Tag: simples

  • Art and the absolute point

    In his paper Cyclotomy and analytic geometry over $\mathbb{F}_1$ Yuri I. Manin sketches and compares four approaches to the definition of a geometry over $\mathbb{F}_1$, the elusive field with one element. He writes : “Preparing a colloquium talk in Paris, I have succumbed to the temptation to associate them with some dominant trends in the […]

  • The odd knights of the round table

    Here’s a tiny problem illustrating our limited knowledge of finite fields : “Imagine an infinite queue of Knights ${ K_1,K_2,K_3,\ldots } $, waiting to be seated at the unit-circular table. The master of ceremony (that is, you) must give Knights $K_a $ and $K_b $ a place at an odd root of unity, say $\omega_a…

  • Pollock your own noncommutative space

    I really like Matilde Marcolli’s idea to use some of Jackson Pollock’s paintings as metaphors for noncommutative spaces. In her talk she used this painting and refered to it (as did I in my post) as : Jackson Pollock “Untitled N.3”. Before someone writes a post ‘The Pollock noncommutative space hoax’ (similar to my own…

  • On2 : Conway’s nim-arithmetics

    Conway’s nim-arithmetic on ordinal numbers leads to many surprising identities, for example who would have thought that the third power of the first infinite ordinal equals 2…

  • Andre Weil on the Riemann hypothesis

    Some quotes of Andre Weil on the Riemann hypothesis.

  • Arnold’s trinities version 2.0

    Arnold has written a follow-up to the paper mentioned last time called “Polymathematics : is mathematics a single science or a set of arts?” (or here for a (huge) PDF-conversion). On page 8 of that paper is a nice summary of his 25 trinities : I learned of this newer paper from a comment by…

  • Looking for F_un

    There are only a handful of human activities where one goes to extraordinary lengths to keep a dream alive, in spite of overwhelming evidence : religion, theoretical physics, supporting the Belgian football team and … mathematics. In recent years several people spend a lot of energy looking for properties of an elusive object : the…

  • Farey symbols of sporadic groups

    John Conway once wrote : There are almost as many different constructions of $M_{24} $ as there have been mathematicians interested in that most remarkable of all finite groups. In the inguanodon post Ive added yet another construction of the Mathieu groups $M_{12} $ and $M_{24} $ starting from (half of) the Farey sequences and…

  • BC stands for Bi-Crystalline graded

    Towards the end of the Bost-Connes for ringtheorists post I freaked-out because I realized that the commutation morphisms with the $X_n^* $ were given by non-unital algebra maps. I failed to notice the obvious, that algebras such as $\mathbb{Q}[\mathbb{Q}/\mathbb{Z}] $ have plenty of idempotents and that this mysterious ‘non-unital’ morphism was nothing else but multiplication…

  • Weil descent

    A classic Andre Weil-tale is his narrow escape from being shot as a Russian spy The war was a disaster for Weil who was a conscientious objector and so wished to avoid military service. He fled to Finland, to visit Rolf Nevanlinna, as soon as war was declared. This was an attempt to avoid being…