Skip to content →

Tag: topology

noncommutative topology (1)

A couple of days ago Ars Mathematica had a post Cuntz on noncommutative topology pointing to a (new, for me) paper by Joachim Cuntz

A couple of years ago, the Notices of the AMS featured an article on noncommutative geometry a la Connes: Quantum Spaces and Their Noncommutative Topology by Joachim Cuntz. The hallmark of this approach is the heavy reliance on K theory. The first few pages of the article are fairly elementary (and full of intriguing pictures), before the K theory takes over.

A few comments are in order. To begin, the paper is **not** really about noncommutative geometry a la Connes, but rather about noncommutative geometry a la Cuntz&Quillen (based on quasi-free algebras) or, equivalently, a la Kontsevich (formally smooth algebras) or if I may be so bold a la moi (qurves).

About the **intruiging pictures** : it seems to be a recent trend in noncommutative geometry research papers to include meaningless pictures to lure the attention of the reader. But, unlike aberrations such as the recent pastiche by Alain Connes and Mathilde Marcolli A Walk in the Noncommutative Garden, Cuntz is honest about their true meaning

I am indebted to my sons, Nicolas and Michael,
for the illustrations to the examples above. Since
these pictures have no technical meaning, they
are only meant to provide a kind of suggestive
visualization of the corresponding quantum spaces.

As one of these pictures made it to the cover of the **Notices** an explanation was included by the cover-editor

About the Cover :

The image on this month’s cover arose from
Joachim Cuntz’s effort to render into visible art
his own internal vision of a noncommutative
torus, an object otherwise quite abstract. His
original idea was then implemented by his son
Michael in a program written in Pascal. More
explicitly, he says that the construction started
out with a triangle in a square, then translated
the triangle by integers times a unit along a line
with irrational slope; plotted the images thus
obtained in a periodic manner; and stopped
just before the figure started to seem cluttered.
Many mathematicians carry around inside
their heads mental images of the abstractions
they work with, and manipulate these objects
somehow in conformity with their mental imagery. They probably also make aesthetic judgements of the value of their work according to
the visual qualities of the images. These presumably common phenomena remain a rarely
explored domain in either art or psychology.

—Bill Casselman(

There can be no technical meaning to the pictures as in the Connes and Cuntz&Quillen approach there is only a noncommutative algebra and _not_ an underlying geometric space, so there is no topology, let alone a noncommutative topology. Of course, I do understand why Cuntz&others name it as such. They view the noncommutative algebra as the ring of functions on some virtual noncommutative space and they compute topological invariants (such as K-groups) of the algebras and interprete them as information about the noncommutative topology of these virtual and unspecified spaces.

Still, it is perfectly possible to associate to a qurve (aka quasi-free algebra or formally smooth algebra) a genuine noncommutative topological space. In this series of posts I’ll explain the little I know of the history of this topic, the thing I posted about it a couple of years ago, why I abandoned the project and the changes I made to it since and the applications I have in mind, both to new problems (such as the birational_classification of qurves) as well as classical problems (such as rationality problems for $PGL_n $ quotient spaces).

Although others have tried to define noncommutative topologies before, I learned about them from Fred Van Oystaeyen. Fred spend the better part of his career constructing structure sheaves associated to noncommutative algebras, mainly to prime Noetherian algebras (the algebras of preference for the majority of non-commutative algebraists). So, suppose you have an ordinary (meaning, the usual commutative definition) topological space X associated to this algebra R, he wants to define an algebra of sections on every open subset $X(\sigma) $ by taking a suitable localization of the algebra $Q_{\sigma}(R) $. This localization is taken with respect to a suitable filter of left ideals $\mathcal{L}(\sigma) $ of R and is defined to be the subalgebra of the classiocal quotient ring $Q(R) $ (which exists because $R$ is prime Noetherian in which case it is a simple Artinian algebra)

$Q_{\sigma}(R) = { q \in Q(R)~|~\exists L \in \mathcal{L}(\sigma)~:~L q \subset R } $

(so these localizations are generalizations of the usual Ore-type rings of fractions). But now we come to an essential point : if we want to glue this rings of sections together on an intersection $X(\sigma) \cap X(\tau) $ we want to do this by ‘localizing further’. However, there are two ways to do this, either considering $~Q_{\sigma}(Q_{\tau}(R)) $ or considering $Q_{\tau}(Q_{\sigma}(R)) $ and these two algebras are only the same if we impose fairly heavy restrictions on the filters (or on the algebra) such as being compatible.

As this gluing property is essential to get a sheaf of noncommutative algebras we seem to get stuck in the general (non compatible) case. Fred’s way out was to make a distinction between the intersection $X_{\sigma} \cap X_{\tau} $ (on which he put the former ring as its ring of sections) and the intersection $X_{\tau} \cap X_{\sigma} $ (on which he puts the latter one). So, the crucial new ingredient in a noncommutative topology is that the order of intersections of opens matter !!!

Of course, this is just the germ of an idea. He then went on to properly define what a noncommutative topology (and even more generally a noncommutative Grothendieck topology) should be by using this localization-example as guidance. I will not state the precise definition here (as I will have to change it slightly later on) but early version of it can be found in the Antwerp Ph.D. thesis by Luc Willaert (1995) and in Fred’s book Algebraic geometry for associative algebras.

Although _qurves_ are decidedly non-Noetherian (apart from trivial cases), one can use Fred’s idea to associate a noncommutative topological space to a qurve as I will explain next time. The quick and impatient may already sneak at my old note a non-commutative topology on rep A but please bear in mind that I changed my mind since on several issues…

Leave a Comment

B for bricks

Last time we
argued that a noncommutative variety might be an _aggregate_
which locally is of the form $\mathbf{rep}~A$ for some affine (possibly
non-commutative) $C$-algebra $A$. However, we didn't specify what we
meant by 'locally' as we didn't define a topology on
$\mathbf{rep}~A$, let alone on an arbitrary aggregate. Today we will start
the construction of a truly _non-commutative topology_ on
Here is the basic idea : we start with a thick
subset of finite dimensional representations on which we have a natural
(ordinary) topology and then we extend this to a non-commutativce
topology on the whole of $\mathbf{rep}~A$ using extensions. The impatient
can have a look at my old note A noncommutative
topology on rep A
but note that we will modify the construction here
in two essential ways.
In that note we took $\mathbf{simp}~A$, the
set of all fnite dimensional simple representations, as thick subset
equipped with the induced Zariski topology on the prime spectrum
$\mathbf{spec}~A$. However, this topology doesn't behave well with
respect to the gluings we have in mind so we will extend $\mathbf{simp}~A$

Leave a Comment

A for aggregates

Let us
begin with a simple enough question : what are the points of a
non-commutative variety? Anyone? Probably you\’d say something like :
standard algebra-geometry yoga tells us that we should associate to a
non-commutative algebra $A$ on object, say $X_A$ and an arbitrary
variety is then build from \’gluing\’ such things together. Ok, but what
is $X_A$? Commutative tradition whispers $X_A=\mathbf{spec}~A$ the
[prime spectrum][1] of $A$, that is, the set of all twosided prime
ideals $P$ (that is, if $aAb \subset P$ then either $a \in P$ or $b \in
P$) and \’points\’ of $\mathbf{spec}~A$ would then correspond to
_maximal_ twosided ideals. The good news is that in this set-up, the
point-set comes equipped with a natural topology, the [Zariski
topology][2]. The bad news is that the prime spectrum is rarely
functorial in the noncommutative world. That is, if $\phi~:~A
\rightarrow B$ is an algebra morphism then $\phi^{-1}(P)$ for $P \in
\mathbf{spec}~B$ is not always a prime ideal of $A$. For example, take
$\phi$ the inclusion map $\begin{bmatrix} C[x] & C[x] \\ (x) & C[x]
\end{bmatrix} \subset \begin{bmatrix} C[x] & C[x] \\ C[x] & C[x]
\end{bmatrix}$ and $P$ the prime ideal $\begin{bmatrix} (x) & (x) \\ (x)
& (x) \end{bmatrix}$ then $P Cap \begin{bmatrix} C[x] & C[x] \\ (x) &
C[x] \end{bmatrix} = P$ but the corresponding quotient is
$\begin{bmatrix} C & C \\ 0 & C \end{bmatrix}$ which is not a prime
algebra so $\phi^{-1}(P)$ is not a prime ideal of the smaller algebra.
Failing this, let us take for $X_A$ something which obviously is
functorial and worry about topologies later. Take $X_A = \mathbf{rep}~A$
the set of all finite dimensional representations of $A$, that is
$\mathbf{rep}~A = \bigsqcup_n \mathbf{rep}_n~A$ where $\mathbf{rep}_n~A
= \{ Chi~:~A \rightarrow M_n(C)~\}$ with $Chi$ an algebra morphism. Now,
for any algebra morphism $\phi~:~A \rightarrow B$ there is an obvious
map $\mathbf{rep}~B \rightarrow \mathbf{rep}~A$ sending $Chi \mapsto Chi
Circ \phi$. Alernatively, $\mathbf{rep}_n~A$ is the set of all
$n$-dimensional left $A$-modules $M_{Chi} = C^n_{Chi}$ with $a.m =
Chi(m)m$. As such, $\mathbf{rep}~A$ is not merely a set but a
$C$-_category_, that is, all objects are $C$-vectorspaces and all
morphisms $Hom(M,N)$ are $C$-vectorspaces (the left $A$-module
morphisms). Moreover, it is an _additive_ category, that is if
$Chi,\psi$ are representations then we also have a direct sum
representation $Chi \oplus \psi$ defined by $a \mapsto \begin{bmatrix}
Chi(a) & 0 \\ 0 & \psi(a) \end{bmatrix}$. Returning at the task at
hand let us declare a _non-commutative variety_ $X$ to be (1) _an
additive_ $C$-_category_ which \’locally\’ looks like $\mathbf{rep}~A$
for some non-commutative algebra $A$ (even if we do not know at the
momemt what we mean by locally as we do not have defined a topology,
yet). Let is call objects of teh category $X$ the \’points\’ of our
variety and $X$ being additive allows us to speak of _indecomposable_
points (that is, those objects that cannot be written as a direct sum of
non-zero objects). By the local description of $X$ an indecomposable
point corresponds to an indecomposable representation of a
non-commutative algebra and as such has a local endomorphism algebra
(that is, all non-invertible endomorphisms form a twosided ideal). But
if we have this property for all indecomposable points,our category $X$
will be a Krull-Schmidt category so it is natural to impose also the
condition (2) : every point of $X$ can be decomposed uniquely into a
finite direct sum of indecomposable points. Further, as the space of
left $A$-module morphisms between two finite dimensional modules is
clearly finite dimensional we have also the following strong finiteness
condition (3) : For all points $x,y \in X$ the space of morphisms
$Hom(x,y)$ is a finite dimensional $C$-vectorspace. In their book
[Representations of finite-dimensional algebras][3], Peter Gabriel and
Andrei V. Roiter call an additive category such that all endomorphism
algebras of indecomposable objects are local algebras and such that all
morphism spaces are finite dimensional an _aggregate_. So, we have a
first tentative answer to our question **the points of a
non-commutative variety are the objects of an aggregate** Clearly, as
$\mathbf{rep}~A$ has stronger properties like being an _Abelian
category_ (that is, morphisms allow kernels and cokernels) it might also
be natural to replace \’aggregate\’ by \’Abelian Krull-Schmidt category
with finite dimensional homs\’ but if Mr. Abelian Category himself finds
the generalization to aggregates useful I\’m not going to argue about
this. Are all aggregates of the form $\mathbf{rep}~A$ or are there
other interesting examples? A motivating commutative example is : the
category of all coherent modules $Coh(Y)$ on a _projective_ variety $Y$
form an aggegate giving us a mental picture of what we might expect of a
non-commutative variety. Clearly, the above tentative answer cannot be
the full story as we haven\’t included the topological condition of
being locally of the form $\mathbf{rep}~A$ yet, but we will do that in
the next episode _B for Bricks_. [1]: [2]: [3]:


a noncommutative Grothendieck topology

We have seen that a non-commutative $l$-point is an
algebra$P=S_1 \\oplus … \\oplus S_k$with each $S_i$ a simple
finite dimensional $l$-algebra with center $L_i$ which is a separable
extension of $l$. The centers of these non-commutative points (that is
the algebras $L_1 \\oplus … \\oplus L_k$) are the open sets of a
Grothendieck-topology on
$l$. To define it properly, let $L$ be the separable closure of $l$
and let $G=Gal(L/l)$ be the so called absolute
Galois group. Consider the
category with objects the finite $G$-sets, that is : finite
sets with an action of $G$, and with morphisms the $G$-equivariant
set-maps, that is: maps respecting the group action. For each object
$V$ we call a finite collection of morphisms $Vi \\mapsto V$ a
cover of $V$ if the images of the finite number of $Vi$ is all
of $V$. Let $Cov$ be the set of all covers of finite $G$-sets, then
this is an example of a Grothendieck-topology as it satisfies
the following three conditions :

(GT1) : If
$W \\mapsto V$ is an isomorphism of $G$-sets, then $\\{ W \\mapsto
V \\}$ is an element of $Cov$.

(GT2) : If $\\{ Vi \\mapsto
V \\}$ is in $Cov$ and if for every i also $\\{ Wij \\mapsto Vi \\}$
is in $Cov$, then the collection $\\{ Wij \\mapsto V \\}$ is in

(GT3) : If $\\{ fi : Vi \\mapsto V \\}$ is in $Cov$
and $g : W \\mapsto V$ is a $G$-morphism, then the fibered
$Vi x_V W = \\{ (vi,w) in Vi x W : fi(vi)=g(w) \\}$is
again a $G$-set and the collection $\\{ Vi x_V W \\mapsto V \\}$
is in $Cov$.

Now, finite $G$-sets are just
commutative separable $l$-algebras (that is,
commutative $l$-points). To see this, decompose a
finite $G$-set into its finitely many orbits $Oj$ and let $Hj$ be the
stabilizer subgroup of an element in $Oj$, then $Hj$ is of finite
index in $G$ and the fixed field $L^Hj$ is a finite dimensional
separable field extension of $l$. So, a finite $G$-set $V$
corresponds uniquely to a separable $l$-algebra $S(V)$. Moreover, a
finite cover $\\{ W \\mapsto V \\}$ is the same thing as saying
that $S(W)$ is a commutative separable $S(V)$-algebra. Thus,
the Grothendieck topology of finite $G$-sets and their covers
is anti-equivalent to the category of commutative separable
$l$-algebras and their separable commutative extensions.

This raises the natural question : what happens if we extend the
category to all separable $l$-algebras, that is, the category of
non-commutative $l$-points, do we still obtain something like a
Grothendieck topology? Or do we get something like a
non-commutative Grothendieck topology as defined by Fred Van
Oystaeyen (essentially replacing the axiom (GT 3) by a left and right
version). And if so, what are the non-commutative covers?
Clearly, if $S(V)$ is a commutative separable $l$-algebras, we expect
these non-commutative covers to be the set of all separable
$S(V)$-algebras, but what are they if $S$ is itself non-commutative,
that is, if $S$ is a non-commutative $l$-point?

Leave a Comment

antwerp sprouts

game of sprouts is a two-person game invented by John Conway and Michael Paterson in 1967 (for some
historical comments visit the encyclopedia). You just need pen and paper to
play it. Here are the rules : Two players, Left and Right, alternate
moves until no more moves are possible. In the normal game, the last
person to move is the winner. In misere play, the last person to move is
the loser. The starting position is some number of small circles called
“spots”. A move consists of drawing a new spot g and then drawing two
lines, in the loose sense, each terminating at one end at spot g and at
the other end at some other spot. (The two lines can go to different
spots or the same spot, subject to the following conditions.) The lines
drawn cannot touch or cross any line or spot along the way. Also, no
more than three lines can terminate at any spot. A spot with three lines
attached is said to be “dead”, since it cannot facilitate any further

You can play sprouts online using this Java applet.
There is also an ongoing discussion about sprouts on the geometry math forum. Probably the most complete
information can be found at the world game
of sprouts association
. The analysis of the game involves some nice
topology (the Euler number) and as the options for Left and Right are
the same at each position it is an impartial game and the outcome
depends on counting arguments. There is also a (joke) variation on the
game called Brussels sprouts (although some people seem to miss the point

Some years ago I invented some variations
on sprouts making it into a partizan game (that is, at a given
position, Left and Right have different legal moves). Here are the rules

Cold Antwerp Sprouts : We start with n White
dots. Left is allowed to connect two White dots or a White and bLue dot
or two bLue dots and must draw an additional Red dot on the connecting
line. Right is allowed to connect two White dots, a Red and a White dot
or two Red dots and must draw an additional bLue dot on the connecting

Hot Antwerp Sprouts : We start with n
White dots. Left is allowed to connect two White dots or a White and
bLue dot or two bLue dots and must draw an additional bLue dot on the
connecting line. Right is allowed to connect two White dots, a Red and a
White dot or two Red dots and must draw an additional Red dot on the
connecting line.

Although the rules look pretty
similar, the analysis of these two games in entirely different. On
february 11th I’ll give a talk on this as an example in
Combinatorial Game Theory. I will show that Cold Antwerp Sprouts
is very similar to the game of COL, whereas Hot Antwerp Sprouts resembles SNORT.

Leave a Comment