Skip to content →

Category: books

Stella Maris (Cormac McCarthy)

This week, I was hit hard by synchronicity.

Lately, I’ve been reading up a bit on psycho-analysis, tried to get through Grothendieck’s La clef des songes (the key to dreams) and I’m in the process of writing a series of blogposts on how to construct a topos of the unconscious.

And then I read Cormac McCarthy‘s novels The passenger and Stella Maris, and got hit.

Stella Maris is set in 1972, when the math-prodigy Alicia Western, suffering from hallucinations, admits herself to a psychiatric hospital, carrying a plastic bag containing forty thousand dollars. The book consists entirely of dialogues, the transcripts of seven sessions with her psychiatrist Dr. Cohen (nomen est omen).

Alicia is a doctoral candidate at the University Of Chicago who got a scholarship to visit the IHES to work with Grothendieck on toposes.

During the psychiatric sessions, they talk on a wide variety of topics, including the nature of mathematics, quantum mechanics, music theory, dreams, and the unconscious (and its role in doing mathematics).

The core question is not how you do math but how does the unconscious do it. How it is that it’s demonstrably better at it than you are? You work on a problem and then you put it away for a while. But it doesnt go away. It reappears at lunch. Or while you’re taking a shower. It says: Take a look at this. What do you think? Then you wonder why the shower is cold. Or the soup. Is this doing math? I’m afraid it is. How is it doing it? We dont know. How does the unconscious do math? (page 99)

Before going to the IHES she had to send Grothendieck a paper (‘It was an explication of topos theory that I thought he probably hadn’t considered.’ page 136, and ‘while it proved three problems in topos theory it then set about dismantling the mechanism of the proofs.’ page 151). At the IHES ‘I met three men that I could talk to: Grothendieck, Deligne, and Oscar Zariski.’ (page 136).

I don’t know whether Zariski visited the IHES in the early 70ties, and while most historical allusions (to Grothendieck’s life, his role in Bourbaki etc.) are correct, Alicia mentions the ‘Langlands project’ (page 66) which may very well have been the talk of town at the IHES in 1972, but the mention of Witten ‘Grothendieck writes everything down. Witten nothing.’ (page 100) raised an eyebrow.

The book also contains these two nice attempts to capture some of the essence of topos theory:

When you get to topos theory you are at the edge of another universe.
You have found a place to stand where you can look back at the world from nowhere. It’s not just some gestalt. It’s fundamental. (page 13)

You asked me about Grothendieck. The topos theory he came up with is a witches’ brew of topology and algebra and mathematical logic.
It doesnt even have a clear identity. The power of the theory is still speculative. But it’s there.
You have a sense that it is waiting quietly with answers to questions that nobody has asked yet. (page 68)

I did read ‘The passenger’ first, which is probably better as then you’d know already some of the ghosts haunting Alicia, but it’s not a must if you are only interested in their discussions about the nature of mathematics. Be warned that it is a pretty dark book, better not read when you’re already feeling low, and it should come with a link to a suicide prevention line.

Here’s a more considered take on Stella Maris:


Loading a second brain

Before ChatGPT, the hype among productivity boosters was a PKMs or Personal knowledge management system.

It gained popularity through Tiago Forte’s book ‘Building a second brain’, and (for academics perhaps a more useful read) ‘How to take smart notes’ by Sönke Ahrens.

These books promote new techniques for note-taking (and for storing these notes) such as the PARA-method, the CODE-system, and Zettelkasten.

Unmistakable Creative has some posts on the principles behing the ‘second brain’ approach.

Your brain isn’t like a hard drive or a dropbox, where information is stored in folders and subfolders. None of our thoughts or ideas exist in isolation. Information is organized in a series of non-linear associative networks in the brain.

Networked thinking is not just a more efficient way to organize information. It frees your brain to do what it does best: Imagine, invent, innovate, and create. The less you have to remember where information is, the more you can use it to summarize that information and turn knowledge into action.


A network has no “correct” orientation and thus no bottom and no top. Each individual, or “node,” in a network functions autonomously, negotiating its own relationships and coalescing into groups. Examples of networks include a flock of birds, the World Wide Web, and the social ties in a neighborhood. Networks are inherently “bottom-up” in that the structure emerges organically from small interactions without direction from a central authority.

-Tiago Forte, Tagging for Personal Knowledge Management

There are several apps you can use to start building your second brain, the more popular seem to be Roam Research, LogSeq, and Obsidian.

These systems allow you to store, link and manipulate a large collection of notes, query them as a database, modify them in various ways via plugins or scripts, and navigate the network created via graph-views.

Exactly the kind of things we need to modify the simple system from the shape of languages-post into a proper topos of the unconscious.

I’ve been playing around with Obsidian which I like because it has good LaTeX plugins, powerful database tools via the Dataview plugin, and one can execute codeblocks within notes in almost any programming language (python, haskell, lean, Mathematica, ruby, javascript, R, …).

Most of all it has a vibrant community of users, an excellent forum, and a well-documented Obsidian hub.

There’s just one problem, I’m a terrible note-taker, so how can I begin to load my ‘second brain’?

Obsidian has several plugins to import data, such as your Kindle highlights, your Twitter feed, your Readwise-data, and many others, but having been too lazy in the past, I cannot use any of them.

In fact, the only useful collection of notes I have are my blog-posts. So, I’ve uploaded NeverEndingBooks into Obsidian, one note per post (admittedly, not very Zettelkasten-like), half a million words in total.

Fortunately, I did tag most of these posts at the time. Together with other meta-data this results in the Graph view below (under ‘Files’ toggled tags, under ‘Groups’ three tag-colours, and under ‘Display’ toggled arrows). One can add colour-groups based on tags or other information (here, red dots are posts tagged ‘Grothendieck’, the blue ones are tagged ‘Conway’, the purple ones tagged ‘Connes’, just for the sake of illustration). In Obsidian you can zoom into this graph, place a pointer on a node to highlight the connecting dots, and much more.

Because I tend to forget such things, and as it may be useful to other people running a WordPress-blog making heavy use of MathJax, here’s the procedure I followed:

1. Follow the instructions from Convert wordpress articles to markdown.

In the wizard I’ve opted to go only for yearly folders, to prefix posts with the date, and to save all images.

2. This gives you a directory with one folder per year containing markdown versions of your posts, and in each year-folder a subfolder ‘img’ containing all images.

Turn this directory into an Obsidian-vault by opening Obsidian, click on the ‘open another vault’ icon (third from bottom-left), select ‘Open folder as vault’ and navigate to your directory.

3. You will notice that most of your LaTeX cannot be parsed because during the markdown-process backslashes are treaded as special character, resulting in two backslashes for every LaTeX-command…

A remark before trying to solve this: another option might be to use the wordpress-to-hugo-exporter, resulting in clean LaTeX, but lacking the possibility to opt for yearly-folders (it dumps all posts into one folder), and it makes a mess of the image-files.

4. So, we will need to do a lot of search&replaces in all files, and need a convenient tool for this.

First option was the Sublime Text app, which is free and does the search&replaces quickly. The problem is that you have to save each of the files, one at a time! This may take hours.

I’ve done it using the Search and Replace app (3$) which allows you to make several searches/replaces at the same time (I messed up LaTeX code in previous exports, so needed to do many more changes). It warns you that it is dangerous to replace strings in all files (which is the reason why Sublime Text makes it difficult), you can ignore it, but only after you put the ‘img’ folders away in a safe place. Otherwise it will also try to make the changes to these files, recognise that they are not text-files, and drop them altogether…

That’s it.

I now have a backup network-version of this blog.

As we mentioned in the previous post a first attempt to construct the ‘topos of the unconscious’ might be to start with a collection of notes (the ‘conscious’) and work on the semantics of text-snippets to unravel (a part of) the unconscious underpinning of these notes. We also mentioned that the poset-structure in that post should be replaced by a more involved network structure.

What interests me most is whether such an approach might be doable ‘in practice’, and Obsidian looks like the perfect tool to try this out.

What we need is a sufficiently large set of notes, of independent interest, to inject into Obsidian. The more meta it is, the better…


Previously in this series:


The enriched vault

Leave a Comment

The topology of dreams

Last May, the meeting Lacan et Grothendieck, l’impossible rencontre? took place in Paris (see this post). Video’s of that meeting are now available online.

Here’s the talk by Alain Connes and Patrick Gauthier-Lafaye on their book A l’ombre de Grothendieck et de Lacan : un topos sur l’inconscient ? (see this post ).

Let’s quickly recall their main ideas:

1. The unconscious is structured as a topos (Jacques Lacan argued it was structured as a language), because we need a framework allowing logic without the law of the excluded middle for Lacan’s formulas of sexuation to make some sense at all.

2. This topos may differs from person to person, so we do not all share the same rules of logic (as observed in real life).

3. Consciousness is related to the points of the topos (they are not precise on this, neither in the talk, nor the book).

4. All these individual toposes are ruled by a classifying topos, and they see Lacan’s work as the very first steps towards trying to describe the unconscious by a geometrical theory (though his formulas are not first order).

Surely these are intriguing ideas, if only we would know how to construct the topos of someone’s unconscious.

Let’s go looking for clues.

At the same meeting, there was a talk by Daniel Sibony: “Mathématiques et inconscient”

Sibony started out as mathematician, then turned to psychiatry in the early 70ties. He was acquainted with both Grothendieck and Lacan, and even brought them together once, over lunch, some day in 1973. He makes a one-line appearance in Grothendieck’s Récoltes et Semailles, when G discribes his friends in ‘Survivre et Vivre’:

“Daniel Sibony (who stayed away from this group, while pursuing its evolution out of the corner of a semi-disdainful, smirking eye)”

In his talk, Sibony said he had a similar idea, 50 years before Connes and Gauthier-Lafaye (3.04 into the clip):

“At the same time (early 70ties) I did a seminar in Vincennes, where I was a math professor, on the topology of dreams. At the time I didn’t have categories at my disposal, but I used fibered spaces instead. I showed how we could interpret dreams with a fibered space. This is consistent with the Freudian idea, except that Freud says we should take the list of words from the story of the dream and look for associations. For me, these associations were in the fibers, and these thoughts on fibers and sheaves have always followed me. And now, after 50 years I find this pretty book by Alain Connes and Patrick Gauthier-Lafaye on toposes, and see that my thoughts on dreams as sheaves and fibered spaces are but a special case of theirs.”

This looks interesting. After all, Freud called dream interpretation the ‘royal road’ to the unconscious. “It is the ‘King’s highway’ along which everyone can travel to discover the truth of unconscious processes for themselves.”

Sibony clarifies his idea in the interview L’utilisation des rêves en psychothérapie with Maryse Siksou.

“The dream brings blocks of words, of “compacted” meanings, and we question, according to the good old method, each of these blocks, each of these points and which we associate around (we “unblock” around…), we let each point unfold according to the “fiber” which is its own.

I introduced this notion of the dream as fibered space in an article in the review Scilicet in 1972, and in a seminar that I gave at the University of Vincennes in 1973 under the title “Topologie et interpretation des rêves”, to which Jacques Lacan and his close retinue attended throughout the year.

The idea is that the dream is a sheaf, a bundle of fibers, each of which is associated with a “word” of the dream; interpretation makes the fibers appear, and one can pick an element from each, which is of course “displaced” in relation to the word that “produced” the fiber, and these elements are articulated with other elements taken in other fibers, to finally create a message which, once again, does not necessarily say the meaning of the dream because a dream has as many meanings as recipients to whom it is told, but which produces a strong statement, a relevant statement, which can restart the work.”

Key images in the dream (the ‘points’ of the base-space) can stand for entirely different situations in someone’s life (the points in the ‘fiber’ over an image). The therapist’s job is to find a suitable ‘section’ in this ‘sheaf’ to further the theraphy.

It’s a bit like translating a sentence from one language to another. Every word (point of the base-space) can have several possible translations with subtle differences (the points in the fiber over the word). It’s the translator’s job to find the best ‘section’ in this sheaf of possibilities.

This translation-analogy is used by Daniel Sibony in his paper Traduire la passe:

“It therefore operates just like the dream through articulated choices, from one fiber to another, in a bundle of speaking fibers; it articulates them by seeking the optimal section. In fact, the translation takes place between two fiber bundles, each in a language, but in the starting bundle the choice seems fixed by the initial text. However, more or less consciously, the translator “bursts” each word into a larger fiber, he therefore has a bundle of fibers where the given text seems after the fact a singular choice, which will produce another choice in the bundle of the other language.”

This paper also contains a pre-ChatGPT story (we’re in 1998), in which the language model fails because it has far too few alternatives in its fibers:

I felt it during a “humor festival” where I was approached by someone (who seemed to have some humor) and who was a robot. We had a brief conversation, very acceptable, beyond the conventional witticisms and knowing sighs he uttered from time to time to complain about the lack of atmosphere, repeating that after all we are not robots.

I thought at first that it must be a walking walkie-talkie and that in fact I was talking to a guy who was remote control from his cabin. But the object was programmed; the unforeseen effects of meaning were all the more striking. To my question: “Who created you?” he answered with a strange word, a kind of technical god.

I went on to ask him who he thought created me; his answer was immediate: “Oedipus”. (He knew, having questioned me, that I was a psychoanalyst.) The piquancy of his answer pleased me (without Oedipus, at least on a first level, no analyst). These bursts of meaning that we know in children, psychotics, to whom we attribute divinatory gifts — when they only exist, save their skin, questioning us about our being to defend theirs — , these random strokes of meaning shed light on the classic aftermaths where when a tile arrives, we hook it up to other tiles from the past, it ties up the pain by chaining the meaning.

Anyway, the conversation continuing, the robot asked me to psychoanalyse him; I asked him what he was suffering from. His answer was immediate: “Oedipus”.

Disappointing and enlightening: it shows that with each “word” of the interlocutor, the robot makes correspond a signifying constellation, a fiber of elements; choosing a word in each fiber, he then articulates the whole with obvious sequence constraints: a bit of readability and a certain phrasal push that leaves open the game of exchange. And now, in the fiber concerning the “psy” field, chance or constraint had fixed him on the same word, “Oedipus”, which, by repeating itself, closed the scene heavily.

Okay, we have a first potential approximation to Connes and Gauthier-Lafaye’s elusive topos, a sheaf of possible interpretation of base-words in a language.

But, the base-space is still rather discrete, or at best linearly ordered. And also in the fibers, and among the sections, there’s not much of a topology at work.

Perhaps, we should have a look at applications of topology and/or topos theory in large language models?



The shape of languages


the topos of unconsciousness

Since wednesday, as mentioned last time, the book by Alain Connes and Patrick Gauthier-Lafaye: “A l’ombre de Grothendieck et de Lacan, un topos sur l’inconscient” is available in the better bookshops.

There’s no need to introduce Alain Connes on this blog. Patrick Gauthier-Lafaye is a French psychiatrist and psycho-analyst, working in Strassbourg.

The book is a lengthy dialogue in which the authors try to find a use for topos theory in Jaques Lacan’s psycho-analytical view of the unconscious.

If you are a complete Lacanian virgin, it may be helpful to browse through “Lacan, a beginners guide” (by Lionel Bailly) first.

If this left you bewildered, for example by Lacan’s strange (ab)use of mathematics, rest assured, you’re not alone.

It is no coincidence that Lacan’s works are the first case-study in the book “Fashionable Nonsense: Postmodern Intellectuals’ Abuse of Science” by Alan Sokal (the one of the hoax) and Jean Bricmont. You can download the book from this link.

If now you feel that Sokal and Bricmont are way too harsh on Lacan, I urge you to have a go at the book “Writing the structures of the subject, Lacan and topology” by Will Greenshields.

If you don’t have the time or energy for this, let me give you one illustrative example: the topological explanation of Lacan’s formula of fantasy:

\$~\diamond~a \]

Loosely speaking this formula says “the barred subject stands within a circular relationship to the objet petit a (the object of desire), one part of which is determined by alienation, the other by separation”.

Lacan was obsessed with the immersion of the projective plane $\mathbb{P}^2(\mathbb{R})$ into $\mathbb{R}^3$ as the cross-cap. Here’s an image of it from his 1966-67 seminar on ‘Logique du fantasme’ (213 pages).

This image includes the position of the objet petit $a$ as the end point of the self-intersection curve, which itself is referred to as the ‘castration’, or the ‘phallus’, or whatever.

Brace yourself for the ‘explanation’ of $\$~\diamond~a$: if you walk twice around $a$ this divides the cross-cap into a disk and a Mobius-strip!

The mathematics is correct but I fail to see how this helps the psycho-analyst in her therapy. But hey, everyone will tell you I have absolutely no therapeutic talent.

Let’s return to the brand new book by Alain Connes and Patrick Gauthier-Lafaye: “A l’ombre de Grothendieck et de Lacan, un topos sur l’inconscient”.

It was to be expected that they would defend Lacan’s exploitation of (surface) topology by saying that he was just unfortunate not to have the more general notion of toposes available, as well as their much subtler logic. Perhaps someone should write a fictional parody on Greenshields book: “Lacan and the topos”…

Connes’ first attempt to construct the topos of unconsciousness was also not much of a surprise. According to Lacan the unconscious is ‘structured like a language’.

So, a natural approach might be to start with a ‘dictionary’-category (words and relations between them) or any other known use of a category in linguistics. A good starting point to read up on this is the blog post A new application of category theory in linguistics.

Eventually they settled for a much more ambitious project. To Connes and Gauthier-Lafaye every individual has her own topos and corresponding logic.

They don’t specify how to construct these individual toposes, but postulate that they are all connected to a classifying topos, which is their incarnation of the world of ‘myths’ and ‘fantasies’.

Surely an idea Lacan would have liked. Underlying the unconscious must be, according to Connes and Gauthier-Lafaye, a geometric theory! That is, it can be fully described by first order sentences.

Lacan himself used already some first order sequences in his teachings, such as in his logic of sexuation:

\forall x~(\Phi~x)~\quad \text{but also} \quad \exists x~\neg~(\Phi~x) \]

where $\Phi~x$ is the phallic function. Quoting from Greenshield’s book:

“While all (the sons) are subject to ($\forall x$) the law of castration ($\Phi~x$), we also learn that this law nevertheless resides upon an exception: there exists a subject ($\exists x$) that is not subject to this law ($\neg \Phi~x$). This exception is embodied by the despotic father who, not being subject to the phallic function, experiences an impossible mode of totalised jouissance (he enjoys all the women). He is, quite simply, the exception that proves the law a necessary beyond that enables the law’s geometric bounds to be defined.”

It will be quite hard (but probably great fun for psycho-analysts) to turn the whole of Lacanian theory on the unconscious into a coherent geometric theory, construct its classifying topos, and apply the Joyal-Reyes theorem to get at the individual cases/toposes.

I’m sure there are much deeper insights to be gained from Connes’ and Gauthier-Lafaye’s book, but this is what i got from a first, fast, cursory reading of it.

Leave a Comment

Hexboards and Heytings

A couple of days ago, Peter Rowlett posted on The Aperiodical: Introducing hexboard – a LaTeX package for drawing games of Hex.

Hex is a strategic game with two players (Red and Blue) taking turns placing a stone of their color onto any empty space. A player wins when they successfully connect their sides together through a chain of adjacent stones.

Here’s a short game on a $5 \times 5$ board (normal play uses $11\times 11$ boards), won by Blue, drawn with the LaTeX-package hexboard.

As much as I like mathematical games, I want to use the versability of the hexboard-package for something entirely different: drawing finite Heyting algebras in which it is easy to visualise the logical operations.

Every full hexboard is a poset with minimal cell $0$ and maximal cell $1$ if cell-values increase if we move horizontally to the right or diagonally to the upper-right. With respect to this order, $p \vee q$ is the smallest cell bigger than both $p$ and $q$, and $p \wedge q$ is the largest cell smaller than $p$ and $q$.

The implication $p \Rightarrow q$ is the largest cell $r$ such that $r \wedge p \leq q$, and the negation $\neg p$ stands for $p \Rightarrow 0$. With these operations, the full hexboard becomes a Heyting algebra.

Now the fun part. Every filled area of the hexboard, bordered above and below by a string of strictly increasing cells from $0$ to $1$ is also a Heyting algebra, with the induced ordering, and with the logical operations defined similarly.

Note that this mustn’t be a sub-Heyting algebra as the operations may differ. Here, we have a different value for $p \Rightarrow q$, and $\neg p$ is now $0$.

If you’re in for an innocent “Where is Wally?”-type puzzle: $W = (\neg \neg p \Rightarrow p)$.

Click on the image to get the solution.

The downsets in these posets can be viewed as the open sets of a finite topology, so these Heyting algebra structures come from the subobject classifier of a topos.

There are more interesting toposes with subobject classifier determined by such hex-Heyting algebras.

For example, the Topos of Triads of Thomas Noll in music theory has as its subobject classifier the hex-Heyting algebra (with cell-values as in the paper):

Note to self: why not write a couple of posts on this topos?

Another example: the category of all directed graphs is the presheaf topos of the two object category ($V$ for vertices, and $E$ for edges) with (apart from the identities) just two morphisms $s,t : V \rightarrow E$ (for start- and end-vertex of a directed edge).

The subobject classifier $\Omega$ of this topos is determined by the two Heyting algebras $\Omega(E)$ and $\Omega(V)$ below.

These ‘hex-Heyting algebras’ are exactly what Eduardo Ochs calls ‘planar Heyting algebras’.

Eduardo has a very informative research page, containing slides and handouts of talks in which he tries to explain topos theory to “children” (using these planar Heyting algebras) including:

Perhaps now is a good time to revive my old sga4hipsters-project.

Leave a Comment

Chevalley’s circle of friends

Last week, Danielle Couty ArXiVed her paper Friendly views on Claude Chevalley (in French).

From the abstract: “We propose to follow the itinerary of Claude Chevalley during the last twenty years of his life, through the words of Jacques Roubaud, Denis Guedj and Alexander Grothendieck. Our perspective is that of their testimonies filled with friendship.”

Claude Chevalley was one of the founding fathers of Bourbaki. Two of the four pre-WW2 Bourbaki-congresses were held in “La Massoterie”, the Chevalley family domain in Chancay (see this post, update: later I learned from Liliane Beaulieu that the original house was destroyed by fire).

In 1938 he left for Princeton and stayed there during the war, making it impossible to return to a position in France for a very long time. Only in 1957 he could return to Paris where he led a seminar which proved to be essential for the development of algebraic groups and algebraic geometry.

Picture from N. Bourbaki, an interview with C. Chevalley

The Couty paper focusses on the post-1968 period in which Chevalley distanced himself from Bourbaki (some of its members, he thought, had become ‘mandarins’ and ‘reactionaires’), became involved with the ecological movement ‘Survivre et vivre’ and started up the maths department of a new university at Vincennes.

The paper is based on the recollections of three of his friends.

1. Jacques Roubaud is a French poet, writer and mathematician.

On this blog you may have run into Roubaud as the inventor of Bourbaki’s death announcement, and the writer of the book with title $\in$.

He’s also a member of Oulipo, a loose gathering of (mainly) French-speaking writers and mathematicians. Famous writers such as Georges Perec and Italo Calvino were also Oulipo-members (see also Ouilpo’s use of the Tohoku paper).

Chevalley introduced Roubaud (and others) to the game of Go. From Couty’s paper this quote from Roubaud (G-translated):

“. . . it turns out that he had learned to play go in Japan and then, in Paris, he could not find a player […] I played go with him […] and then at a certain moment , we thought, Pierre Lusson and myself, it would still be good to create circumstances such that Chevalley could have players. And so, we had a lot of ambition, we said to ourselves: “We’re going to write a treatise on go, and then lots of people will start playing go”. »

The resulting Go-book is A short treatise inviting the reader to discover the subtle art of Go. Here’s Georges Perec (left) and Jacques Roubaud playing a game.

Picture from Petit traite invitant a la decouverte de l’art subtil du Go

2. Denis Guedj was a French novelist, mathematician and historian of science professor, perhaps best known for his book The Parrot’s Theorem.

In May 1968, Guedj was a PhD-student of Jean-Paul Benzecri (the one defining God as the Alexandroff compactification of the univers), working in the building where ‘Le Comité de Grève’ installed itself. Here he met Chevalley. A Guedj-quote from Couty’s paper (G-translated):

“Claude Chevalley was one of the three professors of the Faculty of Science to commit himself totally to the adventure until the end, occupying the premises with the students on the Quai Saint-Bernard […] and sleeping there frequently . That’s where I met him.

We had taken possession of this universe which until then had only been a place of study and knowledge, and which, in the mildness of this month of May, had become a place of life, of a life wonderfully exhilarating. The college was ours. At night we walked down the aisles yet? lined with tall trees, entered the empty lecture halls, slept under the stars. Needless to say that at the beginning of the school year, in the fall of 1968, it was impossible for us to find our place in these undressed spaces from which the magic had withdrawn. »

Picture from Décès de l’écrivain et universitaire Denis Guedj

In June 2008, Guedj was one of the guests at the special edition of France Culture on the occasion of Grothendieck’s 80th birthday, Autour d’Alexandre Grothendieck.

3. Alexander Grothendieck, mathematician and misogynist, deified by some of today’s ‘mandarins’.

The paper by Danielle Couty may shed additional light on Grothendieck’s withdrawal from Bourbaki and mathematics as a whole. A G-translated Grothendieck quote from the paper:

“It was Chevalley who was one of the first, with Denis Guedj whom I also met through Survivre, to draw my attention to this ideology (they called it “meritocracy” or a name like that), and what there was in her of violence, of contempt. It was because of that, Chevalley told me […] that he could no longer bear the atmosphere in Bourbaki and had stopped setting foot there. »

Claude Chevalley stayed at Vincennes until his retirement in 1978, he died on June 28th 1984.

Leave a Comment

Grothendieck stuff

January 13th, Gallimard published Grothendieck’s text Recoltes et Semailles in a fancy box containing two books.

Here’s a G-translation of Gallimard’s blurb:

“Considered the mathematical genius of the second half of the 20th century, Alexandre Grothendieck is the author of Récoltes et semailles, a kind of “monster” of more than a thousand pages, according to his own words. The mythical typescript, which opens with a sharp criticism of the ethics of mathematicians, will take the reader into the intimate territories of a spiritual experience after having initiated him into radical ecology.

In this literary braid, several stories intertwine, “a journey to discover a past; a meditation on existence; a picture of the mores of a milieu and an era (or the picture of the insidious and implacable shift from one era to another…); an investigation (almost police at times, and at others bordering on the swashbuckling novel in the depths of the mathematical megapolis…); a vast mathematical digression (which will sow more than one…); […] a diary ; a psychology of discovery and creation; an indictment (ruthless, as it should be…), even a settling of accounts in “the beautiful mathematical world” (and without giving gifts…)”.”

All literary events, great or small, are cause for the French to fill a radio show.

January 21st, ‘Le grand entretien’ on France Inter invited Cedric Villani and Jean-Pierre Bourguignon to talk about Grothendieck’s influence on mathematics (h/t Isar Stubbe).

The embedded YouTube above starts at 12:06, when Bourguignon describes Grothendieck’s main achievements.

Clearly, he starts off with the notion of schemes which, he says, proved to be decisive in the further development of algebraic geometry. Five years ago, I guess he would have continued mentioning FLT and other striking results, impossible to prove without scheme theory.

Now, he goes on saying that Grothendieck laid the basis of topos theory (“to define it, I would need not one minute and a half but a year and a half”), which is only now showing its first applications.

Grothendieck, Bourguignon goes on, was the first to envision the true potential of this theory, which we should take very seriously according to people like Lafforgue and Connes, and which will have applications in fields far from algebraic geometry.

Topos20 is spreading rapidly among French mathematicians. We’ll have to await further results before Topos20 will become a pandemic.

Another interesting fragment starts at 16:19 and concerns Grothendieck’s gribouillis, the 50.000 pages of scribblings found in Lasserre after his death.

Bourguignon had the opportunity to see them some time ago, and when asked to describe them he tells they are in ‘caisses’ stacked in a ‘libraire’.

Here’s a picture of these crates taken by Leila Schneps in Lasserre around the time of Grothendieck’s funeral.

If you want to know what’s in these notes, and how they ended up at that place in Paris, you might want to read this and that post.

If Bourguignon had to consult these notes at the Librairie Alain Brieux, it seems that there is no progress in the negotiations with Grothendieck’s children to make them public, or at least accessible.

Leave a Comment

Lockdown reading : SNORT

In this series I’ll mention some books I found entertaining, stimulating or comforting during these Corona times. Read them at your own risk.

This must have been the third time I’ve read The genius in by basement – The biography of a happy man by Alexander masters.

I first read it when it came out in 2011.

Then, in conjunction with Genius at play – The Curious Mind of John Horton Conway Conway’s biography by Siobhan Roberts, in july 2017, which is probably the best way to read this book.

And, then again last week, as Simon Norton‘s work pops up wherever I look, as in the previous post.

It takes some time to get used to the rather chaotic style (probably used because that’s how Masters perceives Norton), and all attempts at explaining Simon’s mathematics can better be skipped.

The book tries to find an answer as to why a child prodigy and genius like Simon Norton failed to secure a safe place in academics.

Page 328:

Simon’s second explanation of his loss of mathematical direction is heartbreaking. Now that Conway has fled to America, there is no one in the mathematical world who will work with him.

They say he is too peculiar, too shabby, too old.

His interests are fixed in mathematics that has had its day. His brilliance is frigid. His talent, perfectly suited to an extraordinary moment in algebraic history (the symmetry work at Cambridge during the early 1970s and 1980s) is out of fashion.

This may give the impression that Norton stopped doing good math after Conway left for Princeton in 1985. This is far from true.

Norton’s Wikipedia page mentions only post 1995 publications, which in itself is deplorable, as it leaves out his contributions to the ATLAS and his seminal paper with Conway on Monstrous moonshine.

Here’s Alexander Masters talking about ‘Genius in my basement’

I’ll leave you with a nice quote, comparing Monstrous Moonshine to a Sainsbury’s bag on Jupiter.

Page 334:

This much I do know: Monstrous Moonshine links the Monster to distant mathematics and the structure of space in ways that are as awe-inspiring to a man like Simon as it would be to an astronaut to step out of his space machine on Jupiter, and find a Sainsbury’s bag floating past. That’s why it’s called ‘Moonshine’, because mathematicians can even now hardly believe it.

‘I think’, said Simon, standing up from his berth and shaking crumbs and clotted blobs of oil and fish off his T-shirt onto the covers, ‘I can explain to you what Moonshine is in one sentence.’

When he really tries, Simon can be a model of clarity.

‘It is,’ he said, ‘the voice of God.’

Ps, wrt. SNORT.

One Comment

Finnegans Wake’s geometry lesson

The literary sensation that spring of 1939 no doubt was the publication of Finnegans Wake by James Joyce. On May 4th 1939 FW was published simultaneously by Faber and Faber in London and by Viking Press in New York, after seventeen years of composition.

In 1928-29, Joyce started publishing individual chapters from FW, then known as ‘Work in Progress’, including chapter II.2 ‘The Triangle’, of which a brief excerpt was already published in February 1928. The name comes from the only diagram in FW, the classical Euclidian construction of an equilateral triangle (FW, p. 293)

This Vesica piscis has multiple interpretations in FW, most of them sexual. The triangle $\Delta$ is the Sigla for Anna Livia Plurabelle throughout FW, but it also refers to the river Liffey through Dublin.

Here’s Anthony Burgess explaining some of the Sigla, the relevant part starts at 14.20 into the clip.

In fact, many of FW’s Sigla are derived from mathematical symbols, such as $\exists$ (Earwicker), $\perp$ and $\vdash$ (Issy). For more on this, please read The logic of the doodles in Finnegans Wake II.2.

Not only does the equilateral triangle $\Delta$ refer to the river Liffey, the entire Euclidian diagram can be seen as a map for Dublin and its surroundings, as emphasised by the words “Vieus Von DVbLIn” (views from Dublin) in FW right under the diagram.

Here’s Dublin with the Liffey running through it, and Phoenix Park, which also features prominently in FW, see for example Phoenix Park in Finnegans Wake.

Views of Dublin – Photo Credit

The similarity between the map and the diagram is even clearer in Joyce’s own drawing in the first draft of FW.

The Triangle – Photo Credit

There’s a lot more to say about Joyce’s uses of geometry and topography in Ulysses and Finnegans Wake, in fact Ciaran McMorran wrote an entire Glasgow Ph. D. about it, but perhaps I’ll save some of that for a future post.

But what does this have to to with the Bourbaki Code, the puzzles contained in the Bourbaki-Petard wedding announcement?

Well, I claim that Andre Weil hid the Vesica Piscis/Euclidian diagram into the ‘faire part’. The challenge is to view the wedding announcement as a partial city- map. Clearly this time, the city of Dublin should be replaced by the city of Paris. Se non e vero …

Probably, there are enough hints contained in the previous posts in this series for you to spot the triangle(s) on the map of Paris. If you do so, please leave a comment, or email me.

Meanwhile, we’ll unravel first the more obvious levels of interpretation of the wedding announcement.

Leave a Comment

Ghost metro stations

In the strange logic of subways I’ve used a small part of the Parisian metro-map to illustrate some of the bi-Heyting operations on directed graphs.

Little did I know that this metro-map gives only a partial picture of the underground network. The Parisian metro has several ghost stations, that is, stations that have been closed to the public and are no longer used in commercial service. One of these is the Haxo metro station.

Haxo metro station – Photo Credit

The station is situated on a line which was constructed in the 1920s between Porte des Lilas (line 3bis) and Pré-Saint-Gervais (line 7bis), see light and dark green on the map above . A single track was built linking Place des Fêtes to Porte des Lilas, known as la voie des Fêtes, with one intermediate station, Haxo.

For traffic in the other direction, another track was constructed linking Porte des Lilas to Pré Saint-Gervais, with no intermediate station, called la voie navette. Haxo would have been a single-direction station with only one platform.

But, it was never used, and no access to street level was ever constructed. Occasional special enthusiast trains call at Haxo for photography.

Apart from the Haxo ‘station morte’ (dead station), these maps show another surprise, a ‘quai mort’ (dead platform) known as Porte des Lilas – Cinema. You can hire this platform for a mere 200.000 Euro/per day for film shooting.

For example, Le fabuleux destin d’Amelie Poulin has a scene shot there. In the film the metro station is called ‘Abbesses’ (3.06 into the clip)

There is a project to re-open the ghost station Haxo for public transport. From a mathematical perspective, this may be dangerous.

Remember the subway singularity?

In the famous story A subway named Mobius by A. J. Deutsch, the Boylston shuttle on the Boiston subway went into service on March 3rd, tying together the seven principal lines, on four different levels. A day later, train 86 went missing on the Cambridge-Dorchester line…

The Harvard algebraist R. Tupelo suggested the train might have hit a node, a singularity. By adding the Boylston shuttle, the connectivity of the subway system had become infinite…

Now that we know of the strange logic of subways, an alternative explanation of this accident might be that by adding the Boylston shuttle, the logic of the Boston subway changed dramatically.

This can also happen in Paris.

I know, I’ve linked already to the movie ‘Moebius’ by Gustavo Mosquera, based on Deutsch’s story, set in Buenos Aires.

But, if you have an hour to spend, here it is again.

Leave a Comment