Skip to content →

Tag: non-commutative

points and lines


After yesterday’s post I had to explain today what
point-modules and line-modules are and that one can really
describe them as points in a (commutative) variety. Seemingly, the
present focus on categorical methods scares possibly interested students
away and none of them seems to know that this non-commutative projective
algebraic geometry once dealt with very concrete examples.
Let
us fix the setting : A will be a quadratic algebra, that is, A is
a positively graded algebra, part of degree zero the basefield k,
generated by its homogeneous part A_1 of degree one (which we take to be
of k-dimension n 1) and with all defining relations quadratic in these
generators. Take m k-independent linear terms (that is, elements of A_1)
: l1,…,lm and consider the graded left A-module

L
= A/(Al1 + ... + Alm)

Clearly, the Hilbert series of this
module (that is, the formal power series in t with coefficient of t^a
the k-dimension of the homogeneous part of L of degree a) starts off
with

Hilb(L,t) = 1  + (n+1-m) t  + ...

and
we call L a linear d-dimensional module if the Hilbert series is
the power series expansion of

1/(1-t)^{d +1} = 1  + (d+1)t   +(d
+1)(d +2)/2 t^2   ... 

In particular, if d=0 (that is, m=n) then L
is said to be a point-module and if d=1 (that is, m=n-1) then L
is said to be a line-module. To a d-dimensional linear module L
one can associate a d-dimensional linear subspace of ordinary (that is,
commutative) projective n-space P^n. To do this, identify

P^n
= P(A 1^*)

the projective space of the n 1 dimensional space of
linear functions on the homogeneous part of degree one. Then each of the
linear elements li determines a hyperplane V(li) in P^n and the
intersection of the m hyperplanes V(l1),…,V(lm) is the wanted
subspace. In particular, to a point-module corresponds a point in
P^n and to a line-module a line in P^n. So, where
is the non-commutativity of A hidden? Well, if P is a point-module

P
= P0  + P1 +  P2   +... 

(with all components P_a one dimensional)
then the twisted module

P' = P1 +  P2  + P3  + ...

is
again a point-module and the map P–>P’ defines an automorphism on the
point variety. In low dimensions, it is often possible to
reconstruct A from the point-variety and automorphism. In higher
dimensions, one has to consider also the higher dimensional linear
modules.
When I explained all this (far clumsier as it was a
long time since I worked with this) I was asked for an elementary text
on all this. ‘Why hasn’t anybody written a book on all this?’ Well,
Paul Smith wrote such a book so have a look at his
homepage. But then, it turned out that the version one can download from
one of his course pages is a more recent and a lot more
categorical version. There is no more sight of a useful book on
non-commutative projective spaces and their linear modules which might
give starting students an interesting way to learn some non-commutative
algebra and the beginnings of algebraic geometry (commutative and
non-commutative). So, hopefully Paul still has the old version around
and will make it available… The only webpage on this I could find in
short time are the slides of a talk by Michaela Vancliff.

Leave a Comment

a spider for Paul Smith’s list

One
of the best collections of links to homepages of people working in
non-commutative algebra and/or geometry is maintained by Paul Smith. At regular intervals I use it to check
up on some people, usually in vain as nobody seems to update their
homepage… So, today I wrote a simple spider to check for updates in
this list. The idea is simple : it tries to get the link (and when this
fails it reports that the link seems to be broken), it saves a text-copy
of the page (using lynx) on disc which it will check on a future
check-up for changes with diff. Btw. for OS X-people I got
lynx from the Fink Project. It then collects all data (broken
links, time of last visit and time of last change and recent updates) in
RSS-feeds for which an HTML-version is maintained at the geoMetry-site, again
using server side includes. If you see a 1970-date this means that I
have never detected a change since I let this spider loose (today).
Also, the list of pages is not alphabetic, even to me it is a surprise
how the next list will look. As I check for changes with diff the
claimed number of changed lines is by far accurate (the total of lines
from the first change made to the end of the file might be a better
approximation of reality… I will change this soon).
Clearly,
all of this is still experimental so please give me feedback if you
notice something wrong with these lists. Also I plan to extend this list
substantially over the next weeks (for example, Paul Smith himself is
not present in his own list…). So, if you want your pages to be
included, let me know at lieven.lebruyn@ua.ac.be.
For those on Paul\’s list, if you looked at your log-files today
you may have noticed a lot of traffic from www.matrix.ua.ac.be as
I was testing the script. I\’ll keep my further visits down to once a
day, at most…

Leave a Comment

robots.txt

I
just finished the formal lecture-part of the course Projects in
non-commutative geometry
(btw. I am completely exhausted after this
afternoon\’s session but hopeful that some students actually may do
something with my crazy ideas), springtime seems to have arrived and
next week the easter-vacation starts so it may be time to have some fun
like making a new webpage (yes, again…). At the moment the main
matrix.ua.ac.be page is not really up to standards
and Raf and Hans will be using it soon for the information about the
Liegrits-project (at the moment they just have a beautiful logo). My aim is to make the main page to be the
starting page of the geoMetry site
(guess what M stands for ?) on which I want
to collect as much information as possible on non-commutative geometry.
To get at that info I plan to set some spiders or bots or
scrapers loose on the web (this is just an excuse to force myself
to learn Perl). But it seems one has to follow strict ethical guidelines
in doing so. One of the first sites I want to spider is clearly the arXiv but they have
a scary Robots Beware page! I don\’t know whether their
robots.txt file will allow me to get at any of
their goodies. In a robots.txt file the webmaster can put the
directories on his/her site which are off limits to robots and as I
don\’t want to do anything that may cause that the arXiv is no longer
available to me (or even worse, to the whole department) I better follow
these guidelines. First site on my list to study tomorrow will be The
Web Robots Pages

Leave a Comment

Borcherds’ monster papers


Yesterday morning I thought that I could use some discussions I had a
week before with Markus Reineke to begin to make sense of one
sentence in Kontsevich’ Arbeitstagung talk Non-commutative smooth
spaces :

It seems plausible that Borcherds’ infinite rank
algebras with Monstrous symmetry can be realized inside Hall-Ringel
algebras for some small smooth noncommutative
spaces

However, as I’m running on a 68K RAM-memory, I
didn’t recall the fine details of all connections between the monster,
moonshine, vertex algebras and the like. Fortunately, there is the vast
amount of knowledge buried in the arXiv and a quick search on Borcherds gave me a
list of 17 papers. Among
these there are some delightful short (3 to 8 pages) expository papers
that gave me a quick recap on things I once must have read but forgot.
Moreover, Richard Borcherds has the gift of writing at the same time
readable and informative papers. If you want to get to the essence of
things in 15 minutes I can recommend What
is a vertex algebra?
(“The answer to the question in the title is
that a vertex algebra is really a sort of commutative ring.”), What
is moonshine?
(“At the time he discovered these relations, several
people thought it so unlikely that there could be a relation between the
monster and the elliptic modular function that they politely told McKay
that he was talking nonsense.”) and What
is the monster?
(“3. It is the automorphism group of the monster
vertex algebra. (This is probably the best answer.)”). Borcherds
maintains also his homepage on which I found a few more (longer)
expository papers : Problems in moonshine and Automorphic forms and Lie algebras. After these
preliminaries it was time for the real goodies such as The
fake monster formal group
, Quantum vertex algebras and the like.
After a day of enjoyable reading I think I’m again ‘a point’
wrt. vertex algebras. Unfortunately, I completely forgot what all this
could have to do with Kontsevich’ remark…

Leave a Comment

projects in noncommutative geometry

Tomorrow
I’ll start with the course Projects in non-commutative geometry
in our masterclass. The idea of this course (and its companion
Projects in non-commutative algebra run by Fred Van Oystaeyen) is
that students should make a small (original if possible) work, that may
eventually lead to a publication.
At this moment the students
have seen the following : definition and examples of quasi-free algebras
(aka formally smooth algebras, non-commutative curves), their
representation varieties, their connected component semigroup and the
Euler-form on it. Last week, Markus Reineke used all this in his mini-course
Rational points of varieties associated to quasi-free
algebras
. In it, Markus gave a method to compute (at least in
principle) the number of points of the non-commutative Hilbert
scheme
and the varieties of simple representations over a
finite field. Here, in principle means that Markus demands a lot of
knowledge in advance : the number of points of all connected components
of all representation schemes of the algebra as well as of its scalar
extensions over finite field extensions, together with the action of the
Galois group on them … Sadly, I do not know too many examples were all
this information is known (apart from path algebras of quivers).
Therefore, it seems like a good idea to run through Markus’
calculations in some specific examples were I think one can get all this
: free products of semi-simple algebras. The motivating examples
being the groupalgebra of the (projective) modular group
PSL(2,Z) = Z(2) * Z(3) and the free matrix-products $M(n,F_q) *
M(m,F_q)$. I will explain how one begins to compute things in these
examples and will also explain how to get the One
quiver to rule them all
in these cases. It would be interesting to
compare the calculations we will find with those corresponding to the
path algebra of this one quiver.
As Markus set the good
example of writing out his notes and posting them, I will try to do the
same for my previous two sessions on quasi-free algebras over the next
couple of weeks.

One Comment

noncommutative geometry 2

Again I
spend the whole morning preparing my talks for tomorrow in the master
class. Here is an outline of what I will cover :
– examples of
noncommutative points and curves. Grothendieck’s characterization of
commutative regular algebras by the lifting property and a proof that
this lifting property in the category alg of all l-algebras is
equivalent to being a noncommutative curve (using the construction of a
generic square-zero extension).
– definition of the affine
scheme rep(n,A) of all n-dimensional representations (as always,
l is still arbitrary) and a proof that these schemes are smooth
using the universal property of k(rep(n,A)) (via generic
matrices).
– whereas rep(n,A) is smooth it is in general
a disjoint union of its irreducible components and one can use the
sum-map to define a semigroup structure on these components when
l is algebraically closed. I’ll give some examples of this
semigroup and outline how the construction can be extended over
arbitrary basefields (via a cocommutative coalgebra).

definition of the Euler-form on rep A, all finite dimensional
representations. Outline of the main steps involved in showing that the
Euler-form defines a bilinear form on the connected component semigroup
when l is algebraically closed (using Jordan-Holder sequences and
upper-semicontinuity results).

After tomorrow’s
lectures I hope you are prepared for the mini-course by Markus Reineke on non-commutative Hilbert schemes
next week.

Leave a Comment

noncommutative geometry

Today I
did prepare my lectures for tomorrow for the NOG master-class on
non-commutative geometry. I\’m still doubting whether it is worth TeXing
my handwritten notes. Anyway, here is what I will cover tomorrow :

– Examples of l-algebras (btw. l is an
arbitrary field) : matrix-algebras, group-algebras lG of finite
groups, polynomial algebras, free and tensor-algebras, path algebras
lQ of a finite quiver, coordinaterings O(C) of affine smooth
curves C etc.
– Refresher on homological algebra : free and
projective modules, exact sequences and complexes, Hom and Ext groups
and how to calculate them from projective resolutions, interpretation of
Ext^1 via (non-split) short exact sequences and stuff like that.
– Hochschild cohomology and noncommutative differential forms.
Bimodules and their Hochschild cohomology, standard complex and
connection with differential forms, universal bimodule of derivations
etc.
– Non-commutative manifolds. Interpretation of low degree
Hochschild cohomology, characterization of non-commutative points as
separable l-algebras and examples. Formally smooth algebras
(non-commutative curves) characterised by the lifting property for
square-free extensions and a proof that formally smooth algebras are
hereditary.

Next week I will cover the representation
varieties of formally smooth algebras and the semigroup on their
connected (or irreducible) components.

Leave a Comment

a noncommutative Grothendieck topology

We have seen that a non-commutative $l$-point is an
algebra$P=S_1 \\oplus … \\oplus S_k$with each $S_i$ a simple
finite dimensional $l$-algebra with center $L_i$ which is a separable
extension of $l$. The centers of these non-commutative points (that is
the algebras $L_1 \\oplus … \\oplus L_k$) are the open sets of a
Grothendieck-topology on
$l$. To define it properly, let $L$ be the separable closure of $l$
and let $G=Gal(L/l)$ be the so called absolute
Galois group. Consider the
category with objects the finite $G$-sets, that is : finite
sets with an action of $G$, and with morphisms the $G$-equivariant
set-maps, that is: maps respecting the group action. For each object
$V$ we call a finite collection of morphisms $Vi \\mapsto V$ a
cover of $V$ if the images of the finite number of $Vi$ is all
of $V$. Let $Cov$ be the set of all covers of finite $G$-sets, then
this is an example of a Grothendieck-topology as it satisfies
the following three conditions :

(GT1) : If
$W \\mapsto V$ is an isomorphism of $G$-sets, then $\\{ W \\mapsto
V \\}$ is an element of $Cov$.

(GT2) : If $\\{ Vi \\mapsto
V \\}$ is in $Cov$ and if for every i also $\\{ Wij \\mapsto Vi \\}$
is in $Cov$, then the collection $\\{ Wij \\mapsto V \\}$ is in
$Cov$.

(GT3) : If $\\{ fi : Vi \\mapsto V \\}$ is in $Cov$
and $g : W \\mapsto V$ is a $G$-morphism, then the fibered
products
$Vi x_V W = \\{ (vi,w) in Vi x W : fi(vi)=g(w) \\}$is
again a $G$-set and the collection $\\{ Vi x_V W \\mapsto V \\}$
is in $Cov$.

Now, finite $G$-sets are just
commutative separable $l$-algebras (that is,
commutative $l$-points). To see this, decompose a
finite $G$-set into its finitely many orbits $Oj$ and let $Hj$ be the
stabilizer subgroup of an element in $Oj$, then $Hj$ is of finite
index in $G$ and the fixed field $L^Hj$ is a finite dimensional
separable field extension of $l$. So, a finite $G$-set $V$
corresponds uniquely to a separable $l$-algebra $S(V)$. Moreover, a
finite cover $\\{ W \\mapsto V \\}$ is the same thing as saying
that $S(W)$ is a commutative separable $S(V)$-algebra. Thus,
the Grothendieck topology of finite $G$-sets and their covers
is anti-equivalent to the category of commutative separable
$l$-algebras and their separable commutative extensions.

This raises the natural question : what happens if we extend the
category to all separable $l$-algebras, that is, the category of
non-commutative $l$-points, do we still obtain something like a
Grothendieck topology? Or do we get something like a
non-commutative Grothendieck topology as defined by Fred Van
Oystaeyen (essentially replacing the axiom (GT 3) by a left and right
version). And if so, what are the non-commutative covers?
Clearly, if $S(V)$ is a commutative separable $l$-algebras, we expect
these non-commutative covers to be the set of all separable
$S(V)$-algebras, but what are they if $S$ is itself non-commutative,
that is, if $S$ is a non-commutative $l$-point?

Leave a Comment

Galois and the Brauer group

Last time we have seen that in order to classify all
non-commutative $l$-points one needs to control the finite
dimensional simple algebras having as their center a finite
dimensional field-extension of $l$. We have seen that the equivalence
classes of simple algebras with the same center $L$ form an Abelian
group, the
Brauer group. The calculation of Brauer groups
is best done using
Galois-cohomology. As an aside :
Evariste Galois was one of the more tragic figures in the history of
mathematics, he died at the age of 20 as a result of a duel. There is
a whole site the Evariste Galois archive dedicated to his
work.

But let us return to a simple algebra $T$ over the
field $L$ which we have seen to be of the form $M(k,S)$, full
matrices over a division algebra $S$. We know that the dimension of
$S$ over $L$ is a square, say $n^2$, and it can be shown that all
maximal commutative subfields of $S$ have dimension n over $L$.
In this way one can view a simple algebra as a bag containing all
sorts of degree n extensions of its center. All these maximal
subfields are also splitting fields for $S$, meaning that
if you tensor $S$ with one of them, say $M$, one obtains full nxn
matrices $M(n,M)$. Among this collection there is at least one
separable field but for a long time it was an open question
whether the collection of all maximal commutative subfields also
contains a Galois-extension of $L$. If this is the case, then
one could describe the division algebra $S$ as a crossed
product
. It was known for some time that there is always a simple
algebra $S’$ equivalent to $S$ which is a crossed product (usually
corresponding to a different number n’), that is, all elements of
the Brauer group can be represented by crossed products. It came as a
surprise when S.A. Amitsur in 1972 came up with examples of
non-crossed product division algebras, that is, division algebras $D$
such that none of its maximal commutative subfields is a Galois
extension of the center. His examples were generic
division algebras
$D(n)$. To define $D(n)$ take two generic
nxn matrices
, that is, nxn matrices A and B such that all its
entries are algebraically independent over $L$ and consider the
$L$-subalgebra generated by A and B in the full nxn matrixring over the
field $F$ generated by all entries of A and B. Somewhat surprisingly,
one can show that this subalgebra is a domain and inverting all its
central elements (which, again, is somewhat of a surprise that
there are lots of them apart from elements of $L$, the so called
central polynomials) one obtains the division algebra $D(n)$ with
center $F(n)$ which has trancendence degree n^2 1 over $L$. By the
way, it is still unknown (apart from some low n cases) whether $F(n)$
is purely trancendental over $L$. Now, utilising the generic
nature of $D(n)$, Amitsur was able to prove that when $L=Q$, the
field of rational numbers, $D(n)$ cannot be a crossed product unless
$n=2^s p_1…p_k$ with the p_i prime numbers and s at most 2. So, for
example $D(8)$ is not a crossed product.

One can then
ask whether any division algebra $S$, of dimension n^2 over $L$, is a
crossed whenever n is squarefree. Even teh simplest case, when n is a
prime number is not known unless p=2 or 3. This shows how little we do
know about finite dimensional division algebras : nobody knows
whether a division algebra of dimension 25 contains a maximal
cyclic subfield (the main problem in deciding this type of
problems is that we know so few methods to construct division
algebras; either they are constructed quite explicitly as a crossed
product or otherwise they are constructed by some generic construction
but then it is very hard to make explicit calculations with
them).

Leave a Comment

Brauer’s forgotten group

Non-commutative geometry seems pretty trivial compared
to commutative geometry : there are just two types of manifolds,
points and curves. However, nobody knows how to start classifying
these non-commutative curves. I do have a conjecture that any
non-commutative curve can (up to non-commutative birationality) be
constructed from hereditary orders over commutative curves
by universal methods but I’ll try to explain that another
time.

On the other hand, non-commutative points
have been classified (at least in principle) for at least 50
years over an arbitrary basefield $l$. non-commutative
$l$-points $P$ is an $l$-algebra such that its double
$d(P) = P \\otimes P^o$ ( where $P^o$ is the opposite algebra,
that is with the reverse multiplication) has an element$c=\\sum_i
a_i \\otimes b_i with \\sum_i a_ib_i = 1 (in $P$)$ and such that for
all p in $P$ we have that $(1 \\otimes a).c = (a \\otimes 1).c$ For
people of my generation, c is called a separability idempotent
and $P$ itself is called a separable $l$-algebra.
Examples of $l$-points include direct sums of full matrixrings
(of varying sizes) over $l$ or group-algebras $lG$ for $G$ a
finite group of n elements where n is invertible in $l$. Hence, in
particular, the group-algebra $lG$ of a p-group $G$ over a field $l$
of characteristic p is a non-commutative singular point and
modular representation theory (a theory build almost single
handed by
Richard Brauer) can be viewed as
the methods needed to resolve this singularity. Brauer’s name is
still mentioned a lot in modular representation theory, but another
of his inventions, the Brauer group, seems to be hardly known
among youngsters.

Still, it is a crucial tool
in classifying all non-commutative $l$-points. The algebraic
structure of an $l$-point $P$ is as follows : $$P = S_1 + S_2 + …
+ S_k$$ where each S_i is a simple algebra (that is, it
contains no proper twosided ideals), finite dimensional over
its center $l_i$ which is in its turn a finite dimensional
separable field extension of $l$. So we need to know all
simple algebras $S$, finite dimensional over their center $L$ which
is any finite dimensional separable field extension of $l$. The
algebraic structure of such an $S$ is of the form$$S = M(a,D)$$ that
is, full axa matrices with entries in $D$ where $D$ is a
skew-field (or some say, a division algebra) with
center $L$. The $L$-dimension of such a $D$ is always a square,
say b^2, so that the $L$-dimension of $S$ itself is also a square
a^2b^2. There are usually plenty such division algebras, the simplest
examples being quaternion algebras. Let p and q be two
non-zero elements of $L$ such that the conic $C : X^2-pY^2-bZ^2 =
0$ has no $L$-points in the projective $L$-plane, then the
algebra$D=(p,q)_2 = L.1 + L.i + L.j + L.ij where i^2=p, j^2=q and
ji=-ij$ is a four-dimensional skew-field over $L$. Brauer’s idea to
classify all simple $L$-algebras was to associate a group to them,
the Brauer group, $Br(L)$. Its elements are equivalence
classes
of simple algebras where two simple algebras $S$ and
$S’$ are equivalent if and only if$M(m,S) = M(n,S’)$ for some sizes
m and n. Multiplication on these classes in induced by
the tensor-product (over $L$) as $S_1 \\otimes S_2$ is again a simple
$L$-algebra if $S_1$ and $S_2$ are. The Brauer group $Br(L)$ is an
Abelian torsion group and if we know its structure we know all
$L$-simple algebras so if we know $Br(L)$ for all finite dimensional
separable extensions $L$ of $l$ we have a full classification of
all non-commutative $l$-points.

Here are some examples
of Brauer groups : if $L$ is algebraically closed (or separable
closed), then $Br(L)=0$ so in particular, if $l$ is algebraically
closed, then the only non-commutative points are sums of matrix rings.
If $R$ is the field of real numbers, then $Br(R) = Z/2Z$ generated by
the Hamilton quaternion algebra (-1,-1)_2. If $L$ is a complete
valued number field, then $Br(L)=Q/Z$ which allows to describe also
the Brauer group of a number field in terms of its places. Brauer groups
of function fields of (commutative) varieties over an algebraically
closed basefield is usually huge but there is one noteworthy
exception $Tsen’s theorem$ which states that $Br(L)=0$ if $L$ is the
function field of a curve C over an algebraically closed field. In 1982
Merkurjev and Suslin proved a marvelous result about generators of
$Br(L)$ whenever $L$ is large enough to contain all primitive roots
of unity. They showed, in present day lingo, that $Br(L)$
is generated by non-commutative points of the quantum-planes
over $L$ at roots of unity. That is, it is generated by cyclic
algebras
of the form$(p,q)_n = L
\\< X,Y>/(X^n=p,Y^n=q,YX=zXY)$where z is an n-th primitive root of
unity. Next time we will recall some basic results on the relation
between the Brauer group and Galois cohomology.

2 Comments