Skip to content →

Category: geometry

nc-geometry and moonshine?

A well-known link between Conway’s Big Picture and non-commutative geometry is given by the Bost-Connes system.

This quantum statistical mechanical system encodes the arithmetic properties of cyclotomic extensions of $\mathbb{Q}$.

The corresponding Bost-Connes algebra encodes the action by the power-maps on the roots of unity.

It has generators $e_n$ and $e_n^*$ for every natural number $n$ and additional generators $e(\frac{g}{h})$ for every element in the additive group $\mathbb{Q}/\mathbb{Z}$ (which is of course isomorphic to the multiplicative group of roots of unity).

The defining equations are
\[
\begin{cases}
e_n.e(\frac{g}{h}).e_n^* = \rho_n(e(\frac{g}{h})) \\
e_n^*.e(\frac{g}{h}) = \Psi^n(e(\frac{g}{h}).e_n^* \\
e(\frac{g}{h}).e_n = e_n.\Psi^n(e(\frac{g}{h})) \\
e_n.e_m=e_{nm} \\
e_n^*.e_m^* = e_{nm}^* \\
e_n.e_m^* = e_m^*.e_n~\quad~\text{if $(m,n)=1$}
\end{cases}
\]

Here $\Psi^n$ are the power-maps, that is $\Psi^n(e(\frac{g}{h})) = e(\frac{ng}{h}~mod~1)$, and the maps $\rho_n$ are given by
\[
\rho_n(e(\frac{g}{h})) = \sum e(\frac{i}{j}) \]
where the sum is taken over all $\frac{i}{j} \in \mathbb{Q}/\mathbb{Z}$ such that $n.\frac{i}{j}=\frac{g}{h}$.

Conway’s Big Picture has as its vertices the (equivalence classes of) lattices $M,\frac{g}{h}$ with $M \in \mathbb{Q}_+$ and $\frac{g}{h} \in \mathbb{Q}/\mathbb{Z}$.

The Bost-Connes algebra acts on the vector-space with basis the vertices of the Big Picture. The action is given by:
\[
\begin{cases}
e_n \ast \frac{c}{d},\frac{g}{h} = \frac{nc}{d},\rho^m(\frac{g}{h})~\quad~\text{with $m=(n,d)$} \\
e_n^* \ast \frac{c}{d},\frac{g}{h} = (n,c) \times \frac{c}{nd},\Psi^{\frac{n}{m}}(\frac{g}{h})~\quad~\text{with $m=(n,c)$} \\
e(\frac{a}{b}) \ast \frac{c}{d},\frac{g}{h} = \frac{c}{d},\Psi^c(\frac{a}{b}) \frac{g}{h}
\end{cases}
\]

This connection makes one wonder whether non-commutative geometry can shed a new light on monstrous moonshine?

This question is taken up by Jorge Plazas in his paper Non-commutative geometry of groups like $\Gamma_0(N)$

Plazas shows that the bigger Connes-Marcolli $GL_2$-system also acts on the Big Picture. An intriguing quote:

“Our interest in the $GL_2$-system comes from the fact that its thermodynamic properties encode the arithmetic theory of modular functions to an extend which makes it possible for us to capture aspects of moonshine theory.”

Looks like the right kind of paper to take along when I disappear next week for some time in the French mountains…

Leave a Comment

Everything’s wrappable to a sphere

One of the better opening quotes of a paper:

“Even quite ungainly objects, like chairs and tables, will become almost spherical if you wrap them in enough newspaper.”

The paper in question is The orbifold notation for surface groups by John Conway.

Here’s Conway talking leisurely about Thurston’s idea to capture the acting group via the topology of the orbifold space and his own notation for such orbifolds.



Here’s another version of the paper, with illustrations: The orbifold notation for two-dimensional groups, by Conway and Daniel H. Huson.

A very accessible account are these lecture notes:

A field guide to the orbifolds, notes from class on “Geometry and the Imagination” in Minneapolis, with John Conway, Peter Doyle, Jane Gilman and Bill Thurston, on June 17–28, 1991.

And, here are notes by Thurston on The Geometry and Topology of Three-Manifolds, including stuff about orbifolds.

I came across these papers struggling my way through On the discrete groups of moonshine by Conway, McKay and Sebbar.

On the genus $0$ property of moonshine groups they have this to say:

“As for groups of the form $(n|h)+e,f,\dots$, the genus can be determined from the fundamental regions using the Riemann-Hurwitz formula. Since most of the groups are not subgroups of the modular group, the calculations of the genus, which cannot be produced here because of their length, are carried out by finding the elliptic fixed points and the cone points in the orbifolds attached to the fundamental regions. The Euler characteristic of the orbifold determines the genus of the group. See [paper] for more details on orbifold techniques.”

Leave a Comment

Grothendieck seminar at the ENS

Next week, the brand new séminaire « Lectures grothendieckiennes » will kick off on Tuesday October 24th at 18hr (h/t Isar Stubbe).



There will be one talk a month, on a tuesday evening from 18hr-20hr. Among the lecturers are the ‘usual suspects’:

Pierre Cartier (October 24th) will discuss the state of functional analysis before Grothendieck entered the scene in 1948 and effectively ‘killed the subject’ (said Dieudonné).

Alain Connes (November 7th) will talk on the origins of Grothendieck’s introduction of toposes.

In fact, toposes will likely be a recurrent topic of the seminar.

Laurant Lafforgue‘s title will be ‘La notion de vérité selon Grothendieck'(January 9th) and on March 6th there will be a lecture by Olivia Caramello.

Also, Colin McLarty will speak about them on May 3rd: “Nonetheless one should learn the language of topos: Grothendieck on building houses”.

The closing lecture will be delivered by Georges Maltsiniotis on June 5th 2018.

Further Grothendieck news, there’s the exhibition of a sculpture by Nina Douglas, the wife of Michael Douglas, at the Simons Center for Geometry and Physics (h/t Jason Starr).



It depicts Grothendieck as shepherd. The lambs in front of him have Riemann surfaces inserted into them and on the staff is Grothendieck’s ‘Hexenkuche’ (his proof of the Riemann-Roch theorem).



Leave a Comment

How to dismantle scheme theory?

In several of his talks on #IUTeich, Mochizuki argues that usual scheme theory over $\mathbb{Z}$ is not suited to tackle problems such as the ABC-conjecture.

The idea appears to be that ABC involves both the additive and multiplicative nature of integers, making rings into ‘2-dimensional objects’ (and clearly we use both ‘dimensions’ in the theory of schemes).

So, perhaps we should try to ‘dismantle’ scheme theory, and replace it with something like geometry over the field with one element $\mathbb{F}_1$.

The usual $\mathbb{F}_1$ mantra being: ‘forget all about the additive structure and only retain the multiplicative monoid’.

So perhaps there is yet another geometry out there, forgetting about the multiplicative structure, and retaining just the addition…

This made me wonder.

In the forgetting can’t be that hard, can it?-post we have seen that the forgetful functor

\[
F_{+,\times}~:~\mathbf{rings} \rightarrow \mathbf{sets} \]

(that is, forgetting both multiplicative and additive information of the ring) is representable by the polynomial ring $\mathbb{Z}[x]$.

So, what about our ‘dismantling functors’ in which we selectively forget just one of these structures:

\[
F_+~:~\mathbf{rings} \rightarrow \mathbf{monoids} \quad \text{and} \quad F_{\times}~:~\mathbf{rings} \rightarrow \mathbf{abelian~groups} \]

Are these functors representable too?

Clearly, ring maps from $\mathbb{Z}[x]$ to our ring $R$ give us again the elements of $R$. But now, we want to encode the way two of these elements add (or multiply).

This can be done by adding extra structure to the ring $\mathbb{Z}[x]$, namely a comultiplication $\Delta$ and a counit $\epsilon$

\[
\Delta~:~\mathbb{Z}[x] \rightarrow \mathbb{Z}[x] \otimes \mathbb{Z}[x] \quad \text{and} \quad \epsilon~:~\mathbb{Z}[x] \rightarrow \mathbb{Z} \]

The idea of the comultiplication being that if we have two elements $r,s \in R$ with corresponding ring maps $f_r~:~\mathbb{Z}[x] \rightarrow R \quad x \mapsto r$ and $f_s~:~\mathbb{Z}[x] \rightarrow R \quad x \mapsto s$, composing their tensorproduct with the comultiplication

\[
f_v~:~\mathbb{Z}[x] \rightarrow^{\Delta} \mathbb{Z}[x] \otimes \mathbb{Z}[x] \rightarrow^{f_r \otimes f_s} R
\]

determines another element $v \in R$ which we can take either the product $v=r.s$ or sum $v=r+s$, depending on the comultiplication map $\Delta$.

The role of the counit is merely sending $x$ to the identity element of the operation.

Thus, if we want to represent the functor forgetting the addition, and retaining the multiplication we have to put on $\mathbb{Z}[x]$ the structure of a biring

\[
\Delta(x) = x \otimes x \quad \text{and} \quad \epsilon(x) = 1 \]

(making $x$ into a ‘group-like’ element for Hopf-ists).

The functor $F_{\times}$ forgetting the multiplication but retaining the addition is represented by the Hopf-ring $\mathbb{Z}[x]$, this time with

\[
\Delta(x) = x \otimes 1 + 1 \otimes x \quad \text{and} \quad \epsilon(x) = 0 \]

(that is, this time $x$ becomes a ‘primitive’ element).

Perhaps this adds another feather of weight to the proposal in which one defines algebras over the field with one element $\mathbb{F}_1$ to be birings over $\mathbb{Z}$, with the co-ring structure playing the role of descent data from $\mathbb{Z}$ to $\mathbb{F}_1$.

As, for example, in my note The coordinate biring of $\mathbf{Spec}(\mathbb{Z})/\mathbb{F}_1$.

Leave a Comment

The geometry of football

Soon, we will be teaching computational geometry courses to football commentators.

If a player is going to be substituted we’ll hear sentences like: “no surprise he’s being replaced, his Voronoi cell has been shrinking since the beginning of the second half!”

David Sumpter, the author of Soccermatics: Mathematical Adventures in the Beautiful Game, wrote a nice article over at Medium The geometry of attacking football.

As an example, he took an attack of Barcelona against Panathinaikos.


and explained the passing possibilities in terms of the Delaunay triangulation between the Barca-players (the corresponding Voronoi cell decomposition is in the header picture).

He concludes: “It is not only their skill on the ball, but also their geometrically accurate positioning that allows them to make the pass.”

Jaime Sampaoi produced a short video of changing Voronoi cells from kick-off by the blue team, with the red team putting pressure until a faulty pass is given, leading to a red-attack and a goal. All in 29 seconds.



I’d love to turn this feature on when watching an actual game.

Oh, and please different cell-colours for the two teams.

And, a remote control to highlight the Voronoi cell of a particular player.

Please?

One Comment

The subway singularity

The Boston subway is a complex system, spreading out from a focus at Park Street.

On March 3rd, the Boylston shuttle went into service, tying together the seven principal lines, on four different levels.

A day later, train 86 went missing on the Cambridge-Dorchester line.

The Harvard algebraist R. Tupelo suggested the train might have hit a node, a singularity. By adding the Boylston shuttle, the connectivity of the subway system had become infinite…

Never heard of this tragic incident?

Time to read up on A.J. Deutsch’s classic ‘A subway named Moebius’ from 1950. A 12 page pdf of this short story is available via the Rio Rancho Math Camp.

The ‘explanation’ given in the story is that the Moebius strip has a singularity. Before you yell that this is impossible, have a look at this or that.

A ‘non spatial network’ where ‘an exclusion principle operates’, Deutsch’s story says.

Here’s another take.

The train took the exceptional fiber branch, instead of remaining on the desingularisation?

Whatever really happened, it’s a fun read, mathematics clashing with bureaucracy.

In 1996 Gustavo Mosquera directed the film ‘Moebius’, set in Buenos Aires, loosely based on Deutsch’s story.

Here’s the full version (90 min.), with subtitles. Have fun!

MOEBIUS dirigido por Gustavo Mosquera from Universidad del Cine on Vimeo.

Leave a Comment

Forgetting can’t be that hard, can it?

Geometers will tell you there are two ways to introduce affine schemes.

You can use structure sheaves. That is, compute all prime ideals of your ring and turn them into a space. Then, put a sheaf of rings on this space by localisation. You’ll get your ring back taking global sections.

Or, you might try the ‘functor of points’. That is, you take any other ring. Compute all ring-morphisms from yours to that one. You’ll recover your ring from Yoneda’s lemma.

And here’s the funny part.

Scheme-theorists claim there’s no differences between these two approaches. They are ‘equivalent’, as they prefer to say.

Do you believe them?

Let’s look at an example.

Take the ring of all polynomials with integer coefficients, $\mathbb{Z}[x]$.

Do you know all its prime ideals?

Sure, you’ll say.

There’s zero because it’s a domain. Then there are the ‘curves’. These are all prime numbers and all irreducible polynomials because it’s a UFD.

And then there are the ‘points’. They depend on a prime number $p$ and an irreducible polynomial which does not factor over $p$.

Not exactly rocket science, is it?

Okay, now let’s take them all together into a space.

Can you picture the intersection points of different curves? Let’s keep it simple. Take the curve given by a prime number $p$ and the one given by an irreducible polynomial $F(x)$. How do they intersect?

Easy! They are the factors of $F(x)$ modulo $p$.

Right, but can you picture this pattern for all prime numbers at once?

That depends on $F(x)$. David Mumford sketched the situation for $x^2+1$.

If $-1$ is a square modulo $p$, then $F(x)$ splits in two factors giving two points, such as along $5$. If not, $F(x)$ remains irreducible over $p$ and gives a thicker point like over $3$ or $7$. Except for the ‘odd’ case over $2$ where $F(x)$ is a square. Gauss knew already the situation for every prime.

But, what about arbitrary polynomials?

That’s a lot more difficult. Chebotarev knew how to get their Galois group from the factors at all primes.

So, you’ll need to solve deep problems in number theory before you can picture this space. The structure of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ to name one.

I’m afraid nobody understands the space of all prime ideals of $\mathbb{Z}[x]$ completely, let alone its structure sheaf.

What about the other approach? Let’s try to understand the functor of points of $\mathbb{Z}[x]$.

Take any ring $R$. We need to figure out all ring-maps $\mathbb{Z}[x] \rightarrow R$. But, we know such a map once we know the image of $x$. That is, there are as many ring-maps as there are elements in the set $R$.

Forgetting all about addition and multiplication on $R$. It is just the forgetful functor from rings to sets.

And they claim this is equivalent to solving deep problems in number theory?

Forgetting can’t be that hard, can it?

2 Comments

Stirring a cup of coffee

Please allow for a couple of end-of-semester bluesy ramblings. I just finished grading the final test of the last of five courses I lectured this semester.

Most of them went, I believe, rather well.

As always, it was fun to teach an introductory group theory course to second year physics students.

Personally, I did enjoy our Lie theory course the most, given for a mixed public of both mathematics and physics students. We did the spin-group $SU(2)$ and its connection with $SO_3(\mathbb{R})$ in gruesome detail, introduced the other classical groups, and proved complete reducibility of representations. The funnier part was applying this to the $U(1) \times SU(2) \times SU(3)$-representation of the standard model and its extension to the $SU(5)$ GUT.

Ok, but with a sad undertone, was the second year course on representations of finite groups. Sad, because it was the last time I’m allowed to teach it. My younger colleagues decided there’s no place for RT on the new curriculum.

Soit.

The final lecture is often an eye-opener, or at least, I hope it is/was.

Here’s the idea: someone whispers in your ear that there might be a simple group of order $60$. Armed with only the Sylow-theorems and what we did in this course we will determine all its conjugacy classes, its full character table, and finish proving that this mysterious group is none other than $A_5$.

Right now I’m just a tad disappointed only a handful of students came close to solving the same problem for order $168$ this afternoon.

Clearly, I gave them ample extra information: the group only has elements of order $1,2,3,4$ and $7$ and the centralizer of one order $2$ element is the dihedral group of order $8$. They had to determine the number of distinct irreducible representations, that is, the number of conjugacy classes. Try it yourself (Solution at the end of this post).

For months I felt completely deflated on Tuesday nights, for I had to teach the remaining two courses on that day.

There’s this first year Linear Algebra course. After teaching for over 30 years it was a first timer for me, and probably for the better. I guess 15 years ago I would have been arrogant enough to insist that the only way to teach linear algebra properly was to do representations of quivers…

Now, I realise that linear algebra is perhaps the only algebra course the majority of math-students will need in their further career, so it is best to tune its contents to the desires of the other colleagues: inproducts, determinants as volumes, Markov-processes and the like.

There are thousands of linear algebra textbooks, the one feature they all seem to lack is conciseness. What kept me going throughout this course was trying to come up with the shortest proofs ever for standard results. No doubt, next year the course will grow on me.

Then, there was a master course on algebraic geometry (which was supposed to be on scheme theory, moduli problems such as the classification of fat points (as in the car crash post, etale topology and the like) which had a bumpy start because class was less prepared on varieties and morphisms than I had hoped for.

Still, judging on the quality of the papers students are beginning to hand in (today I received one doing serious stuff with stacks) we managed to cover a lot of material in the end.

I’m determined to teach that first course on algebraic geometry myself next year.

Which brought me wondering about the ideal content of such a course.

Half a decade ago I wrote a couple of posts such as Mumford’s treasure map, Grothendieck’s functor of points, Manin’s geometric axis and the like, which are still quite readable.

In the functor of points-post I referred to a comment thread Algebraic geometry without prime ideals at the Secret Blogging Seminar.

As I had to oversee a test this afternoon, I printed out all comments (a full 29 pages!) and had a good time reading them. At the time I favoured the POV advocated by David Ben-Zvi and Jim Borger (functor of points instead of locally ringed schemes).

Clearly they are right, but then so was I when I thought the ‘right’ way to teach linear algebra was via quiver-representations…

We’ll see what I’ll try out next year.

You may have wondered about the title of this post. It’s derived from a paper Raf Bocklandt (of the Korteweg-de Vries Institute in Amsterdam) arXived some days ago: Reflections in a cup of coffee, which is an extended version of a Brouwer-lecture he gave. Raf has this to say about the Brouwer fixed-point theorem.

“The theorem is usually explained in worldly terms by looking at a cup of coffee. In this setting it states that no matter how you stir your cup, there will always be a point in the liquid that did not change position and if you try to move that part by further stirring you will inevitably move some other part back into its original position. Legend even has it that Brouwer came up with the idea while stirring in a real cup, but whether this is true we’ll never know. What is true however is that Brouwers refections on the topic had a profound impact on mathematics and would lead to lots of new developments in geometry.”

I wish you all a pleasant end of 2016 and a much better 2017.

As to the 168-solution: Sylow says there are 8 7-Sylows giving 48 elements of order 7. The centralizer of each of them must be $C_7$ (given the restriction on the order of elements) so two conjugacy classes of them. Similarly each conjugacy class of an order 3 element must contain 56 elements. There is one conjugacy class of an order 2 element having 21 elements (because the centralizer is $D_4$) giving also a conjugacy class of an order 4 element consisting of 42 elements. Together with the identity these add up to 168 so there are 6 irreducible representations.

Leave a Comment

Where are Grothendieck’s writings? (2)

A couple of days ago, there was yet another article by Philippe Douroux on Grothendieck’s Lasserre writings “Inestimables mathématiques, avez-vous donc un prix?” in the French newspaper Liberation.

Not that there is much news to report.

I’ve posted on this before: Grothendieck’s gribouillis, Grothendieck’s gribouillis (2), and more recently Where are Grothendieck’s writings?

In that last post I claimed that the five metallic cases containing Grothendieck’s Lasserre notes were in a white building behind the police station of the sixth arrondissement of Paris.

I was wrong.

There’s a detail in Douroux’ articles I forgot to follow-up before.

Here’s the correct location:

What went wrong?

Here’s my ‘translation’ of part of chapter 46 of Douroux’ book “Alexandre Grothendieck, sur les traces du dernier genie des mathematiques”:

“On November 13th 2015, while the terrorist-attacks on the Bataclan and elsewhere were going on, a Mercedes break with on board Alexandre Jr. Grothendieck and Jean-Bernard, a librarian specialised in ancient writings, was approaching Paris from Lasserre. On board: 5 metallic cases, 2 red ones, 1 green and 2 blues.

At about 2 into the night they arrived at the ‘commissariat du Police’ of the 6th arrondissement. Jean-Bernard pushed open a heavy blue carriage porch, crossed the courtyard opened a second door and then a third one and delivered the cases.”

It all seemed to fit together: the ‘commissariat’ has a courtyard (but then, so do most buildings in the neighborhood) and has a blue carriage porch:

portepolicejpg

What went wrong?

I should have trusted Google-translate instead.

It translates the original text “…il garait sa voiture pres du commissariat…” more correctly into “…he parked his car near the police station…”. ‘Near’ as apposed to ‘at’…

We should have looked for a location close to the police station.

And, I should have looked up “Jean-Bernard, a librarian specialised in ancient writings”.

Who is Jean-Bernard?

In Douroux’ latest article there’s this sentence:

“Dès lors, on comprend mieux le travail de Jean-Bernard Gillot, libraire à Paris et expert en livres anciens et manuscrits scientifiques pour lequel les cinq malles contenant les écrits de Lasserre représentent l’affaire d’une vie.”

I’m not even going to make an attempt at translation, you know which tool to use if needed. Suffice it to say that the mysterious Jean-Bernard is no other than Jean-Bernard Gillot.

jbgillotjpg

In 2005, Jean-Bernard Gillot took over the Librairie Alain Brieux, specialising in ancient scientific books and objects. Here’s a brief history of this antiques shop.

Relevant to our quest is that it is located 48, rue Jacob in Paris, just around the corner of the Police Station of the 6th arrondissement.

And, there is a beautiful heavy blue carriage porch, leading to an interior courtyard…

portelibrairiejpg

A quick look at the vast amount of scientific objects (such as these Napier’s bones) indicates that there must be adequate and ample storage space in the buildings behind the shop.

This is where the five metallic cases containing the Lasserre writings are at this moment.

What’s next?

We’re lightyears removed from Maltsiniotis’ optimistic vision, broadcast at the Grothendieck conference in Montpellier last year, that the BNF would acquire the totality of the writings and make them available to the mathematical community at large.

Apart from Maltsiniotis’ cursory inventory of (part of) the 93.000 pages, nobody knows what’s inside these five boxes, making it impossible to put a price tag on them.

Perhaps, the family should grant some bloggers access to the cases, in return for a series of (live)posts on what they’ll find inside…?!

One Comment

how much to spend on (cat)books?

My favourite tags on MathOverflow are big-lists, big-picture, soft-question,
reference-request and the like.

Often, answers to such tagged questions contain sound reading advice, style: “road-map to important result/theory X”.

Two more K to go, so let’s spend some more money.

[section_title text=”Category theory”]

One of the problems with my master course on algebraic geometry is that the students are categorical virgins.

They’ve been studying specific categories, functors, natural transformations and more all over their bachelor years, without knowing the terminology.

It then helps to illustrate these concepts with examples. For example that the determinant is a natural transformation, or that $\mathbb{C}[t]$ represents the functor forgetting the ring structure.

The more examples the merrier. I like Riehl’s example that in the category of graphs, the complete graph $K_n$ represents the functor assigning to a graph the set of all its $n$-colourings.

So, I had a look at the MathOverflow question Is Mac Lane still the best place to learn category theory?.

It is always a good idea to support authors offering a free online version of their book.

Abstract and Concrete Categories: The Joy of Cats by J. Adamek,H. Herrlich and G. Strecker. Blurb: “This up-to-date introductory treatment employs the language of category theory to explore the theory of structures. Its unique approach stresses concrete categories, and each categorical notion features several examples that clearly illustrate specific and general cases.”

Free online version : The Joy of Cats

Category Theory for the Sciences by David Spivak. Blurb: “Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs — categories in disguise. After explaining the “big three” concepts of category theory — categories, functors, and natural transformations — the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions.”

Free online version: Category theory for scientists

Category Theory in Context by Emily Riehl. Blurb: “Suitable for advanced undergraduates and graduate students in mathematics, the text provides tools for understanding and attacking difficult problems in algebra, number theory, algebraic geometry, and algebraic topology. Drawing upon a broad range of mathematical examples from the categorical perspective, the author illustrates how the concepts and constructions of category theory arise from and illuminate more basic mathematical ideas. ”

Free online version: Category theory in context

Now, for the heavier stuff.

If I want to study Jacob Lurie’s books “Higher Topoi Theory”, “Derived AG”, what prerequisites should I have?

Simplicial Objects in Algebraic Topology by Peter May. Blurb: “Since it was first published in 1967, Simplicial Objects in Algebraic Topology has been the standard reference for the theory of simplicial sets and their relationship to the homotopy theory of topological spaces. ”

Free online version: Simplicial Objects in Algebraic Topology (h/t David Roberts via the comments)

A Concise Course in Algebraic Topology by Peter May. Blurb: “J. Peter May’s approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. ”

Free online version: A Concise Course in Algebraic Topology

Or in Lurie’s words: “To read Higher Topos Theory, you’ll need familiarity with ordinary category theory and with the homotopy theory of simplicial sets (Peter May’s book “Simplicial Objects in Algebraic Topology” is a good place to learn the latter). Other topics (such as classical topos theory) will be helpful for motivation.”

He also has a suggestion for the classic topos theory stuff:

“”Sheaves in Geometry and Logic” by Moerdijk and MacLane is a pretty good read (as is Uncle John, but I’ve never seen topos theory in there).”

I’ve had this book on permanent loan from our library over the past two years, so it’s about time to have my own copy.

Sheaves in Geometry and Logic: A First Introduction to Topos Theory by Mac Lane and Moerdijk. Blurb: “Sheaves arose in geometry as coefficients for cohomology and as descriptions of the functions appropriate to various kinds of manifolds. Sheaves also appear in logic as carriers for models of set theory. This text presents topos theory as it has developed from the study of sheaves. Beginning with several examples, it explains the underlying ideas of topology and sheaf theory as well as the general theory of elementary toposes and geometric morphisms and their relation to logic.”

Higher Topos Theory by Jacob Lurie. Blurb: “Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory’s new language. The result is a powerful theory with applications in many areas of mathematics.”

Free online version: Higher topos theory

Although it is unlikely that I can use this left-over money from a grant to pre-order a book, let’s try

Theories, Sites, Toposes: Relating and studying mathematical theories through topos-theoretic ‘bridges’ by Olivia Caramello. Blurb: “According to Grothendieck, the notion of topos is “the bed or deep river where come to be married geometry and algebra, topology and arithmetic, mathematical logic and category theory, the world of the continuous and that of discontinuous or discrete structures”. It is what he had “conceived of most broad to perceive with finesse, by the same language rich of geometric resonances, an “essence” which is common to situations most distant from each other, coming from one region or another of the vast universe of mathematical things”. ”

And, as I also teach a course on the history of mathematics, let’s include:

Tool and Object: A History and Philosophy of Category Theory by Ralph Krömer. Blurb: “This book describes the history of category theory whereby illuminating its symbiotic relationship to algebraic topology, homological algebra, algebraic geometry and mathematical logic and elaboratively develops the connections with the epistemological significance.”

One Comment