Skip to content →

Tag: Marcolli

noncommutative topology (1)

A couple of days ago Ars Mathematica had a post Cuntz on noncommutative topology pointing to a (new, for me) paper by Joachim Cuntz

A couple of years ago, the Notices of the AMS featured an article on noncommutative geometry a la Connes: Quantum Spaces and Their Noncommutative Topology by Joachim Cuntz. The hallmark of this approach is the heavy reliance on K theory. The first few pages of the article are fairly elementary (and full of intriguing pictures), before the K theory takes over.

A few comments are in order. To begin, the paper is **not** really about noncommutative geometry a la Connes, but rather about noncommutative geometry a la Cuntz&Quillen (based on quasi-free algebras) or, equivalently, a la Kontsevich (formally smooth algebras) or if I may be so bold a la moi (qurves).

About the **intruiging pictures** : it seems to be a recent trend in noncommutative geometry research papers to include meaningless pictures to lure the attention of the reader. But, unlike aberrations such as the recent pastiche by Alain Connes and Mathilde Marcolli A Walk in the Noncommutative Garden, Cuntz is honest about their true meaning

I am indebted to my sons, Nicolas and Michael,
for the illustrations to the examples above. Since
these pictures have no technical meaning, they
are only meant to provide a kind of suggestive
visualization of the corresponding quantum spaces.

As one of these pictures made it to the cover of the **Notices** an explanation was included by the cover-editor

About the Cover :

The image on this month’s cover arose from
Joachim Cuntz’s effort to render into visible art
his own internal vision of a noncommutative
torus, an object otherwise quite abstract. His
original idea was then implemented by his son
Michael in a program written in Pascal. More
explicitly, he says that the construction started
out with a triangle in a square, then translated
the triangle by integers times a unit along a line
with irrational slope; plotted the images thus
obtained in a periodic manner; and stopped
just before the figure started to seem cluttered.
Many mathematicians carry around inside
their heads mental images of the abstractions
they work with, and manipulate these objects
somehow in conformity with their mental imagery. They probably also make aesthetic judgements of the value of their work according to
the visual qualities of the images. These presumably common phenomena remain a rarely
explored domain in either art or psychology.

—Bill Casselman(

There can be no technical meaning to the pictures as in the Connes and Cuntz&Quillen approach there is only a noncommutative algebra and _not_ an underlying geometric space, so there is no topology, let alone a noncommutative topology. Of course, I do understand why Cuntz&others name it as such. They view the noncommutative algebra as the ring of functions on some virtual noncommutative space and they compute topological invariants (such as K-groups) of the algebras and interprete them as information about the noncommutative topology of these virtual and unspecified spaces.

Still, it is perfectly possible to associate to a qurve (aka quasi-free algebra or formally smooth algebra) a genuine noncommutative topological space. In this series of posts I’ll explain the little I know of the history of this topic, the thing I posted about it a couple of years ago, why I abandoned the project and the changes I made to it since and the applications I have in mind, both to new problems (such as the birational_classification of qurves) as well as classical problems (such as rationality problems for $PGL_n $ quotient spaces).

Although others have tried to define noncommutative topologies before, I learned about them from Fred Van Oystaeyen. Fred spend the better part of his career constructing structure sheaves associated to noncommutative algebras, mainly to prime Noetherian algebras (the algebras of preference for the majority of non-commutative algebraists). So, suppose you have an ordinary (meaning, the usual commutative definition) topological space X associated to this algebra R, he wants to define an algebra of sections on every open subset $X(\sigma) $ by taking a suitable localization of the algebra $Q_{\sigma}(R) $. This localization is taken with respect to a suitable filter of left ideals $\mathcal{L}(\sigma) $ of R and is defined to be the subalgebra of the classiocal quotient ring $Q(R) $ (which exists because $R$ is prime Noetherian in which case it is a simple Artinian algebra)

$Q_{\sigma}(R) = { q \in Q(R)~|~\exists L \in \mathcal{L}(\sigma)~:~L q \subset R } $

(so these localizations are generalizations of the usual Ore-type rings of fractions). But now we come to an essential point : if we want to glue this rings of sections together on an intersection $X(\sigma) \cap X(\tau) $ we want to do this by ‘localizing further’. However, there are two ways to do this, either considering $~Q_{\sigma}(Q_{\tau}(R)) $ or considering $Q_{\tau}(Q_{\sigma}(R)) $ and these two algebras are only the same if we impose fairly heavy restrictions on the filters (or on the algebra) such as being compatible.

As this gluing property is essential to get a sheaf of noncommutative algebras we seem to get stuck in the general (non compatible) case. Fred’s way out was to make a distinction between the intersection $X_{\sigma} \cap X_{\tau} $ (on which he put the former ring as its ring of sections) and the intersection $X_{\tau} \cap X_{\sigma} $ (on which he puts the latter one). So, the crucial new ingredient in a noncommutative topology is that the order of intersections of opens matter !!!

Of course, this is just the germ of an idea. He then went on to properly define what a noncommutative topology (and even more generally a noncommutative Grothendieck topology) should be by using this localization-example as guidance. I will not state the precise definition here (as I will have to change it slightly later on) but early version of it can be found in the Antwerp Ph.D. thesis by Luc Willaert (1995) and in Fred’s book Algebraic geometry for associative algebras.

Although _qurves_ are decidedly non-Noetherian (apart from trivial cases), one can use Fred’s idea to associate a noncommutative topological space to a qurve as I will explain next time. The quick and impatient may already sneak at my old note a non-commutative topology on rep A but please bear in mind that I changed my mind since on several issues…

Leave a Comment

Alain Connes on everything

A few
days ago, Ars Mathematica wrote :

Alain Connes and Mathilde Marcolli have posted a
new survey paper on Arxiv A walk in the
noncommutative garden
. There are many contenders for the title of
noncommutative geometry, but Connes’ flavor is the most

Be that as it may, do
not print this 106 page long paper! Browse through it
if you have to, be dazzled by it if you are so inclined, but I doubt it
is the eye-opener you were looking for if you gave up on reading
Connes’ book Noncommutative
…. Besides, there is much better
_Tehran-material_ on Connes to be found on the web : An interview
with Alain Connes
, still 45 pages long but by all means : print it
out, read it in full and enjoy! Perhaps it may contain a lesson or two
for you. To wet your appetite a few quotes

It is
important that different approaches be developed and that one
doesn’t try to merge them too fast. For instance in noncommutative
geometry my approach is not the only one, there are other approaches
and it’s quite important that for these approaches there is no
social pressure to be the same so that they can develop
independently. It’s too early to judge the situation for instance
in quantum gravity. The only thing I resent in string theory is that
they put in the mind of people that it is the only theory that can
give the answer or they are very close to the answer. That I resent.
For people who have enough background it is fine since they know all
the problems that block the road like the cosmological constant, the
supersymmetry breaking, etc etc…but if you take people who are
beginners in physics programs and brainwash them from the very start
it is really not fair. Young physicists should be completely free,
but it is very hard with the actual system.

And here for some (moderate) Michael Douglas bashing :

Physicists tend to shift often and work on the
last fad. I cannot complain because at some point around 98 that fad was
NCG after my paper with Douglas and Schwarz. But after a while when
I saw Michael Douglas and asked him if he had thought more about
these problems the answer was no because it was no longer the last
fad and he wanted to work on something else. In mathematics one
sometimes works for several years on a problem but these young
physicists have a very different type of working habit. The unit of
time in mathematics is about 10 years. A paper in mathematics which is
10 years old is still a recent paper. In physics it is 3 months. So
I find it very difficult to cope with constant

To the suggestion that he is the
prophet (remember, it is a Tehran-interview) of noncommutative geometry
he replies

It is flattering but I don’t think
it is a good thing. In fact we are all human beings and it is a
wrong idea to put a blind trust in a single person and believe in
that person whatever happens. To give you an example I can tell you
a story that happened to me. I went to Chicago in 1996, and gave a
talk in the physics department. A well known physicist was there and
he left the room before the talk was over. I didn’t meet this
physicist for two years and then, two years later, I gave the same
talk in the Dirac Forum in Rutherford laboratory near Oxford. This
time the same physicist was attending, looking very open and convinced
and when he gave his talk later he mentioned my talk quite
positively. This was quite amazing because it was the same talk and
I had not forgotten his previous reaction. So on the way back to
Oxford, I was sitting next to him in the bus, and asked him openly
how can it be that you attended the same talk in Chicago and you
left before the end and now you really liked it. The guy was not a
beginner and was in his forties, his answer was “Witten was seen
reading your book in the library in Princeton”! So I don’t want
to play that role of a prophet preventing people from thinking on
their own and ruling the sub ject, ranking people and all that. I
care a lot for ideas and about NCG because I love it as a branch of
mathematics but I don’t want my name to be associated with it as a

and as if that was not convincing
enough, he continues

Well, the point is that what
matters are the ideas and they belong to nobody. To declare that
some persons are on top of the ladder and can judge and rank the
others is just nonsense mostly produced by the sociology (in fact by the
system of recommendation letters). I don’t want that to be true in
NCG. I want freedom, I welcome heretics.

But please, read it all for yourself and draw your own conclusions.

One Comment

a cosmic Galois group

there hidden relations between mathematical and physical constants such

$\frac{e^2}{4 \pi \epsilon_0 h c} \sim \frac{1}{137} $

or are these numerical relations mere accidents? A couple of years
ago, Pierre Cartier proposed in his paper A mad day’s work : from Grothendieck to Connes and
Kontsevich : the evolution of concepts of space and symmetry
there are many reasons to believe in a cosmic Galois group acting on the
fundamental constants of physical theories and responsible for relations
such as the one above.

The Euler-Zagier numbers are infinite
sums over $n_1 > n_2 > ! > n_r \geq 1 $ of the form

$\zeta(k_1,\dots,k_r) = \sum n_1^{-k_1} \dots n_r^{-k_r} $

and there are polynomial relations with rational coefficients between
these such as the product relation

$\zeta(a)\zeta(b)=\zeta(a+b)+\zeta(a,b)+\zeta(b,a) $

It is
conjectured that all polynomial relations among Euler-Zagier numbers are
consequences of these product relations and similar explicitly known
formulas. A consequence of this conjecture would be that
$\zeta(3),\zeta(5),\dots $ are all trancendental!

introduced the Grothendieck-Teichmuller group-scheme over $\mathbb{Q} $
whose Lie algebra $\mathfrak{grt}_1 $ is conjectured to be the free Lie
algebra on infinitely many generators which correspond in a natural way
to the numbers $\zeta(3),\zeta(5),\dots $. The Grothendieck-Teichmuller
group itself plays the role of the Galois group for the Euler-Zagier
numbers as it is conjectured to act by automorphisms on the graded
$\mathbb{Q} $-algebra whose degree $d $-term are the linear combinations
of the numbers $\zeta(k_1,\dots,k_r) $ with rational coefficients and
such that $k_1+\dots+k_r=d $.

The Grothendieck-Teichmuller
group also appears mysteriously in non-commutative geometry. For
example, the set of all Kontsevich deformation quantizations has a
symmetry group which Kontsevich conjectures to be isomorphic to the
Grothendieck-Teichmuller group. See section 4 of his paper Operads and motives in
deformation quantzation
for more details.

It also appears
in the renormalization results of Alain Connes and Dirk Kreimer. A very
readable introduction to this is given by Alain Connes himself in Symmetries Galoisiennes
et renormalisation
. Perhaps the latest news on Cartier’s dream of a
cosmic Galois group is the paper by Alain Connes and Matilde Marcolli posted
last month on the arXiv : Renormalization and
motivic Galois theory
. A good web-page on all of this, including
references, can be found here.

Leave a Comment