Skip to content →

why nag? (3)

Here is
the construction of this normal space or chart \mathbf{chart}_{\Gamma}. The sub-semigroup of Z^5 (all
dimension vectors of Q) consisting of those vectors \alpha=(a_1,a_2,b_1,b_2,b_3) satisfying the numerical condition a_1+a_2=n=b_1+b_2+b_3 is generated by six dimension vectors,
namely those of the 6 non-isomorphic one-dimensional solutions in \mathbf{rep}~\Gamma

S_1 = \xymatrix@=.4cm{ & & & & \vtx{1} \\ \vtx{1} \ar[rrrru]^1
\ar[rrrrd] \ar[rrrrddd] & & & & \\ & & & & \vtx{0} \\ \vtx{0}
\ar[rrrruuu] \ar[rrrru] \ar[rrrrd] & & & & \\ & & & & \vtx{0}} \qquad
S_2 = \xymatrix@=.4cm{ & & & & \vtx{0} \\ \vtx{0} \ar[rrrru] \ar[rrrrd]
\ar[rrrrddd] & & & & \\& & & & \vtx{1} \\\vtx{1} \ar[rrrruuu]
\ar[rrrru]^1 \ar[rrrrd] & & & & \\ & & & & \vtx{0}}

S_3 = \xymatrix@=.4cm{ & & & & \vtx{0} \\ \vtx{1} \ar[rrrru]
\ar[rrrrd] \ar[rrrrddd]^1 & & & & \\ & & & & \vtx{0} \\ \vtx{0}
\ar[rrrruuu] \ar[rrrru] \ar[rrrrd] & & & & \\ & & & & \vtx{1}} \qquad
S_4 = \xymatrix@=.4cm{ & & & & \vtx{1} \\ \vtx{0} \ar[rrrru] \ar[rrrrd]
\ar[rrrrddd] & & & & \\ & & & & \vtx{0} \\ \vtx{1} \ar[rrrruuu]^1
\ar[rrrru] \ar[rrrrd] & & & & \\ & & & & \vtx{0}}

S_5 = \xymatrix@=.4cm{ & & & & \vtx{0} \\ \vtx{1} \ar[rrrru]
\ar[rrrrd]^1 \ar[rrrrddd] & & & & \\ & & & & \vtx{1} \\ \vtx{0}
\ar[rrrruuu] \ar[rrrru] \ar[rrrrd] & & & & \\ & & & & \vtx{0}} \qquad
S_6 = \xymatrix@=.4cm{ & & & & \vtx{0} \\ \vtx{0} \ar[rrrru] \ar[rrrrd]
\ar[rrrrddd] & & & & \\ & & & & \vtx{0} \\ \vtx{1} \ar[rrrruuu]
\ar[rrrru] \ar[rrrrd]^1 & & & & \\ & & & & \vtx{1}}

In
particular, in any component \mathbf{rep}_{\alpha}~Q containing an open subset of
representations corresponding to solutions in \mathbf{rep}~\Gamma we have a particular semi-simple solution

M = S_1^{\oplus g_1}
\oplus S_2^{\oplus g_2} \oplus S_3^{\oplus g_3} \oplus S_4^{\oplus g_4}
\oplus S_5^{\oplus g_5} \oplus S_6^{\oplus g_6}

and in
particular \alpha =
(g_1+g_3+g_5,g_2+g_4+g_6,g_1+g_4,g_2+g_5,g_3+g_6). The normal space
to the GL(\alpha)-orbit of M in \mathbf{rep}_{\alpha}~Q can be identified with the representation
space \mathbf{rep}_{\beta}~Q where \beta=(g_1,\ldots,g_6) and Q is the quiver of the following
form

\xymatrix{ &
\vtx{g_1} \ar@/^/[ld]^{C_{16}} \ar@/^/[rd]^{C_{12}} & \\ \vtx{g_6}
\ar@/^/[ru]^{C_{61}}  \ar@/^/[d]^{C_{65}} & & \vtx{g_2}
\ar@/^/[lu]^{C_{21}} \ar@/^/[d]^{C_{23}} \\ \vtx{g_5}
\ar@/^/[u]^{C_{56}}  \ar@/^/[rd]^{C_{54}} & & \vtx{g_3}
\ar@/^/[u]^{C_{32}} \ar@/^/[ld]^{C_{34}} \\ & \vtx{g_4}
\ar@/^/[lu]^{C_{45}} \ar@/^/[ru]^{C_{43}}  & }

and we can
even identify how the small matrices C_{ij} fit
into the 3 \times
2 block-decomposition of the base-change matrix B

B = \begin{bmatrix}
\begin{array}{ccc|ccc} 1_{a_1} & 0 & 0 & C_{21} & 0 & C_{61} \\ 0 &
C_{34} & C_{54} & 0 & 1_{a_4} & 0 \\ \hline C_{12} & C_{32} & 0 &
1_{a_2} & 0 & 0 \\ 0 & 0 & 1_{a_5} & 0 & C_{45} & C_{65} \\ \hline 0 &
1_{a_3} & 0 & C_{23} & C_{43} & 0 \\ C_{16} & 0 & C_{56} & 0 & 0 &
1_{a_6} \\ \end{array} \end{bmatrix}

Hence, it makes sense
to call Q the non-commutative normal space to the isomorphism problem in
\mathbf{rep}~\Gamma. Moreover, under this correspondence simple
representations of Q (for which both the dimension vectors and
distinguishing characters are known explicitly) correspond to simple
solutions in \mathbf{rep}~\Gamma.

Having completed our promised
approach via non-commutative geometry to the classification problem of
solutions to the braid relation, it is time to collect what we have
learned. Let \beta=(g_1,\ldots,g_6) with n = \gamma_1 + \ldots + \gamma_6, then for every
non-zero scalar \lambda \in \mathbb{C}^* the matrices

X = \lambda B^{-1}
\begin{bmatrix} 1_{g_1+g_4} & 0 & 0 \\ 0 & \rho^2 1_{g_2+g_5} & 0 \\ 0 &
0 & \rho 1_{g_3+g_6} \end{bmatrix} B \begin{bmatrix} 1_{g_1+g_3+g_5} & 0
\\ 0 & -1_{g_2+g_4+g_6} \end{bmatrix}

Y = \lambda \begin{bmatrix}
1_{g_1+g_3+g_5} & 0 \\ 0 & -1_{g_2+g_4+g_6} \end{bmatrix} B^{-1}
\begin{bmatrix} 1_{g_1+g_4} & 0 & 0 \\ 0 & \rho^2 1_{g_2+g_5} & 0 \\ 0 &
0 & \rho 1_{g_3+g_6} \end{bmatrix} B

give a solution of size
n to the braid relation. Moreover, such a solution can be simple only if
the following numerical relations are satisfied

g_i \leq g_{i-1} + g_{i+1}

where indices are viewed
modulo 6. In fact, if these conditions are satisfied then a sufficiently
general representation of Q does determine a simple solution in \mathbf{rep}~B_3 and conversely, any sufficiently general simple n
size solution of the braid relation can be conjugated to one of the
above form. Here, by sufficiently general we mean a Zariski open (hence
dense) subset.

That is, for all integers n we have constructed
nearly all (meaning a dense subset) simple solutions to the braid
relation. As to the classification problem, if we have representants of
simple \beta-dimensional representations of the quiver Q, then the corresponding
solutions (X,Y) of
the braid relation represent different orbits (up to finite overlap
coming from the fact that our linearizations only give an analytic
isomorphism, or in algebraic terms, an etale map). Such representants
can be constructed for low dimensional \beta.
Finally, our approach also indicates why the classification of
braid-relation solutions of size \leq 5 is
easier : from size 6 on there are new classes of simple
Q-representations given by going round the whole six-cycle!

Published in featured

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.