-published LaTeX versions can be found here.

Again, we face the problem that there are not enough chapters, only 19 in this case.

Fortunately, we can search the LaTeX-ed version for references to the Alexandroff compactification, and there is just a single one:

This is in the first lecture on Presheaves by Grothendieck and Verdier. More precisely, it is in section 2 (Univers et espèces de structures) of the Appendix, which is labeled

II. Appendice : Univers (by N. Bourbaki (*))

So, the paragraph on the Alexandroff compactification is in SGA IV,II.2, or, if we read 22 as II.2 this might explain Groth. IV.22.

We have found a reference in SGA IV including “Bourbaki”, “the univers” and “Alexandroff compactification”.

But then, who dreamed up this topological definition of God?

Jean-Paul Benzecri

Dieu est le compactifié d’Alexandrof de l’univers.Jean-Paul Benzecri

Jean-Paul Benzécri is a French statistician who has been professor at Université Pierre-et-Marie-Curie in Paris. In the 60ties he was a professor at the university of Rennes where he was a colleague of Roubaud.

Jacques Roubaud has another book on his reminiscences as a mathematician, Impératif catégorique. Unfortunately, this book is not (yet) translated into English.

In section 80, La déesse Fortune ne se montra pas envers moi avare de ses bienfaits, he tells about his years at the University of Rennes where also his friend and topos-theorist Jean Bénabou was at the time. Bénabou and Benzécri knew each other from their student days at the Ecole Normale.

Benzécri had a very strict catholic family background, and in the 50ties he attended the Centre Richelieu des étudiants catholiques.

.

He liked to explain his axiom as follows:

“Of course, God created the univers. But, he created it locally compact and not compact. That it, left on its own, the universe would suffer a serious structural defect which could only be repaired by introducing a point at infinity, which marks the presence of the divine.”

Leave a Comment