Skip to content →

Tag: Kromer

From Weil’s foundations to schemes

Last time, we’ve seen that the first time ‘schemes’ were introduced was in ‘La Tribu’ (the internal Bourbaki-account of their congresses) of the May-June 1955 congress in Chicago.

Here, we will focus on the events leading up to that event. If you always thought Grothendieck invented the word ‘schemes’, here’s what Colin McLarty wrote:

“A story says that in a Paris café around 1955 Grothendieck asked his friends “what is a scheme?”. At the time only an undefined idea of “schéma” was current in Paris, meaning more or less whatever would improve on Weil’s foundations.” (McLarty in The Rising Sea)

What were Weil’s foundations of algebraic geometry?

Well, let’s see how Weil defined an affine variety over a field $k$. First you consider a ‘universal field’ $K$ containing $k$, that is, $K$ is an algebraically closed field of infinite transcendence degree over $k$. A point of $n$-dimensional affine space is an $n$-tuple $x=(x_1,\dots,x_n) \in K^n$. For such a point $x$ you consider the field $k(x)$ which is the subfield of $K$ generated by $k$ and the coordinates $x_i$ of $x$.

Alternatively, the field $k(x)$ is the field of fractions of the affine domain $R=k[z_1,\dots,z_n]/I$ where $I$ is the prime ideal of all polynomials $f \in k[z_1,\dots,z_n]$ such that $f(x) = f(x_1,\dots,x_n)=0$.

An affine $k$-variety $V$ is associated to a ‘generic point’ $x=(x_1,\dots,x_n)$, meaning that the field $k(x)$ is a ‘regular extension’ of $k$ (that is, for all field-extensions $k’$ of $k$, the tensor product $k(x) \otimes_k k’$ does not contain zero-divisors.

The points of $V$ are the ‘specialisations’ of $x$, that is, all points $y=(y_1,\dots,y_n)$ such that $f(y_1,\dots,y_n)=0$ for all $f \in I$.

Perhaps an example? Let $k = \mathbb{Q}$ and $K=\mathbb{C}$ and take $x=(i,\pi)$ in the affine plane $\mathbb{C}^2$. What is the corresponding prime ideal $I$ of $\mathbb{Q}[z_1,z_2]$? Well, $i$ is a solution to $z_1^2+1=0$ whereas $\pi$ is transcendental over $\mathbb{Q}$, so $I=(z_1^2+1)$ and $R=\mathbb{Q}[z_1,z_2]/I= \mathbb{Q}(i)[z_2]$.

Is $x=(i,\pi)$ a generic point? Well, suppose it were, then the points of the corresponding affine variety $V$ would be all couples $(\pm i, \lambda)$ with $\lambda \in \mathbb{C}$ which is the union of two lines in $\mathbb{C}^2$. But then $i \otimes 1 + 1 \otimes i$ is a zero-divisor in $\mathbb{Q}(x) \otimes_{\mathbb{Q}} \mathbb{Q}(i)$. So no, it is not a generic point over $\mathbb{Q}$ and does not define an affine $\mathbb{Q}$-variety.

If we would have started with $k=\mathbb{Q}(i)$, then $x=(i,\pi)$ is generic and the corresponding affine variety $V$ consists of all points $(i,\lambda) \in \mathbb{C}^2$.

If this is new to you, consider yourself lucky to be young enough to have learned AG from Fulton’s Algebraic curves, or Hartshorne’s chapter 1 if you were that ambitious.

By 1955, Serre had written his FAC, and Bourbaki had developed enough commutative algebra to turn His attention to algebraic geometry.

La Ciotat congress (February 27th – March 6th, 1955)

With a splendid view on the mediterranean, a small group of Bourbaki members (Henri Cartan (then 51), with two of his former Ph.D. students: Jean-Louis Koszul (then 34), and Jean-Pierre Serre (then 29, and fresh Fields medaillist), Jacques Dixmier (then 31), and Pierre Samuel (then 34), a former student of Zariski’s) discussed a previous ‘Rapport de Geometrie Algebrique'(no. 206) and arrived at some unanimous decisions:

1. Algebraic varieties must be sets of points, which will not change at every moment.
2. One should include ‘abstract’ varieties, obtained by gluing (fibres, etc.).
3. All necessary algebra must have been previously proved.
4. The main application of purely algebraic methods being characteristic p, we will hide nothing of the unpleasant phenomena that occur there.

(Henri Cartan and Jean-Pierre Serre, photo by Paul Halmos)

The approach the propose is clearly based on Serre’s FAC. The points of an affine variety are the maximal ideals of an affine $k$-algebra, this set is equipped with the Zariski topology such that the local rings form a structure sheaf. Abstract varieties are then constructed by gluing these topological spaces and sheaves.

At the insistence of the ‘specialistes’ (Serre, and Samuel who had just written his book ‘Méthodes d’algèbre abstraite en géométrie algébrique’) two additional points are adopted, but with some hesitation. The first being a jibe at Weil:
1. …The congress, being a little disgusted by the artificiality of the generic point, does not want $K$ to be always of infinite transcendent degree over $k$. It admits that generic points are convenient in certain circumstances, but refuses to see them put to all the sauces: one could speak of a coordinate ring or of a functionfield without stuffing it by force into $K$.
2. Trying to include the arithmetic case.

The last point was problematic as all their algebras were supposed to be affine over a field $k$, and they wouldn’t go further than to allow the overfield $K$ to be its algebraic closure. Further, (and this caused a lot of heavy discussions at coming congresses) they allowed their varieties to be reducible.

The Chicago congress (May 30th – June 2nd 1955)

Apart from Samuel, a different group of Bourbakis gathered for the ‘second Caucus des Illinois’ at Eckhart Hall, including three founding members Weil (then 49), Dixmier (then 49) and Chevalley (then 46), and two youngsters, Armand Borel (then 32) and Serge Lang (then 28).

Their reaction to the La Ciotat meeting (the ‘congress of the public bench’) was swift:

(page 1) : “The caucus discovered a public bench near Eckhart Hall, but didn’t do much with it.”
(page 2) : “The caucus did not judge La Ciotat’s plan beyond reproach, and proposed a completely different plan.”

They wanted to include the arithmetic case by defining as affine scheme the set of all prime ideals (or rather, the localisations at these prime ideals) of a finitely generated domain over a Dedekind domain. They continue:

(page 4) : “The notion of a scheme covers the arithmetic case, and is extracted from the illustrious works of Nagata, themselves inspired by the scholarly cogitations of Chevalley. This means that the latter managed to sell all his ideas to the caucus. The Pope of Chicago, very happy to be able to reject very far projective varieties and Chow coordinates, willingly rallied to the suggestions of his illustrious colleague. However, we have not attempted to define varieties in the arithmetic case. Weil’s principle is that it is unclear what will come out of Nagata’s tricks, and that the only stable thing in arithmetic theory is reduction modulo $p$ a la Shimura.”

“Contrary to the decisions of La Ciotat, we do not want to glue reducible stuff, nor call them varieties. … We even decide to limit ourselves to absolutely irreducible varieties, which alone will have the right to the name of varieties.”

The insistence on absolutely irreducibility is understandable from Weil’s perspective as only they will have a generic point. But why does he go along with Chevalley’s proposal of an affine scheme?

In Weil’s approach, a point of the affine variety $V$ determined by a generic point $x=(x_1,\dots,x_n)$ determines a prime ideal $Q$ of the domain $R=k[x_1,\dots,x_n]$, so Chevalley’s proposal to consider all prime ideals (rather than only the maximal ideals of an affine algebra) seems right to Weil.

However in Weil’s approach there are usually several points corresponding to the same prime ideal $Q$ of $R$, namely all possible embeddings of the ring $R/Q$ in that huge field $K$, so whenever $R/Q$ is not algebraic over $k$, there are infinitely Weil-points of $V$ corresponding to $Q$ (whence the La Ciotat criticism that points of a variety were not supposed to change at every moment).

According to Ralf Krömer in his book Tool and Object – a history and philosophy of category theory this shift from Weil-points to prime ideals of $R$ may explain Chevalley’s use of the word ‘scheme’:

(page 164) : “The ‘scheme of the variety’ denotes ‘what is invariant in a variety’.”

Another time we will see how internal discussion influenced the further Bourbaki congresses until Grothendieck came up with his ‘hyperplan’.

Leave a Comment

The (somewhat less) Secret Bourbaki Archive

It has been many, many years since I’ve last visited the Bourbaki Archives.

The underground repository of the Bourbaki Secret Archives is a storage facility built beneath the cave of the former Capoulade Cafe. Given its sporadic use by staff and scholars, the entire space – including the Gallery of all intermediate versions of every damned Bourbaki book, the section reserved to Bourbaki’s internal notes, such as his Diktats, and all numbers of La Tribu, and the Miscellania, containing personal notes and other prullaria once belonging to its members – is illuminated by amber lighting activated only when movement is detected by strategically placed sensors, and is guarded by a private security firm, hired by the ACNB.

This description (based on that of the Vatican Secret Archives in the book The Magdalene Reliquary by Gary McAvoy) is far from the actual situation. The Bourbaki Archive has been pieced together from legates donated by some of its former members (including Delsarte, Weil, de Possel, Cartan, Samuel, and others), and consist of well over a hundredth labeled carton and plastic cases, fitting easily in a few standard white Billy Ikea bookcases.

The publicly available Bourbaki Archive is even much smaller. The Association des collaborateurs de Nicolas Bourbaki has strong opinions on which items can be put online. For years the available issues of La Tribu were restricted to those before 1953. I was once told that one of the second generation Bourbaki-members vetoed further releases.

As a result, we only had the fading (and often coloured) memories of Bourbaki-members to rely on if we wanted to reconstruct key events, for example, Bourbaki’s reluctance to include category theory in its works. Rather than to work on source material, we had to content ourselves with interviews, such as this one, the relevant part starts at 51.40 into the clip. See here for some other interesting time-slots.

On a recent visit to the Bourbaki Archives I was happy to see that all volumes of “La Tribu” (the internal newsletter of Bourbaki) are now online from 1940 until 1960.

Okay, it’s not the entire story yet but, for all you Grothendieck aficionados out there, it should be enough as G resigned from Bourbaki in 1960 with this letter (see here for a translation).

Grothendieck was present at just twelve Bourbaki congresses in the period between 1955 and 1960 (he was also present as a ‘cobaye’ at a 1951 congress in Nancy).

The period 1955-60 was crucial in the modern development of algebraic geometry. Serre’s ‘FAC’ was published, as was Grothendieck’s ‘Tohoku-paper’, there was the influential Chevalley seminar, and the internal Bourbaki-fight about categories and the functorial view.

Perhaps the definite paper on the later issue is Ralf Kromer’s La ‘Machine de Grothendieck’ se fonde-t-elle seulement sur les vocables metamathematiques? Bourbaki et les categories au cours des annees cinquante.

Kromer had access to most issues of La Tribu until 1962 (from the Delsarte archive in Nancy), but still felt the need to justify his use of these sources to the ACNB (footnote 9 of his paper):

“L’autorisation que j’ai obtenue par le Comité scientifique des Archives de la création des mathématiques, unité du CNRS qui fut chargée jusqu’en 2003 de la mise à disposition de ces archives, me donne également le droit d’utiliser les sources datant des années postérieures à l’année 1953, que j’avais consultées auparavant aux Archives Jean Delsarte, soit avant que l’ACNB (Association des Collaborateurs de Nicolas Bourbaki) ne rende publique sa décision d’ouvrir ses archives et ne décide des parties qui seraient consultables.

J’ai ainsi bénéficié d’une occasion qui ne se présenterait sans doute plus aujourd’hui, mais c’est en toute légitimité que je puis m’appuyer sur cette riche documentation. Toutefois, la collection des Archives Jean Delsarte étant à son tour limitée aux années antérieures à 1963, je n’ai pu étudier la discussion ultérieure.”

The Association des Collaborateurs de Nicolas Bourbaki made retirement from active B-membership mandatory at the age of 50. One might expect of it to open up all documents in its archives which are older than fifty years.

Meanwhile, we’ll have a go at the 1940-1960 issues of La Tribu.

Leave a Comment