Skip to content →

Tag: noncommutative

Jason & David, the Ninja warriors of noncommutative geometry

SocialMention gives a rather accurate picture of the web-buzz on a specific topic. For this reason I check it irregularly to know what’s going on in noncommutative geometry, at least web-wise.

Yesterday, I noticed two new kids on the block : Jason and David. Their blogs have (so far ) 44 resp. 27 posts, this month alone. My first reaction was: respect!, until I glanced at their content…

David of E-Infinity

Noncommutative geometry has a deplorable track record when it comes to personality-cults and making extra-ordinary claims, but this site beats everything I’ve seen before. Its main mission is to spread the gospel according to E.N.

A characteristic quote :

“It was no doubt the intention of those well known internet thugs and parasites to distract us from science and derail us from our road. This was the brief given to them by you know who. Never the less we will attempt to give here what can only amount to a summary of the summary of what E. N. considers to be the philosophical background to his theory.”

Jason of the E.N. watch

The blog’s mission statement is to expose the said prophet E.N. as a charlatan.

The language used brings us back to the good(?!) old string-war days.

“This is amusing because E. N.’s sockpuppets go on and on about E. N. being a genius polymath with an expert grasp of science, art, history, philosophy and politics. E. N. Watch readers of course know that his knowledge in all areas comes primarily from mass-market popularizations.”

As long as the Connes support-blog and the Rosenberg support-blog remain silent and the Jasons and Davids of this world run the online ncg-show, it is probably better to drop the topic here.

One Comment

Grothendieck’s folly

Never a dull moment with Books Ngram Viewer. Pick your favorite topic(s) and try to explain and name valleys and peaks in the Ngram.

An example. I wanted to compare the relative impact of a couple of topics I love, algebraic geometry (blue), category theory (red), representation theory (green) and noncommutative geometry (the bit of yellow in the lower right hand corner…) from 1960 onwards.

I was surprised to find out that the first three topics were almost in the same impact-league, but then Ngram-viewing can be cruel when you’re biased …

Anyone having an explanation/name for the great depressions of 1982, 1993 and 1996?

On the positive side, what happened in 1988-89 or what caused the representation-peak in 1999, or the category-delirium in 2006?

So far, I’ve only been able to pinpoint a couple of events. My favorite being the red peak in 1973, which I’d like to christen “Grothendieck’s folly”.

2 Comments

Books Ngram for your upcoming parties

No christmas- or new-years family party without heated discussions. Often on quite silly topics.

For example, which late 19th-century bookcharacter turned out to be most influential in the 20th century? Dracula, from the 1897 novel by Irish author Bram Stoker or Sir Arthur Conan Doyle’s Sherlock Holmes who made his first appearance in 1887?

Well, this year you can spice up such futile discussions by going over to Google Labs Books Ngram Viewer, specify the time period of interest to you and the relevant search terms and in no time it spits back a graph comparing the number of books mentioning these terms.

Here’s the 20th-century graph for ‘Dracula’ (blue), compared to ‘Sherlock Holmes’ (red).

The verdict being that Sherlock was the more popular of the two for the better part of the century, but in the end the vampire bit the detective. Such graphs lead to lots of new questions, such as : why was Holmes so popular in the early 30ties? and in WW2? why did Dracula become popular in the late 90ties? etc. etc.

Clearly, once you’ve used Books Ngram it’s a dangerous time-waster. Below, the graphs in the time-frame 1980-2008 for Alain Connes (blue), noncommutative geometry (red), Hopf algebras (green) and quantum groups (yellow).

It illustrates the simultaneous rise and fall of both quantum groups and Hopf algebras, whereas the noncommutative geometry-graph follows that of Alain Connes with a delay of about 2 years. I’m sure you’ll find a good use for this splendid tool…

2 Comments

Langlands versus Connes

This is a belated response to a Math-Overflow exchange between Thomas Riepe and Chandan Singh Dalawat asking for a possible connection between Connes’ noncommutative geometry approach to the Riemann hypothesis and the Langlands program.

Here’s the punchline : a large chunk of the Connes-Marcolli book Noncommutative Geometry, Quantum Fields and Motives can be read as an exploration of the noncommutative boundary to the Langlands program (at least for $GL_1 $ and $GL_2 $ over the rationals $\mathbb{Q} $).

Recall that Langlands for $GL_1 $ over the rationals is the correspondence, given by the Artin reciprocity law, between on the one hand the abelianized absolute Galois group

$Gal(\overline{\mathbb{Q}}/\mathbb{Q})^{ab} = Gal(\mathbb{Q}(\mu_{\infty})/\mathbb{Q}) \simeq \hat{\mathbb{Z}}^* $

and on the other hand the connected components of the idele classes

$\mathbb{A}^{\ast}_{\mathbb{Q}}/\mathbb{Q}^{\ast} = \mathbb{R}^{\ast}_{+} \times \hat{\mathbb{Z}}^{\ast} $

The locally compact Abelian group of idele classes can be viewed as the nice locus of the horrible quotient space of adele classes $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}^{\ast} $. There is a well-defined map

$\mathbb{A}_{\mathbb{Q}}’/\mathbb{Q}^{\ast} \rightarrow \mathbb{R}_{+} \qquad (x_{\infty},x_2,x_3,\ldots) \mapsto | x_{\infty} | \prod | x_p |_p $

from the subset $\mathbb{A}_{\mathbb{Q}}’ $ consisting of adeles of which almost all terms belong to $\mathbb{Z}_p^{\ast} $. The inverse image of this map over $\mathbb{R}_+^{\ast} $ are precisely the idele classes $\mathbb{A}^{\ast}_{\mathbb{Q}}/\mathbb{Q}^{\ast} $. In this way one can view the adele classes as a closure, or ‘compactification’, of the idele classes.

This is somewhat reminiscent of extending the nice action of the modular group on the upper-half plane to its badly behaved action on the boundary as in the Manin-Marcolli cave post.

The topological properties of the fiber over zero, and indeed of the total space of adele classes, are horrible in the sense that the discrete group $\mathbb{Q}^* $ acts ergodically on it, due to the irrationality of $log(p_1)/log(p_2) $ for primes $p_i $. All this is explained well (in the semi-local case, that is using $\mathbb{A}_Q’ $ above) in the Connes-Marcolli book (section 2.7).

In much the same spirit as non-free actions of reductive groups on algebraic varieties are best handled using stacks, such ergodic actions are best handled by the tools of noncommutative geometry. That is, one tries to get at the geometry of $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}^{\ast} $ by studying an associated non-commutative algebra, the skew-ring extension of the group-ring of the adeles by the action of $\mathbb{Q}^* $ on it. This algebra is known to be Morita equivalent to the Bost-Connes algebra which is the algebra featuring in Connes’ approach to the Riemann hypothesis.

It shouldn’t thus come as a major surprise that one is able to recover the other side of the Langlands correspondence, that is the Galois group $Gal(\mathbb{Q}(\mu_{\infty})/\mathbb{Q}) $, from the Bost-Connes algebra as the symmetries of certain states.

In a similar vein one can read the Connes-Marcolli $GL_2 $-system (section 3.7 of their book) as an exploration of the noncommutative closure of the Langlands-space $GL_2(\mathbb{A}_{\mathbb{Q}})/GL_2(\mathbb{Q}) $.

At the moment I’m running a master-seminar noncommutative geometry trying to explain this connection in detail. But, we’re still in the early phases, struggling with the topology of ideles and adeles, reciprocity laws, L-functions and the lot. Still, if someone is interested I might attempt to post some lecture notes here.

6 Comments

introducing : the n-geometry cafe

It all started with this comment on the noncommutative geometry blog by “gabriel” :

Even though my understanding of noncommutative geometry is limited, there are some aspects that I am able to follow.
I was wondering, since there are so few blogs here, why don’t you guys forge an alliance with neverending books, you blog about noncommutative geometry anyways. That way you have another(n-category cafe) blogspot and gives well informed views(well depending on how well defined a conversational-style blog can be).

The technology to set up a ‘conversational-style blog’, where anyone can either leave twitter-like messages or more substantial posts, is available thanks to the incredible people from Automattic.

For starters, they have the sensational p2 wordpress theme : “blogging at the speed of thought”



A group blog theme for short update messages, inspired by Twitter. Featuring: Hassle-free posting from the front page. Perfect for group blogging, or as a liveblog theme. Dynamic page updates. Threaded comment display on the front page. In-line editing for posts and comments. Live tag suggestion based on previously used tags. A show/hide feature for comments, to keep things tidy. Real-time notifications when a new comment or update is posted. Super-handy keyboard shortcuts.

Next, any lively online community is open for intense debate : “supercharge your community”



Fire up the debate with commenter profiles, reputation scores, and OpenID. With IntenseDebate you’ll tap into a whole new network of sites with avid bloggers and commenters. And that’s just the tip of the iceberg!

And finally, as we want to talk math, both in posts and comments, they provide us with the WP-LaTeX plugin.

All these ingredients make up the n-geometry cafe ((with apologies to the original cafe but I simply couldn’t resist…)) to be found at noncommutative.org (explaining the ‘n’).



Anyone can walk into a Cafe and have his/her say, that’s why you’ll get automatic author-privileges if you register.

Fill in your nick and email (please take your IntenseDebate setting and consider signing up with Gravator.com to get a nice image next to your contributions), invent your own password, show that you’re human by answering the reCapcha question and you’ll get a verification email within minutes ((if you don’t get an email within the hour, please notify me)). This will take you to your admin-page, allowing you to start blogging. For more info, check out the FAQ-pages.

I’m well aware of the obvious dangers of non-moderated sites, but also a strong believer in any Cafe’s self-regulating powers…

If you are interested in noncommutative geometry, and feel like sharing, please try it out.

3 Comments

Bourbakism & the queen bee syndrome

Probably the smartest move I’ve made after entering math-school was to fall in love with a feminist.

Yeah well, perhaps I’ll expand a bit on this sentence another time. For now, suffice it to say that I did pick up a few words in the process, among them : the queen bee syndrome :

women who have attained senior positions do not use their power to assist struggling young women or to change the system, thereby tacitly validating it.

A recent study by the Max Planck Institute for Human Development asserts that the QBS

likely stems from women at the top who feel threatened by other women and therefore, prefer to surround themselves with men. As a result, these Queen Bees often jeapordize the promotions of other females at their companies.

Radical feminists of the late 70-ties preferred a different ‘explanation’, clearly.

Women who fought their way to the top, they said, were convinced that overcoming all obstacles along the way made them into the strong persons they became. A variant on the ‘what doesn’t kill you, makes you stronger’-mantra, quoi. These queen bees genuinely believed it to be beneficial to the next generation of young women not to offer them any shortcuts on their journey through the glass ceiling.

But, let’s return to mathematics.

By and large, the 45+generation decides about the topics that should be (or shouldn’t be) on the current math-curriculum. They also write most of the text-books and course-notes used, and inevitably, the choices they make have an impact on the new generation of math-students.

Perhaps too little thought is given to the fact that the choices we (yes, I belong to that age group) make, the topics we deem important for new students to master, are heavily influenced by our own experiences.

In the late 60ties, early 70ties, Bourbaki-style mathematics influenced the ‘modern mathematics’ revolution in schools, certainly in Belgium through the influence of George Papy.

In kintergarten, kids learned the basics of set theory. Utensils to draw Venn diagrams were as indispensable as are pocket-calculators today. In secondary school, we had a formal axiomatic approach to geometry, we learned abstract topological spaces and other advanced topics.

Our 45+generation greatly benefitted from all of this when we started doing research. We felt comfortable with the (in retrospect, over)abstraction of the EGAs and SGAs and had little difficulties in using them or generalizing them to noncommutative levels…

Bourbakism made us into stronger mathematicians. Hence, we are convinced that new students should master it if they ever want to do ‘proper’ research.

Perhaps we pay too little attention to the fact that these new students are a lot worse prepared than we were in the old days. Every revolution inevitably provokes a counter-revolution. Secondary school mathematics sank over the last two decades to a debilitating level under the pretense of ‘usability’. Tim Gowers has an interesting Ivory tower post on this.

We may deplore this evolution, we may try to reverse it. But, until we succeed, it may not be fair to freshmen to continue stubbornly as if nothing changed since our good old days.

Perhaps, Bourbakism has become our very own queen bee syndrome…

Leave a Comment

Now here’s an idea

Boy, do I feel stupid for having written close to 500 blog-posts hoping (in vain) they might eventually converge into a book project…

Gil Kalai is infinitely smarter. Get a fake gmail account, invent a fictitious character and start COMMENTING and provoking responses. That’s how “Gina” appeared on the scene, cut and pasted her comments (and the replies to them) and turned all of this into a book : “Gina says”, Adventures in the Blogsphere String War.

So, who’s Gina? On page 40 : “35 years of age, Gina is of Greek and Polish descent. Born in the quaint island of Crete, she currently resides in the USA, in quiet and somewhat uneventful Wichita, Kansas. Gina has a B.Sc in Mathematics (from the University of Athens, with Honors), and a Master’s Degree in Psychology (from the University of Florence, with Honors).
Currently in-between jobs (her last job was working with underprivileged children), she has a lot of free time on her hands, which gives her ample opportunities to roam the blogosphere.”

So far, the first 94 pages are there to download, the part of the book consisting of comments left at Peter Woit’s Not Even Wrong. Judging from the table of contents, Gina left further traces at the n-category cafe and Asymptotia.

Having read the first 20 odd pages in full and skimmed the rest, two remarks : (1) it shouldn’t be too difficult to borrow this idea and make a much better book out of it and (2) it raises the question about copyrights on blog-comments…

If the noncommutative geometry blog could be persuaded to awake from its present dormant state, I’d love to get some discussions started, masquerading as AG. Or, given the fact that I’ll use the summer-break to re-educate myself as an n-categorist, the guys running the cafe are hereby warned…

3 Comments

noncommutative space quiz

Creating (or taking) an image and explaining how it depicts your mental picture of a noncommutative space is one thing. Ideally, the image should be strong enough so that other people familiar with it might have a reasonable guess what you attempt to depict.

But, is there already enough concordance in our views of noncommutative spaces? I doubt it, whence this experiment.
Below my attempt ((the image is taken from Cran’s fractal art )) to depict one of the most popular noncommutative spaces around :



Can you guess what space this is? How does it agree with (resp. differ from) your own mental image of it?

Further, if you know of links to other depictions of noncommutative spaces, please leave a comment, or, send me an email.

4 Comments

Pollock your own noncommutative space

I really like Matilde Marcolli’s idea to use some of Jackson Pollock’s paintings as metaphors for noncommutative spaces. In her talk she used this painting



and refered to it (as did I in my post) as : Jackson Pollock “Untitled N.3”. Before someone writes a post ‘The Pollock noncommutative space hoax’ (similar to my own post) let me point out that I am well aware of the controversy surrounding this painting.

This painting is among 32 works recently discovered and initially attributed to Pollock.
In fact, I’ve already told part of the story in Doodles worth millions (or not)? (thanks to PD1). The story involves the people on the right : from left to right, Jackson Pollock, his wife Lee Krasner, Mercedes Matter and her son Alex Matter.

Alex Matter, whose father, Herbert, and mother, Mercedes, were artists and friends of Jackson Pollock, discovered after his mother died a group of small drip paintings in a storage locker in Wainscott, N.Y. which he believed to be authentic Pollocks.

Read the post mentioned above if you want to know how mathematics screwed up his plan, or much better, reed the article Anatomy of the Jackson Pollock controversy by Stephen Litt.

So, perhaps the painting above was not the smartest choice, but we could take any other genuine Pollock ‘drip-painting’, a technique he taught himself towards the end of 1946 to make an image by splashing, pouring, sloshing colors onto the canvas. Typically, such a painting consists of blops of paint, connected via thin drip-lines.

What does this have to do with noncommutative geometry? Well, consider the blops as ‘points’. In commutative geometry, distinct points cannot share tangent information ((technically : a commutative semi-local ring splits as the direct sum of local rings and this does no longer hold for a noncommutative semi-local ring)). In the noncommutative world though, they can!, or if you want to phrase it like this, noncommutative points ‘can talk to each other’. And, that’s what we cherish in those drip-lines.

But then, if two points share common tangent informations, they must be awfully close to each other… so one might imagine these Pollock-lines to be strings holding these points together. Hence, it would make more sense to consider the ‘Pollock-quotient-painting’, that is, the space one gets after dividing out the relation ‘connected by drip-lines’ ((my guess is that Matilde thinks of the lines as the action of a group on the points giving a topological horrible quotient space, and thats precisely where noncommutative geometry shines)).

For this reason, my own mental picture of a genuinely noncommutative space ((that is, the variety corresponding to a huge noncommutative algebra such as free algebras, group algebras of arithmetic groups or fundamental groups)) looks more like the picture below



The colored blops you see are really sets of points which you might view as, say, a FacebookGroup ((technically, think of them as the connected components of isomorphism classes of finite dimensional simple representations of your favorite noncommutative algebra)). Some chatter may occur between two distinct FacebookGroups, the more chatter the thicker the connection depicted ((technically, the size of the connection is the dimension of the ext-group between generic simples in the components)). Now, there are some tiny isolated spots (say blue ones in the upper right-hand quadrant). These should really be looked at as remote clusters of noncommutative points (sharing no (tangent) information whatsoever with the blops in the foregound). If we would zoom into them beyond the Planck scale (if I’m allowed to say a bollock-word in a Pollock-post) they might reveal again a whole universe similar to the interconnected blops upfront.

The picture was produced using the fabulous Pollock engine. Just use your mouse to draw and click to change colors in order to produce your very own noncommutative space!

For the mathematicians still around, this may sound like a lot of Pollock-bollocks but can be made precise. See my note Noncommutative geometry and dual coalgebras for a very terse reading. Now that coalgebras are gaining popularity, I really should write a more readable account of it, including some fanshi-wanshi examples…

4 Comments

Views of noncommutative spaces

The general public expects pictures from geometers, even from non-commutative geometers. Hence, it is important for researchers in this topic to make an attempt to convey the mental picture they have of their favourite noncommutative space, … somehow. Two examples :



This picture was created by Shahn Majid. It appears on his visions of noncommutative geometry page as well as in an extremely readable Plus-magazine article on Quantum geometry, written by Marianne Freiberger, explaining Shahn’s ideas. For more information on this, read Shahn’s SpaceTime blog.



This painting is Jackson Pollock‘s “Untitled N.3”. It depicts the way Matilde Marcolli imagines a noncommutative space. It is taken from her slides of her talk for a general audience Mathematicians look at particle physics.

3 Comments