Skip to content →

Tag: representations

representation spaces

previous part of this sequence was [quiver representations][1]. When $A$
is a formally smooth algebra, we have an infinite family of smooth
affine varieties $\mathbf{rep}_n~A$, the varieties of finite dimensional
representations. On $\mathbf{rep}_n~A$ there is a basechange action of
$GL_n$ and we are really interested in _isomorphism classes_ of
representations, that is, orbits under this action. Mind you, an orbit
space does not always exist due to the erxistence of non-closed orbits
so one often has to restrict to suitable representations of $A$ for
which it _is_ possible to construct an orbit-space. But first, let us
give a motivating example to illustrate the fact that many interesting
classification problems can be translated into the setting of this
non-commutative algebraic geometry. Let $X$ be a smooth projective
curve of genus $g$ (that is, a Riemann surface with $g$ holes). A
classical object of study is $M = M_X^{ss}(0,n)$ the _moduli space
of semi-stable vectorbundles on $X$ of rank $n$ and degree $0$_. This
space has an open subset (corresponding to the _stable_ vectorbundles)
which classify the isomorphism classes of unitary simple representations
$\pi_1(X) = \frac{\langle x_1,\ldots,x_g,y_1,\ldots,y_g
\rangle}{([x_1,y_1] \ldots [x_g,y_g])} \rightarrow U_n(\mathbb{C})$ of the
fundamental group of $X$. Let $Y$ be an affine open subset of the
projective curve $X$, then we have the formally smooth algebra $A =
\begin{bmatrix} \mathbb{C} & 0 \\ \mathbb{C}[Y] & \mathbb{C}[Y] \end{bmatrix}$ As $A$ has two
orthogonal idempotents, its representation varieties decompose into
connected components according to dimension vectors $\mathbf{rep}_m~A
= \bigsqcup_{p+q=m} \mathbf{rep}_{(p,q)}~A$ all of which are smooth
varieties. As mentioned before it is not possible to construct a
variety classifying the orbits in one of these components, but there are
two methods to approximate the orbit space. The first one is the
_algebraic quotient variety_ of which the coordinate ring is the ring of
invariant functions. In this case one merely recovers for this quotient
$\mathbf{rep}_{(p,q)}~A // GL_{p+q} = S^q(Y)$ the symmetric product
of $Y$. A better approximation is the _moduli space of semi-stable
representations_ which is an algebraic quotient of the open subset of
all representations having no subrepresentation of dimension vector
$(u,v)$ such that $-uq+vp < 0$ (that is, cover this open set by $GL_{p+q}$ stable affine opens and construct for each the algebraic quotient and glue them together). Denote this moduli space by $M_{(p,q)}(A,\theta)$. It is an unpublished result of Aidan Schofield that the moduli spaces of semi-stable vectorbundles are birational equivalent to specific ones of these moduli spaces $M_X^{ss}(0,n)~\sim^{bir}~M_{(n,gn)}(A,\theta)$ Rather than studying the moduli spaces of semi-stable vectorbundles $M^{ss}_X(0,n)$ on the curve $X$ one at a time for each rank $n$, non-commutative algebraic geometry allows us (via the translation to the formally smooth algebra $A$) to obtain common features on all these moduli spaces and hence to study $\bigsqcup_n~M^{ss}_X(0,n)$ the moduli space of all semi-stable bundles on $X$ of degree zero (but of varying ranks). There exists a procedure to associate to any formally smooth algebra $A$ a quiver $Q_A$ (playing roughly the role of the tangent space to the manifold determined by $A$). If we do this for the algebra described above we find the quiver $\xymatrix{\vtx{} \ar[rr] & & \vtx{} \ar@(ur,dr)}$ and hence the representation theory of this quiver plays an important role in studying the geometric properties of the moduli spaces $M^{ss}_X(0,n)$, for instance it allows to determine the smooth loci of these varieties. Move on the the [next part. [1]:

Leave a Comment

path algebras

The previous post can be found [here][1].
Pierre Gabriel invented a lot of new notation (see his book [Representations of finite dimensional algebras][2] for a rather extreme case) and is responsible for calling a directed graph a quiver. For example,

$\xymatrix{\vtx{} \ar@/^/[rr] & & \vtx{} \ar@(u,ur) \ar@(d,dr) \ar@/^/[ll]} $

is a quiver. Note than it is allowed to have multiple arrows between vertices, as well as loops in vertices. For us it will be important that a quiver $Q $ depicts how to compute in a certain non-commutative algebra : the path algebra $\mathbb{C} Q $. If the quiver has $k $ vertices and $l $ arrows (including loops) then the path algebra $\mathbb{C} Q $ is a subalgebra of the full $k \times k $ matrix-algebra over the free algebra in $l $ non-commuting variables

$\mathbb{C} Q \subset M_k(\mathbb{C} \langle x_1,\ldots,x_l \rangle) $

Under this map, a vertex $v_i $ is mapped to the basis $i $-th diagonal matrix-idempotent and an arrow

$\xymatrix{\vtx{v_i} \ar[rr]^{x_a} & & \vtx{v_j}} $

is mapped to the matrix having all its entries zero except the $(j,i) $-entry which is equal to $x_a $. That is, in our main example

$\xymatrix{\vtx{e} \ar@/^/[rr]^a & & \vtx{f} \ar@(u,ur)^x \ar@(d,dr)_y \ar@/^/[ll]^b} $

the corresponding path algebra is the subalgebra of $M_2(\mathbb{C} \langle a,b,x,y \rangle) $ generated by the matrices

$e \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} $ $ f \mapsto \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} $

$a \mapsto \begin{bmatrix} 0 & 0 \\ a & 0 \end{bmatrix} $ $b \mapsto \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} $

$x \mapsto \begin{bmatrix} 0 & 0 \\ 0 & x \end{bmatrix} $ $y \mapsto \begin{bmatrix} 0 & 0 \\ 0 & y \end{bmatrix} $

The name \’path algebra\’ comes from the fact that the subspace of $\mathbb{C} Q $ at the $(j,i) $-place is the vectorspace spanned by all paths in the quiver starting at vertex $v_i $ and ending in vertex $v_j $. For an easier and concrete example of a path algebra. consider the quiver

$\xymatrix{\vtx{e} \ar[rr]^a & & \vtx{f} \ar@(ur,dr)^x} $

and verify that in this case, the path algebra is just

$\mathbb{C} Q = \begin{bmatrix} \mathbb{C} & 0 \\ \mathbb{C}[x]a & \mathbb{C}[x] \end{bmatrix} $

Observe that we write and read paths in the quiver from right to left. The reason for this strange convention is that later we will be interested in left-modules rather than right-modules. Right-minder people can go for the more natural left to right convention for writing paths.
Why are path algebras of quivers of interest in non-commutative geometry? Well, to begin they are examples of _formally smooth algebras_ (some say _quasi-free algebras_, I just call them _qurves_). These algebras were introduced and studied by Joachim Cuntz and Daniel Quillen and they are precisely the algebras allowing a good theory of non-commutative differential forms.
So you should think of formally smooth algebras as being non-commutative manifolds and under this analogy path algebras of quivers correspond to _affine spaces_. That is, one expects path algebras of quivers to turn up in two instances : (1) given a non-commutative manifold (aka formally smooth algebra) it must be \’embedded\’ in some non-commutative affine space (aka path algebra of a quiver) and (2) given a non-commutative manifold, the \’tangent spaces\’ should be determined by path algebras of quivers.
The first fact is easy enough to prove, every affine $\mathbb{C} $-algebra is an epimorphic image of a free algebra in say $l $ generators, which is just the path algebra of the _bouquet quiver_ having $l $ loops

$\xymatrix{\vtx{} \ar@(dl,l)^{x_1} \ar@(l,ul)^{x_2} \ar@(ur,r)^{x_i} \ar@(r,dr)^{x_l}} $

The second statement requires more work. For a first attempt to clarify this you can consult my preprint [Qurves and quivers][3] but I\’ll come back to this in another post. For now, just take my word for it : if formally smooth algebras are the non-commutative analogon of manifolds then path algebras of quivers are the non-commutative version of affine spaces!


Leave a Comment

driven by ambition and sloth

Here’s a part of yesterday’s post by bitch ph.d. :

But first of all I have to figure out what the hell I’m going to teach my graduate students this semester, and really more to the point, what I am not going to bother to try to cram into this class just because it’s my first graduate class and I’m feeling like teaching everything I know in one semester is a realistic and desireable possibility. Yes! Here it all is! Everything I have ever learned! Thank you, and goodnight!

Ah, the perpetual motion machine of last-minute course planning, driven by ambition and sloth!.

I’ve had similar experiences, even with undergraduate courses (in Belgium there is no fixed curriculum so the person teaching the course is responsible for its contents). If you compare the stuff I hoped to teach when I started out with the courses I’ll be giving in a few weeks, you would be more than disappointed.
The first time I taught _differential geometry 1_ (a third year course) I did include in the syllabus everything needed to culminate in an outline of Donaldson’s result on exotic structures on $\mathbb{R}^4 $ and Connes’ non-commutative GUT-model (If you want to have a good laugh, here is the set of notes). As far as I remember I got as far as classifying compact surfaces!
A similar story for the _Lie theory_ course. Until last year this was sort of an introduction to geometric invariant theory : quotient variety of conjugacy classes of matrices, moduli space of linear dynamical systems, Hilbert schemes and the classification of $GL_n $-representations (again, smile! here is the set of notes).
Compared to these (over)ambitious courses, next year’s courses are lazy sunday-afternoon walks! What made me change my mind? I learned the hard way something already known to the ancient Greeks : mathematics does not allow short-cuts, you cannot expect students to run before they can walk. Giving an over-ambitious course doesn’t offer the students a quicker road to research, but it may result in a burn-out before they get even started!

Leave a Comment

the one quiver for GL(2,Z)

Before the vacation I finished a rewrite of the One quiver to rule them
note. The main point of that note was to associate to any qurve
$A$ (formerly known as a quasi-free algebra in the terminology of
Cuntz-Quillen or a formally smooth algebra in the terminology of
Kontsevich-Rosenberg) a quiver $Q(A)$ and a dimension vector $\alpha_A$
such that $A$ is etale isomorphic (in a yet to be defined
non-commutative etale toplogy) to a ring Morita equivalent to the path
algebra $lQ(A)$ where the Morita setting is determined by the dimension
vector $\alpha_A$. These “one-quiver settings” are easy to
work out for a group algebra $lG$ if $G$ is the amalgamated free product
of finite groups $G = H_1 \bigstar_H H_2$.

Here is how to do
this : construct a bipartite quiver with the left vertices corresponding
to the irreducible representations of $H_1$, say ${ S_1, .. ,S_k }$ of
dimensions $(d_1, .. ,d_k)$ and the right vertices corresponding to the
irreducible representations of $H_2$, ${ T_1, .. ,T_l }$ of dimensions
$(e_1, .. ,e_l)$. The number of arrows from the $i$-th left vertex to
the $j$-th right vertex is given by the dimension of $Hom_H(S_i,T_j)$
This is the quiver I call the Zariski quiver for $G$ as the finite
dimensional $G$-representations correspond to $\theta$-semistable
representations of this quiver for the stability structure $\theta=(d_1,
.. ,d_k ; -e_1, .. ,-e_l)$. The one-quiver $Q(G)$ has vertices
corresponding to the minimal $\theta$-stable dimension vectors (say
$\alpha,\beta, .. $of the Zariski quiver and with the number of arrows
between two such vertices determined by $\delta_{\alpha
\beta}-\chi(\alpha,\beta)$ where $\chi$ is the Euler form of the Zariski
quiver. In the old note I've included the example of the projective
modular group $PSL_2(Z) = Z_2 \bigstar Z_3$ (which can easily be
generalized to the modular group $SL_2(Z) = Z_4 \bigstar_{Z_2} Z_6$)
which turns out to be the double of the extended Dynkin quiver
$\tilde{A_5}$. In the rewrite I've also included an example of a
congruence subgroup $\Gamma_0(2) = Z_4 \bigstar_{Z_2}^{HNN}$ which is an
HNN-extension. These are somehow the classical examples of interesting
amalgamated (HNN) groups and one would like to have plenty of other
interesting examples. Yesterday I read a paper by Karen Vogtmann called

Automorphisms of free groups and outer space
in which I encountered
an amalgamated product decomposition for $GL_2(Z) = D_8 \bigstar_{Z_2
\times Z_2} (S_3 \times Z_2)$where $D_8$ is the diheder group of 8
elements. When I got back from vacation I found a reference to this
result in my mail-box from Warren Dicks. Theorem 23.1, p. 82, in Heiner
Zieschang, Finite Groups of Mapping Classes of Surfaces, LNM 875,
Springer, Berlin, 1981.

I worked out the one-quiver and it has
the somewhat strange form depicted above. It is perfectly possible that
I made mistakes so if you find another result, please let me know.

added material (febr 2007) : mistakes were made and
the correct one quiver can be found elsewhere on this blog.

Leave a Comment

the necklace Lie bialgebra

Today Travis Schedler posted a nice paper on the arXiv
“A Hopf algebra quantizing a necklace Lie algebra
canonically associated to a quiver”
. I heard the first time about
necklace Lie algebras from Jacques Alev who had heard a talk by Kirillov
who constructed an infinite dimensional Lie algebra on the monomials in
two non-commuting variables X and Y (upto cyclic permutation of the
word, whence ‘necklace’). Later I learned that this Lie algebra was
defined by Maxim Kontsevich for the free algebra in an even number of
variables in his “Formal (non)commutative symplectic geometry” paper
(published in the Gelfand seminar proceedings 1993). Later I extended
this construction together with Raf Bocklandt in “Necklace Lie algebras and non-commutative symplectic
(see also Victor Ginzburg’s paper “Non-commutative symplectic geometry, quiver
varieties and operads”
. Here, the necklace Lie algebra appears from
(relative) non-commutative differential forms on a symmetric quiver and
its main purpose is to define invariant symplectic flows on quotient
varieties of representations of the quiver.
Travis Schedler
extends this construction in two important ways. First, he shows that
the Lie-algebra is really a Lie-bialgebra hence there is some sort of
group-like object acting on all the representation varieties. Even more
impoprtant, he is able to define a quantization of this structure
defining a Hopf algebra. In this quantization, necklaces play a role
similar to that of (projected) flat links in the plane whereas their
quantization (necklaces with a height) are similar to genuine links in
Sadly, at the moment there is no known natural
representations for this Hopf algebra playing a similar role to the
quotient varieties of quiver-varieties in the case of the necklace Lie

Leave a Comment

more noncommutative manifolds

it be that one forgets an entire proof because the result doesn’t seem
important or relevant at the time? It seems the only logical explanation
for what happened last week. Raf Bocklandt asked me whether a
classification was known of all group algebras l G which are
noncommutative manifolds (that is, which are formally smooth a la Kontsevich-Rosenberg or, equivalently, quasi-free
a la Cuntz-Quillen). I said I didn’t know the answer and that it looked
like a difficult problem but at the same time it was entirely clear to
me how to attack this problem, even which book I needed to have a look
at to get started. And, indeed, after a visit to the library borrowing
Warren Dicks
lecture notes in mathematics 790 “Groups, trees and projective
modules” and browsing through it for a few minutes I had the rough
outline of the classification. As the proof is basicly a two-liner I
might as well sketch it here.
If l G is quasi-free it
must be hereditary so the augmentation ideal must be a projective
module. But Martin Dunwoody proved that this is equivalent to
G being a group acting on a (usually infinite) tree with finite
group vertex-stabilizers all of its orders being invertible in the
basefield l. Hence, by Bass-Serre theory G is the
fundamental group of a graph of finite groups (all orders being units in
l) and using this structural result it is then not difficult to
show that the group algebra l G does indeed have the lifting
property for morphisms modulo nilpotent ideals and hence is
If l has characteristic zero (hence the
extra order conditions are void) one can invoke a result of Karrass
saying that quasi-freeness of l G is equivalent to G being
virtually free (that is, G has a free subgroup of finite
index). There are many interesting examples of virtually free groups.
One source are the discrete subgroups commensurable with SL(2,Z)
(among which all groups appearing in monstrous moonshine), another
source comes from the classification of rank two vectorbundles over
projective smooth curves over finite fields (see the later chapters of
Serre’s Trees). So
one can use non-commutative geometry to study the finite dimensional
representations of virtually free groups generalizing the approach with
Jan Adriaenssens in Non-commutative covers and the modular group (btw.
Jan claims that a revision of this paper will be available soon).
In order to avoid that I forget all of this once again, I’ve
written over the last couple of days a short note explaining what I know
of representations of virtually free groups (or more generally of
fundamental algebras of finite graphs of separable
l-algebras). I may (or may not) post this note on the arXiv in
the coming weeks. But, if you have a reason to be interested in this,
send me an email and I’ll send you a sneak preview.

Leave a Comment

projects in noncommutative geometry

I’ll start with the course Projects in non-commutative geometry
in our masterclass. The idea of this course (and its companion
Projects in non-commutative algebra run by Fred Van Oystaeyen) is
that students should make a small (original if possible) work, that may
eventually lead to a publication.
At this moment the students
have seen the following : definition and examples of quasi-free algebras
(aka formally smooth algebras, non-commutative curves), their
representation varieties, their connected component semigroup and the
Euler-form on it. Last week, Markus Reineke used all this in his mini-course
Rational points of varieties associated to quasi-free
. In it, Markus gave a method to compute (at least in
principle) the number of points of the non-commutative Hilbert
and the varieties of simple representations over a
finite field. Here, in principle means that Markus demands a lot of
knowledge in advance : the number of points of all connected components
of all representation schemes of the algebra as well as of its scalar
extensions over finite field extensions, together with the action of the
Galois group on them … Sadly, I do not know too many examples were all
this information is known (apart from path algebras of quivers).
Therefore, it seems like a good idea to run through Markus’
calculations in some specific examples were I think one can get all this
: free products of semi-simple algebras. The motivating examples
being the groupalgebra of the (projective) modular group
PSL(2,Z) = Z(2) * Z(3) and the free matrix-products $M(n,F_q) *
M(m,F_q)$. I will explain how one begins to compute things in these
examples and will also explain how to get the One
quiver to rule them all
in these cases. It would be interesting to
compare the calculations we will find with those corresponding to the
path algebra of this one quiver.
As Markus set the good
example of writing out his notes and posting them, I will try to do the
same for my previous two sessions on quasi-free algebras over the next
couple of weeks.

One Comment

noncommutative geometry 2

Again I
spend the whole morning preparing my talks for tomorrow in the master
class. Here is an outline of what I will cover :
– examples of
noncommutative points and curves. Grothendieck’s characterization of
commutative regular algebras by the lifting property and a proof that
this lifting property in the category alg of all l-algebras is
equivalent to being a noncommutative curve (using the construction of a
generic square-zero extension).
– definition of the affine
scheme rep(n,A) of all n-dimensional representations (as always,
l is still arbitrary) and a proof that these schemes are smooth
using the universal property of k(rep(n,A)) (via generic
– whereas rep(n,A) is smooth it is in general
a disjoint union of its irreducible components and one can use the
sum-map to define a semigroup structure on these components when
l is algebraically closed. I’ll give some examples of this
semigroup and outline how the construction can be extended over
arbitrary basefields (via a cocommutative coalgebra).

definition of the Euler-form on rep A, all finite dimensional
representations. Outline of the main steps involved in showing that the
Euler-form defines a bilinear form on the connected component semigroup
when l is algebraically closed (using Jordan-Holder sequences and
upper-semicontinuity results).

After tomorrow’s
lectures I hope you are prepared for the mini-course by Markus Reineke on non-commutative Hilbert schemes
next week.

Leave a Comment

connected component coalgebra

Never thought that I would ever consider Galois descent of semigroup
but in preparing for my talks for the master-class it
came about naturally. Let A be a formally smooth algebra
(sometimes called a quasi-free algebra, I prefer the terminology
noncommutative curve) over an arbitrary base-field k. What, if
anything, can be said about the connected components of the affine
k-schemes rep(n,A) of n-dimensional representations
of A? If k is algebraically closed, then one can put a
commutative semigroup structure on the connected components induced by
the sum map

rep(n,A) x rep(m,A) -> rep(n + m,A)   :  (M,N)
-> M + N

as introduced and studied by Kent
a long while ago. So what would be a natural substitute for
this if k is arbitrary? Well, define pi(n) to be the
maximal unramified sub k-algebra of k(rep(n,A)),
the coordinate ring of rep(n,A), then corresponding to the
sum-map above is a map

pi(n + m) -> pi(n) \\otimes

and these maps define on the graded

Pi(A) = pi(0) + pi(1) + pi(2) + ...

structure of a graded commutative k-coalgebra with

pi(n) -> sum(a + b=n) pi(a) \\otimes

The relevance of Pi(A) is that if we consider it
over the algebraic closure K of k we get the semigroup

K G  with  g -> sum(h.h\' = g) h \\otimes

where G is Morrison\’s connected component
semigroup. That is, Pi(A) is a k-form of this semigroup
coalgebra. Perhaps it is a good project for one of the students to work
this out in detail (and correct possible mistakes I made) and give some
concrete examples for formally smooth algebras A. If you know of
a reference on this, please let me know.

Leave a Comment

NOG master class

Yesterday I made reservations for lecture rooms to run the
master class on non-commutative geometry sponsored by the ESF-NOG project. We have a lecture room on
monday- and wednesday afternoon and friday the whole day which should be
enough. I will run two courses in the program : non-commutative
and projects in non-commutative geometry both 30
hours. I hope that Raf Bocklandt will do most of the work on the
Geometric invariant theory course so that my contribution to it
can be minimal. Here are the first ideas of topics I want to cover in my
courses. As always, all suggestions are wellcome (just add a

non-commutative geometry : As
I am running this course jointly with Markus Reineke and as Markus will give a
mini-course on his work on non-commutative Hilbert schemes, I will explain
the theory of formally smooth algebras. I will cover most of the
paper by Joachim Cuntz and Daniel Quillen “Algebra extensions and
nonsingularity”, Journal of AMS, v.8, no. 2, 1995, 251?289. Further,
I’ll do the first section of the paper by Alexander Rosenberg and Maxim Kontsevich,
Noncommutative smooth spaces“. Then, I will
explain some of my own work including the “One
quiver to rule them all
” paper and my recent attempts to classify
all formally smooth algebras up to non-commutative birational
equivalence. When dealing with the last topic I will explain some of Aidan Schofield‘s paper
Birational classification of moduli spaces of representations of quivers“.

projects in
non-commutative geometry
: This is one of the two courses (the other
being “projects in non-commutative algebra” run by Fred Van Oystaeyen)
for which the students have to write a paper so I will take as the topic
of my talks the application of non-commutative geometry (in particular
the theory of orders in central simple algebras) to the resolution of
commutative singularities and ask the students to carry out the detailed
analysis for one of the following important classes of examples :
quantum groups at roots of unity, deformed preprojective algebras or
symplectic reflexion algebras. I will explain in much more detail three talks I gave on the subject last fall in
Luminy. But I will begin with more background material on central simple
algebras and orders.

Leave a Comment