The joys of running a WordPress blog

Earlier today, John Duncan (of moonshine fame) emailed he was unable to post a comment to the previous post:
“I went to post a comment but somehow couldn’t convince the website to cooperate.”

There’s little point in maintaining a self-hosted blog if people cannot comment on it. If you tried, you got this scary message:

Catchable fatal error: Object of class WP_Error could not be converted to string in /wp-includes/formatting.php on line 1031

The days I meddled with wordpress core php-files are long gone, and a quick Google search didn’t come up with anything helpful.

In despair, there’s always the database to consider.

Here’s a screenshot of this blog’s database in phpMyAdmin:

No surprise you cannot comment here, there isn’t even a wp_comments table in the database! (though surprisingly, there’s a table wp_commentmeta…)

Two weeks ago I moved this blog to a new iMac. Perhaps the database got corrupted in the process, or the quick export option of phpMyAdmin doesn’t include comments (unlikely), or whatever.

Here’s what I did to get things working again. It may solve your problem if you don’t have a backup of another wordpress-blog with a functional wp_comments table.

1. Set up a new WordPress blog in the usual way, including a new database, let’s call it ‘newblog’.

2. In phpMyAdmin drop all tables in newblog except for wp_comments.

3. Export your blog’s database, say ‘oldblog’, via the ‘quick export’ option in phpMyAdmin to get a file oldblog.sql.

4. If this file is small you can use phpMyAdmin to import it into newblog. If not you need to do it with this terminal-command

mysql -h localhost -u root – p newblog < oldblog.sql

and have the patience for this to finish.

5. Change in your wp-config file the oldblog database to newblog.

Happy commenting!

Stirring a cup of coffee

Please allow for a couple of end-of-semester bluesy ramblings. I just finished grading the final test of the last of five courses I lectured this semester.

Most of them went, I believe, rather well.

As always, it was fun to teach an introductory group theory course to second year physics students.

Personally, I did enjoy our Lie theory course the most, given for a mixed public of both mathematics and physics students. We did the spin-group $SU(2)$ and its connection with $SO_3(\mathbb{R})$ in gruesome detail, introduced the other classical groups, and proved complete reducibility of representations. The funnier part was applying this to the $U(1) \times SU(2) \times SU(3)$-representation of the standard model and its extension to the $SU(5)$ GUT.

Ok, but with a sad undertone, was the second year course on representations of finite groups. Sad, because it was the last time I’m allowed to teach it. My younger colleagues decided there’s no place for RT on the new curriculum.

Soit.

The final lecture is often an eye-opener, or at least, I hope it is/was.

Here’s the idea: someone whispers in your ear that there might be a simple group of order $60$. Armed with only the Sylow-theorems and what we did in this course we will determine all its conjugacy classes, its full character table, and finish proving that this mysterious group is none other than $A_5$.

Right now I’m just a tad disappointed only a handful of students came close to solving the same problem for order $168$ this afternoon.

Clearly, I gave them ample extra information: the group only has elements of order $1,2,3,4$ and $7$ and the centralizer of one order $2$ element is the dihedral group of order $8$. They had to determine the number of distinct irreducible representations, that is, the number of conjugacy classes. Try it yourself (Solution at the end of this post).

For months I felt completely deflated on Tuesday nights, for I had to teach the remaining two courses on that day.

There’s this first year Linear Algebra course. After teaching for over 30 years it was a first timer for me, and probably for the better. I guess 15 years ago I would have been arrogant enough to insist that the only way to teach linear algebra properly was to do representations of quivers…

Now, I realise that linear algebra is perhaps the only algebra course the majority of math-students will need in their further career, so it is best to tune its contents to the desires of the other colleagues: inproducts, determinants as volumes, Markov-processes and the like.

There are thousands of linear algebra textbooks, the one feature they all seem to lack is conciseness. What kept me going throughout this course was trying to come up with the shortest proofs ever for standard results. No doubt, next year the course will grow on me.

Then, there was a master course on algebraic geometry (which was supposed to be on scheme theory, moduli problems such as the classification of fat points (as in the car crash post, etale topology and the like) which had a bumpy start because class was less prepared on varieties and morphisms than I had hoped for.

Still, judging on the quality of the papers students are beginning to hand in (today I received one doing serious stuff with stacks) we managed to cover a lot of material in the end.

I’m determined to teach that first course on algebraic geometry myself next year.

Which brought me wondering about the ideal content of such a course.

Half a decade ago I wrote a couple of posts such as Mumford’s treasure map, Grothendieck’s functor of points, Manin’s geometric axis and the like, which are still quite readable.

In the functor of points-post I referred to a comment thread Algebraic geometry without prime ideals at the Secret Blogging Seminar.

As I had to oversee a test this afternoon, I printed out all comments (a full 29 pages!) and had a good time reading them. At the time I favoured the POV advocated by David Ben-Zvi and Jim Borger (functor of points instead of locally ringed schemes).

Clearly they are right, but then so was I when I thought the ‘right’ way to teach linear algebra was via quiver-representations…

We’ll see what I’ll try out next year.

You may have wondered about the title of this post. It’s derived from a paper Raf Bocklandt (of the Korteweg-de Vries Institute in Amsterdam) arXived some days ago: Reflections in a cup of coffee, which is an extended version of a Brouwer-lecture he gave. Raf has this to say about the Brouwer fixed-point theorem.

“The theorem is usually explained in worldly terms by looking at a cup of coffee. In this setting it states that no matter how you stir your cup, there will always be a point in the liquid that did not change position and if you try to move that part by further stirring you will inevitably move some other part back into its original position. Legend even has it that Brouwer came up with the idea while stirring in a real cup, but whether this is true we’ll never know. What is true however is that Brouwers refections on the topic had a profound impact on mathematics and would lead to lots of new developments in geometry.”

I wish you all a pleasant end of 2016 and a much better 2017.

As to the 168-solution: Sylow says there are 8 7-Sylows giving 48 elements of order 7. The centralizer of each of them must be $C_7$ (given the restriction on the order of elements) so two conjugacy classes of them. Similarly each conjugacy class of an order 3 element must contain 56 elements. There is one conjugacy class of an order 2 element having 21 elements (because the centralizer is $D_4$) giving also a conjugacy class of an order 4 element consisting of 42 elements. Together with the identity these add up to 168 so there are 6 irreducible representations.

Je (ne) suis (pas) Mochizuki

Apologies to Joachim Roncin, the guy who invented the slogan “Je suis Charlie”, for this silly abuse of his logo:

I had hoped the G+ post below of end december would have been the last I had to say on this (non)issue: (btw. embedded G+-post below, not visible in feeds)



A quick recap :

– in august 2012, Shinichi Mochizuki finishes the fourth of his papers on ‘inter-universal Teichmuller theory’ (IUTeich for the aficianados), claiming to contain a proof of the ABC-conjecture.

– in may 2013, Caroline Chen publishes The Paradox of the Proof, summing up the initial reactions of the mathematical world:

“The problem, as many mathematicians were discovering when they flocked to Mochizuki’s website, was that the proof was impossible to read. The first paper, entitled “Inter-universal Teichmuller Theory I: Construction of Hodge Theaters,” starts out by stating that the goal is “to establish an arithmetic version of Teichmuller theory for number fields equipped with an elliptic curve…by applying the theory of semi-graphs of anabelioids, Frobenioids, the etale theta function, and log-shells.”

[quote name=”Caroline Chen”]
This is not just gibberish to the average layman. It was gibberish to the math community as well.
[/quote]

“Looking at it, you feel a bit like you might be reading a paper from the future, or from outer space,” wrote Ellenberg on his blog.
“It’s very, very weird,” says Columbia University professor Johan de Jong, who works in a related field of mathematics.”

– at the time i found these reactions premature. It often happens that the first version of a proof is not the most elegant or shortest, and i was hoping that Mochizuki would soon come up with a streamlined version, more accessible to people working in arithmetic geometry. I spend a couple of weeks going through “The geometry of Frobenioids 1” and recorded my stumbling progress (being a non-expert) on Google+.

– i was even silly enough to feed almost each and every one of Mochizuki papers to Wordle and paste the resulting Word-clouds into a “Je suis Mochizuki”-support clip. However, in the process I noticed a subtle shift from word-clouds containing established mathematical terms to clouds containing mostly self-defined terms:

.

the situation, early 2015

In recent (comments to) Google+ posts, there seems to be a growing polarisation between believers and non-believers.

If you are a professional mathematician, you know all too well that the verification of a proof is a shared responsability of the author and the mathematical community. We all received a referee report once complaining that a certain proof was ‘unclear’ or even ‘opaque’?

The usual response to this is to rewrite the proof, make it crystal-clear, and resubmit it.

Few people would suggest the referee to spend a couple of years reading up on all their previous papers, and at the same time, complain to the editor that the referee is unqualified to deliver a verdict before (s)he has done so.

Mochizuki is one of these people.

His latest Progress Report reads more like a sectarian newsletter.

There’s no shortage of extremely clever people working in arithmetic geometry. Mochizuki should reach out to them and provide explanations in a language they are used to.

Let me give an example.

As far as i understand it, ‘Frobenioids 1’ is all about a categorification of Arakelov line bundles, not just over one particular number ring, but also over all its extensions, and the corresponding reconstruction result recovering the number ring from this category.

Such a one-line synopsis may help experts to either believe the result on the spot or to construct a counter-example. They do not have to wade through all of the 178 new definitions given in that paper.

Instead, all we are getting are these ‘one-line explanations’:

Is it just me, or is Mochizuki really sticking up his middle finger to the mathematical community.

RIMS is quickly becoming Mochizuki’s Lasserre.

what have quivers done to students?

A few years ago a student entered my office asking suggestions for his master thesis.

“I’m open to any topic as long as it has nothing to do with those silly quivers!”

At that time not the best of opening-lines to address me and, inevitably, the most disastrous teacher-student-conversation-ever followed (also on my part, i’m sorry to say).

This week, Markus Reineke had a similar, though less confrontational, experience. Markus gave a mini-course on ‘moduli spaces of representations’ in our advanced master class. Students loved the way he introduced representation varieties and constructed the space of irreducible representations as a GIT-quotient. In fact, his course was probably the first in that program having an increasing (rather than decreasing) number of students attending throughout the week…

In his third lecture he wanted to illustrate these general constructions and what better concrete example to take than representations of quivers? Result : students’ eyes staring blankly at infinity…

What is it that quivers do to have this effect on students?

Perhaps quiver-representations cause them an information-overload.

Perhaps we should take plenty of time to explain that in going from the quiver (the directed graph) to the path algebra, vertices become idempotents and arrows the remaining generators. These idempotents split a representation space into smaller vertex-spaces, the dimensions of which we collect in a dimension-vector, the big basechange group splits therefore into a product of small vertex-basechanges and the action of this product on an matrix corresponding to an arrow is merely usual conjugation by the big basechange-group, etc. etc. Blatant trivialities to someone breathing quivers, but probably we too had to take plenty of time once to disentangle this information-package…

But then, perhaps they consider quivers and their representations as too-concrete-old-math-stuff, when there’s so much high-profile-fancy-math still left to taste.

When given the option, students prefer you to tell them monstrous-moonshine stories even though they can barely prove simplicity of $A_5$, they want you to give them a short-cut to the Langlands programme but have never had the patience nor the interest to investigate the splitting of primes in quadratic number fields, they want to be taught schemes and their structure sheaves when they still struggle with the notion of a dominant map between varieties…

In short, students often like to run before they can crawl.

Working through the classification of some simple quiver-settings would force their agile feet firmly on the ground. They probably experience this as a waste of time.

Perhaps, it is time to promote slow math…