what have quivers done to students?

A few years ago a student entered my office asking suggestions for his master thesis.

“I’m open to any topic as long as it has nothing to do with those silly quivers!”

At that time not the best of opening-lines to address me and, inevitably, the most disastrous teacher-student-conversation-ever followed (also on my part, i’m sorry to say).

This week, Markus Reineke had a similar, though less confrontational, experience. Markus gave a mini-course on ‘moduli spaces of representations’ in our advanced master class. Students loved the way he introduced representation varieties and constructed the space of irreducible representations as a GIT-quotient. In fact, his course was probably the first in that program having an increasing (rather than decreasing) number of students attending throughout the week…

In his third lecture he wanted to illustrate these general constructions and what better concrete example to take than representations of quivers? Result : students’ eyes staring blankly at infinity…

What is it that quivers do to have this effect on students?

Perhaps quiver-representations cause them an information-overload.

Perhaps we should take plenty of time to explain that in going from the quiver (the directed graph) to the path algebra, vertices become idempotents and arrows the remaining generators. These idempotents split a representation space into smaller vertex-spaces, the dimensions of which we collect in a dimension-vector, the big basechange group splits therefore into a product of small vertex-basechanges and the action of this product on an matrix corresponding to an arrow is merely usual conjugation by the big basechange-group, etc. etc. Blatant trivialities to someone breathing quivers, but probably we too had to take plenty of time once to disentangle this information-package…

But then, perhaps they consider quivers and their representations as too-concrete-old-math-stuff, when there’s so much high-profile-fancy-math still left to taste.

When given the option, students prefer you to tell them monstrous-moonshine stories even though they can barely prove simplicity of $A_5$, they want you to give them a short-cut to the Langlands programme but have never had the patience nor the interest to investigate the splitting of primes in quadratic number fields, they want to be taught schemes and their structure sheaves when they still struggle with the notion of a dominant map between varieties…

In short, students often like to run before they can crawl.

Working through the classification of some simple quiver-settings would force their agile feet firmly on the ground. They probably experience this as a waste of time.

Perhaps, it is time to promote slow math…

Noncommutative algebra and geometry master-degree

The lecturers, topics and dates of the 6 mini-courses in our ‘advanced master degree 2011 in noncommutative algebra and geometry’ are :

February 21-25
Vladimir Bavula (University of Sheffield) :
Localization Theory of Rings and Modules

March 7-11
Hans-Jürgen Schneider (University of München) :
Nichols Algebra and Root Systems

April 11-12
Bernhard Keller (Université Paris VII):
Cluster Algebra and Quantum Cluster Algebras

April 18-22
Jacques Alev (Université Reims):
Automorphisms of some Basic Algebras

May 3-8
Goro Kato (Cal Poly University, San Luis Obispo, US):
Sheaf Cohomology and Zeta – Functions

May 9-13
Markus Reineke (University of Wuppertal):
Moduli Spaces of Representatives

More information can be found here. I’ve been told that some limited support is available for foreign graduate students wanting to attend this programme.

Monstrous frustrations

Thanks for clicking through… I guess.

If nothing else, it shows that just as much as the stock market is fueled by greed, mathematical reasearch is driven by frustration (or the pleasure gained from knowing others to be frustrated).

I did spend the better part of the day doing a lengthy, if not laborious, calculation, I’ve been postponing for several years now. Partly, because I didn’t know how to start performing it (though the basic strategy was clear), partly, because I knew beforehand the final answer would probably offer me no further insight.

Still, it gives the final answer to a problem that may be of interest to anyone vaguely interested in Moonshine :

What does the Monster see of the modular group?

I know at least two of you, occasionally reading this blog, understand what I was trying to do and may now wonder how to repeat the straightforward calculation. Well the simple answer is : Google for the number 97239461142009186000 and, no doubt, you will be able to do the computation overnight.

One word of advice : don’t! Get some sleep instead, or make love to your partner, because all you’ll get is a quiver on nine vertices (which is pretty good for the Monster) but having an horrible amount of loops and arrows…

If someone wants the details on all of this, just ask. But, if you really want to get me exited : find a moonshine reason for one of the following two numbers :

$791616381395932409265430144165764500492= 2^2 * 11 * 293 * 61403690769153925633371869699485301 $

(the dimension of the monster-singularity upto smooth equivalence), or,

$1575918800531316887592467826675348205163= 523 * 1655089391 * 15982020053213 * 113914503502907 $

(the dimension of the moduli space).

neverendingbooks-geometry (2)

Here pdf-files of older NeverEndingBooks-posts on geometry. For more recent posts go here.

more… neverendingbooks-geometry (2)