Skip to content →

Tag: Kontsevich

coalgebras and non-geometry 3

Last
time we saw that the _coalgebra of distributions_ of a
noncommutative manifold can be described as a coalgebra
Takeuchi-equivalent to the path coalgebra of a huge quiver. This
infinite quiver has as its vertices the isomorphism classes of finite
dimensional simple representations of the qurve A (the coordinate ring
of the noncommutative manifold) and there are as many directed arrows
between the vertices corresponding to the simples S and T as is the
dimension of $Ext^1_A(S,T) $.

The fact that this
coalgebra of distributions is equivalent to the path coalgebra of
_some_ quiver is in the Kontsevich-Soibelman
paper
though it would have been nice if they had given reference for
this fact to the paper Wedge Products and
Cotensor Coalgebras in Monoidal Categories
by Ardizzoni or to
previous work by P. Jara, D. Llena, L. Merino and D. Stefan,
“Hereditary and formally smooth coalgebras”, Algebr.
Represent. Theory 8 (2005), 363-374. In those papers it is shown that a
coalgebra with coseparable coradical is hereditary if and only if it
is formally smooth if and only if it is a cotensor coalgebra of some
bicomodule.

At first this looks just like the dual version of
the classical result that a finite dimensional hereditary algebra is
Morita equivalent to the path algebra of a quiver (which is indeed what
the proof does) but again the condition that the coradical is
coseparable does not require the coradical to be finite dimensional…
In our case, the coradical is indeed coseparable being the direct sum
over all matrix coalgebras corresponding to the simple representations.
Hence, we can again recover the _points_ of our noncommutative manifold
from the direct summands of the coradical. Fortunately, one can
compute this huge coalgebra of distributions from a small quiver, the
_one quiver to rule them all_, but as I’ve been babbling about all of
this here [numerous
times](http://www.neverendingbooks.org/?s=one+quiver) I’ll let the
interested find out for themselves how you use it (a) to get at the
isoclasses of all simples (hint : morally they are the smooth points of
the quotient varieties of n-dimensional representations and enough tools
have been developed recently to spot some fake simples, that is smooth
proper semi-simple points) and (b) to compute the _ragball_, that is the
huge quiver with vertex set the simples and arows as described
above. Over the years I’ve calculated several one-quivers for a
variety of qurves (such as amalgamated free products of finite groups
and smooth curves). If you are in for a puzzle, try to determine it for
the qurve $~(\mathbb{C}[x] \ast C_2) \ast_{\mathbb{C}
C_2} \mathbb{C} PSL_2(\mathbb{Z}) \ast_{\mathbb{C} C_3}
(\mathbb{C}[x] \ast C_3) $ The answer is a mysterious
hexagon

Leave a Comment

coalgebras and non-geometry

In this
series of posts I’ll try to make at least part of the recent
[Kontsevich-Soibelman paper](http://www.arxiv.org/abs/math.RA/0606241) a
bit more accessible to algebraists. In non-geometry, the algebras
corresponding to *smooth affine varieties* I’ll call **qurves** (note
that they are called **quasi-free algebras** by Cuntz & Quillen and
**formally smooth** by Kontsevich). By definition, a qurve in an affine
$\mathbb{C} $-algebra A having the lifting property for algebra
maps through nilpotent ideals (extending Grothendieck’s characterization
of smooth affine algebras in the commutative case). Examples of qurves
are : finite dimensional semi-simple algebras (for example, group
algebras $\mathbb{C} G $ of finite groups), coordinate rings of
smooth affine curves or a noncommutative mixture of both, skew-group
algebras $\mathbb{C}[X] \ast G $ whenever G is a finite group of
automorphisms of the affine curve X. These are Noetherian examples but
in general a qurve is quite far from being Noetherian. More typical
examples of qurves are : free algebras $\mathbb{C} \langle
x_1,\ldots,x_k \rangle $ and path algebras of finite quivers
$~\mathbb{C} Q $. Recall that a finite quiver Q s just a
directed graph and its path algebra is the vectorspace spanned by all
directed paths in Q with multiplication induced by concatenation of
paths. Out of these building blocks one readily constructs more
involved qurves via universal algebra operations such as (amalgamated)
free products, universal localizations etc. In this way, the
groupalgebra of the modular group $SL_2(\mathbb{Z}) $ (as well
as that of a congruence subgroup) is a qurve and one can mix groups with
finite groupactions on curves to get qurves like $ (\mathbb{C}[X]
\ast G) \ast_{\mathbb{C} H} \mathbb{C} M $ whenever H is a common
subgroup of the finite groups G and M. So we have a huge class of
qurve-examples obtained from mixing finite and arithmetic groups with
curves and quivers. Qurves can we used as *machines* generating
interesting $A_{\infty} $-categories. Let us start by recalling
some facts about finite closed subschemes of an affine smooth variety Y
in the commutative case. Let **fdcom** be the category of all finite
dimensional commutative $\mathbb{C} $-algebras with morphisms
being onto algebra morphisms, then the study of finite closed subschemes
of Y is essentially the study of the covariant functor **fdcom** –>
**sets** assigning to a f.d. commutative algebra S the set of all onto
algebra maps from $\mathbb{C}[Y] $ to S. S being a f.d.
commutative semilocal algebra is the direct sum of local factors $S
\simeq S_1 \oplus \ldots \oplus S_k $ where each factor has a
unique maximal ideal (a unique point in Y). Hence, our study reduces to
f.d. commutative images with support in a fixed point p of Y. But all
such quotients are also quotients of the completion of the local ring of
Y at p which (because Y is a smooth variety, say of dimension n) is
isomorphic to formal power series
$~\mathbb{C}[[x_1,\ldots,x_n]] $. So the local question, at any
point p of Y, reduces to finding all settings
$\mathbb{C}[[x_1,\ldots,x_n]] \twoheadrightarrow S
\twoheadrightarrow \mathbb{C} $ Now, we are going to do something
strange (at least to an algebraist), we’re going to take duals and
translate the above sequence into a coalgebra statement. Clearly, the
dual $S^{\ast} $ of any finite dimensional commutative algebra
is a finite dimensional cocommutative coalgebra. In particular
$\mathbb{C}^{\ast} \simeq \mathbb{C} $ where the
comultiplication makes 1 into a grouplike element, that is
$\Delta(1) = 1 \otimes 1 $. As long as the (co)algebra is
finite dimensional this duality works as expected : onto maps correspond
to inclusions, an ideal corresponds to a sub-coalgebra a sub-algebra
corresponds to a co-ideal, so in particular a local commutative algebra
corresponds to an pointed irreducible cocommutative coalgebra (a
coalgebra is said to be irreducible if any two non-zero subcoalgebras
have non-zero intersection, it is called simple if it has no non-zero
proper subcoalgebras and is called pointed if all its simple
subcoalgebras are one-dimensional. But what about infinite dimensional
algebras such as formal power series? Well, here the trick is not to
take all dual functions but only those linear functions whose kernel
contains a cofinite ideal (which brings us back to the good finite
dimensional setting). If one takes only those good linear functionals,
the ‘fancy’-dual $A^o $of an algebra A is indeed a coalgebra. On
the other hand, the full-dual of a coalgebra is always an algebra. So,
between commutative algebras and cocommutative coalgebras we have a
duality by associating to an algebra its fancy-dual and to a coalgebra
its full-dual (all this is explained in full detail in chapter VI of
Moss Sweedler’s book ‘Hopf algebras’). So, we can dualize the above pair
of onto maps to get coalgebra inclusions $\mathbb{C} \subset
S^{\ast} \subset U(\mathfrak{a}) $ where the rightmost coalgebra is
the coalgebra structure on the enveloping algebra of the Abelian Lie
algebra of dimension n (in which all Lie-elements are primitive, that is
$\Delta(x) = x \otimes 1 + 1 \otimes x $ and indeed we have that
$U(\mathfrak{a})^{\ast} \simeq \mathbb{C}[[x_1,\ldots,x_n]] $.
We have translated our local problem to finding all f.d. subcoalgebras
(containing the unique simple) of the enveloping algebra. But what is
the point of this translation? Well, we are not interested in the local
problem, but in the global problem, so we somehow have to **sum over all
points**. Now, on the algebra level that is a problem because the sum of
all local power series rings over all points is no longer an algebra,
whereas the direct sum of all pointed irreducible coalgebras $~B_Y
= \oplus_{p \in Y} U(\mathfrak{a}_p) $ is again a coalgebra! That
is, we have found a huge coalgebra (which we call the coalgebra of
‘distributions’ on Y) such that for every f.d. commutative algebra S we
have $Hom_{comm alg}(\mathbb{C}[Y],S) \simeq Hom_{cocomm
coalg}(S^{\ast},B_Y) $ Can we get Y back from this coalgebra of
districutions? Well, in a way, the points of Y correspond to the
group-like elements, and if g is the group-like corresponding to a point
p, we can recover the tangent-space at p back as the g-primitive
elements of the coalgebra of distributions, that is the elements such
that $\Delta(x) = x \otimes g + g \otimes x $. Observe that in
this commutative case, there are no **skew-primitives**, that is
elements such that $\Delta(x) = x \otimes g + h \otimes x $ for
different group-likes g and h. This is the coalgebra translation of the
fact that a f.d. semilocal commutative algebra is the direct sum of
local components. This is something that will definitely change if we
try to extend the above to the case of qurves (to be continued).

One Comment

non-(commutative) geometry

Now
that my non-geometry
post
is linked via the comments in this
string-coffee-table post
which in turn is available through a
trackback from the Kontsevich-Soibelman
paper
it is perhaps useful to add a few links.

The little
I’ve learned from reading about Connes-style non-commutative geometry is
this : if you have a situation where a discrete group is acting with a
bad orbit-space (for example, $GL_2(\mathbb{Z})$ acting on the whole
complex-plane, rather than just the upper half plane) you can associate
to this a $C^*$-algebra and study invariants of it and interprete them
as topological information about this bad orbit space. An intruiging
example is the one I mentioned and where the additional noncommutative
points (coming from the orbits on the real axis) seem to contain a lot
of modular information as clarified by work of Manin&Marcolli and
Zagier. Probably the best introduction into Connes-style
non-commutative geometry
from this perspective are the Lecture on
Arithmetic Noncommutative Geometry
by Matilde Marcolli. To
algebraists : this trick is very similar to looking at the
skew-group algebra $\mathbb{C}[x_1,\ldots,x_n] * G$ if
you want to study the _orbifold_ for a finite group action on affine
space. But as algebraist we have to stick to affine varieties and
polynomials so we can only deal with the case of a finite group,
analysts can be sloppier in their functions, so they can also do
something when the group is infinite.

By the way, the
skew-group algebra idea is also why non-commutative algebraic
geometry
enters string-theory via the link with orbifolds. The
easiest (and best understood) example is that of Kleinian singularities.
The best introduction to this idea is via the Representations
of quivers, preprojective algebras and deformations of quotient
singularities
notes by Bill Crawley-Boevey.

Artin-style non-commutative geometry aka
non-commutative projective geometry originated from the
work of Artin-Tate-Van den Bergh (in the west) and Odeskii-Feigin (in
the east) to understand Sklyanin algebras associated to elliptic curves
and automorphisms via ‘geometric’ objects such as point- (and
fat-point-) modules, line-modules and the like. An excellent survey
paper on low dimensional non-commutative projective geometry is Non-commutative curves and surfaces by Toby
Stafford and
Michel Van den Bergh
. The best introduction is the (also
neverending…) book-project Non-
commutative algebraic geometry
by Paul Smith who
maintains a
noncommutative geometry and algebra resource page
page (which is
also available from the header).

Non-geometry
started with the seminal paper ‘Algebra extensions and
nonsingularity’, J. Amer. Math. Soc. 8 (1995), 251-289 by Joachim
Cuntz
and Daniel Quillen but which is not available online. An
online introduction is Noncommutative smooth
spaces
by Kontsevich and Rosenberg. Surely, different people have
different motivations to study non-geometry. I assume Cuntz got
interested because inductive limits of separable algebras are quasi-free
(aka formally smooth aka qurves). Kontsevich and Soibelman want to study
morphisms and deformations of $A_{\infty}$-categories as they explain in
their recent
paper
. My own motivation to be interested in non-geometry is the
hope that in the next decades one will discover new exciting connections
between finite groups, algebraic curves and arithmetic groups (monstrous
moonshine
being the first, and still not entirely understood,
instance of this). Part of the problem is that these three topics seem
to be quite different, yet by taking group-algebras of finite or
arithmetic groups and coordinate rings of affine smooth curves they all
turn out to be quasi-free algebras, so perhaps non-geometry is the
unifying theory behind these seemingly unrelated topics.

Leave a Comment

something to think about

This is
not going to be the post I should be writing (this morning I found out
that the last post
must have been rather cryptic as I didnt manage to get it explained to
people who should know at least half of the picture, so at the moment
Im writing out a short note giving the dictionary between the Kontsevich-Soibelman
approach
and my
own
. I’m still undecided whether this will make it here, or to
the arXiv or to my dustbin…).

Instead I want to draw your
attention to one of the best posts I’ve read lately. It’s
called A man’s character is his fate and it’s from
Christine C. Dantas’ blog Christine’s Background
Independence
and clearly has a history which you may know if you
somewhat followed (some) physics blogs this week or which you may
reconstruct from this and this from her site and something else.

Leave a Comment

non-geometry

Here’s
an appeal to the few people working in Cuntz-Quillen-Kontsevich-whoever
noncommutative geometry (the one where smooth affine varieties
correspond to quasi-free or formally smooth algebras) : let’s rename our
topic and call it non-geometry. I didn’t come up with
this term, I heard in from Maxim Kontsevich in a talk he gave a couple
of years ago in Antwerp. There are some good reasons for this name
change.

The term _non-commutative geometry_ is already taken by
much more popular subjects such as _Connes-style noncommutative
differential geometry_ and _Artin-style noncommutative algebraic
geometry_. Renaming our topic we no longer have to include footnotes
(such as the one in the recent Kontsevich-Soibelman
paper
) :

We use “formal” non-commutative geometry
in tensor categories, which is different from the non-commutative
geometry in the sense of Alain Connes.

or to make a
distinction between _noncommutative geometry in the small_ (which is
Artin-style) and _noncommutative geometry in the large_ (which in
non-geometry) as in the Ginzburg notes.

Besides, the stress in _non-commutative geometry_ (both in Connes-
and Artin-style) in on _commutative_. Connes-style might also be called
‘K-theory of $C^*$-algebras’ and they use the topological
information of K-theoretic terms in the commutative case as guidance to
speak about geometrical terms in the nocommutative case. Similarly,
Artin-style might be called ‘graded homological algebra’ and they
use Serre’s homological interpretation of commutative geometry to define
similar concepts for noncommutative algebras. Hence, non-commutative
geometry is that sort of non-geometry which is almost
commutative…

But the main point of naming our subject
non-geometry is to remind us not to rely too heavily on our
(commutative) geometric intuition. For example, we would expect a
manifold to have a fixed dimension. One way to define the dimension is
as the trancendence degree of the functionfield. However, from the work
of Paul Cohn (I learned about it through Aidan Schofield) we know that
quasi-free algebras usually do’nt have a specific function ring of
fractions, rather they have infinitely many good candidates for it and
these candidates may look pretty unrelated. So, at best we can define a
_local dimension_ of a noncommutative manifold at a point, say given by
a simple representation. It follows from the Cunz-Quillen tubular
neighborhood result that the local ring in such a point is of the
form

$M_n(\mathbb{C} \langle \langle z_1,\ldots,z_m \rangle
\rangle) $

(this s a noncommutative version of the classical fact
than the local ring in a point of a d-dimensional manifold is formal
power series $\mathbb{C} [[ z_1,\ldots,z_d ]] $) but in non-geometry both
m (the _local_ dimension) and n (the dimension of the simple
representation) vary from point to point. Still, one can attach to the
quasi-free algebra A a finite amount of data (in fact, a _finite_ quiver
and dimension vector) containing enough information to compute the (n,m)
couples for _all_ simple points (follows from the one quiver to rule them
all paper
or see this for more
details).

In fact, one can even extend this to points
corresponding to semi-simple representations in which case one has to
replace the matrix-ring above by a ring Morita equivalent to the
completion of the path algebra of a finite quiver, the _local quiver_ at
the point (which can also be computer from the one-quiver of A. The
local coalgebras of distributions at such points of
Kontsevich&Soibelman are just the dual coalgebras of these local
algebras (in math.RA/0606241 they
merely deal with the n=1 case but no doubt the general case will appear
in the second part of their paper).

The case of the semi-simple
point illustrates another major difference between commutative geometry
and non-geometry, whereas commutative simples only have self-extensions
(so the distribution coalgebra is just the direct sum of all the local
distributions) noncommutative simples usually have plenty of
non-isomorphic simples with which they have extensions, so to get at the
global distribution coalgebra of A one cannot simply add the locals but
have to embed them in more involved coalgebras.

The way to do it
is somewhat concealed in the
third version of my neverending book
(the version that most people
found incomprehensible). Here is the idea : construct a huge uncountable
quiver by taking as its vertices the isomorphism classes of all simple
A-representations and with as many arrows between the simple vertices S
and T as the dimension of the ext-group between these simples (and
again, these dimensions follow from the knowledge of the one-quiver of
A). Then, the global coalgebra of distributions of A is the limit over
all cotensor coalgebras corresponding to finite subquivers). Maybe I’ll
revamp this old material in connection with the Kontsevich&Soibelman
paper(s) for the mini-course I’m supposed to give in september.

Leave a Comment

a good day at the arxiv

The
arXiv is a bit like cable tv : on certain days there seems to be nothing
interesting on, whereas on others it’s hard to decide what to see in
real time and what to record for later. Today was one of the better
days, at least on the arXiv. Pavel Etingof submitted the
notes of a course he gave at ETH in the spring and summer of 2005 Lectures on
Calogero-Moser systems
. I always sympathize with people taking time
to explain what they are interested in to non-experts, especially if
they even take more time to write up course notes so that the rest of us
can also benefit from these talks. Besides, it is always more rewarding
to learn a topic from a key-figure such as Etingof, rather than sitting
through talks on this given by people who only embrace a topic as a
career move. However, as I’m no longer that much into Calogero-Moser
stuff I’ve put Pavel’s notes in recording mode as I definitely have to
spend some time getting through that other paper posted today : Notes on A-infinity
algebras, A-infinity categories and non-commutative geometry. I
by
Maxim
Kontsevich
and Yan
Soibelman
. They really come close to things that interest me right
now and although I’m not the greatest coalgebra-fan, they may give me
just enough reasons to bite the bullet. On a different topic : with
plenty of help from Jacques Distler, my
neverending planet
is now also serving MathML, but you need to view it using Firefox and
have all the required fonts
installed.

Leave a Comment

noncommutative topology (1)

A couple of days ago Ars Mathematica had a post Cuntz on noncommutative topology pointing to a (new, for me) paper by Joachim Cuntz

A couple of years ago, the Notices of the AMS featured an article on noncommutative geometry a la Connes: Quantum Spaces and Their Noncommutative Topology by Joachim Cuntz. The hallmark of this approach is the heavy reliance on K theory. The first few pages of the article are fairly elementary (and full of intriguing pictures), before the K theory takes over.

A few comments are in order. To begin, the paper is **not** really about noncommutative geometry a la Connes, but rather about noncommutative geometry a la Cuntz&Quillen (based on quasi-free algebras) or, equivalently, a la Kontsevich (formally smooth algebras) or if I may be so bold a la moi (qurves).

About the **intruiging pictures** : it seems to be a recent trend in noncommutative geometry research papers to include meaningless pictures to lure the attention of the reader. But, unlike aberrations such as the recent pastiche by Alain Connes and Mathilde Marcolli A Walk in the Noncommutative Garden, Cuntz is honest about their true meaning

I am indebted to my sons, Nicolas and Michael,
for the illustrations to the examples above. Since
these pictures have no technical meaning, they
are only meant to provide a kind of suggestive
visualization of the corresponding quantum spaces.

As one of these pictures made it to the cover of the **Notices** an explanation was included by the cover-editor

About the Cover :

The image on this month’s cover arose from
Joachim Cuntz’s effort to render into visible art
his own internal vision of a noncommutative
torus, an object otherwise quite abstract. His
original idea was then implemented by his son
Michael in a program written in Pascal. More
explicitly, he says that the construction started
out with a triangle in a square, then translated
the triangle by integers times a unit along a line
with irrational slope; plotted the images thus
obtained in a periodic manner; and stopped
just before the figure started to seem cluttered.
Many mathematicians carry around inside
their heads mental images of the abstractions
they work with, and manipulate these objects
somehow in conformity with their mental imagery. They probably also make aesthetic judgements of the value of their work according to
the visual qualities of the images. These presumably common phenomena remain a rarely
explored domain in either art or psychology.

—Bill Casselman(covers@ams.org)

There can be no technical meaning to the pictures as in the Connes and Cuntz&Quillen approach there is only a noncommutative algebra and _not_ an underlying geometric space, so there is no topology, let alone a noncommutative topology. Of course, I do understand why Cuntz&others name it as such. They view the noncommutative algebra as the ring of functions on some virtual noncommutative space and they compute topological invariants (such as K-groups) of the algebras and interprete them as information about the noncommutative topology of these virtual and unspecified spaces.

Still, it is perfectly possible to associate to a qurve (aka quasi-free algebra or formally smooth algebra) a genuine noncommutative topological space. In this series of posts I’ll explain the little I know of the history of this topic, the thing I posted about it a couple of years ago, why I abandoned the project and the changes I made to it since and the applications I have in mind, both to new problems (such as the birational_classification of qurves) as well as classical problems (such as rationality problems for $PGL_n $ quotient spaces).

Although others have tried to define noncommutative topologies before, I learned about them from Fred Van Oystaeyen. Fred spend the better part of his career constructing structure sheaves associated to noncommutative algebras, mainly to prime Noetherian algebras (the algebras of preference for the majority of non-commutative algebraists). So, suppose you have an ordinary (meaning, the usual commutative definition) topological space X associated to this algebra R, he wants to define an algebra of sections on every open subset $X(\sigma) $ by taking a suitable localization of the algebra $Q_{\sigma}(R) $. This localization is taken with respect to a suitable filter of left ideals $\mathcal{L}(\sigma) $ of R and is defined to be the subalgebra of the classiocal quotient ring $Q(R) $ (which exists because $R$ is prime Noetherian in which case it is a simple Artinian algebra)

$Q_{\sigma}(R) = { q \in Q(R)~|~\exists L \in \mathcal{L}(\sigma)~:~L q \subset R } $

(so these localizations are generalizations of the usual Ore-type rings of fractions). But now we come to an essential point : if we want to glue this rings of sections together on an intersection $X(\sigma) \cap X(\tau) $ we want to do this by ‘localizing further’. However, there are two ways to do this, either considering $~Q_{\sigma}(Q_{\tau}(R)) $ or considering $Q_{\tau}(Q_{\sigma}(R)) $ and these two algebras are only the same if we impose fairly heavy restrictions on the filters (or on the algebra) such as being compatible.

As this gluing property is essential to get a sheaf of noncommutative algebras we seem to get stuck in the general (non compatible) case. Fred’s way out was to make a distinction between the intersection $X_{\sigma} \cap X_{\tau} $ (on which he put the former ring as its ring of sections) and the intersection $X_{\tau} \cap X_{\sigma} $ (on which he puts the latter one). So, the crucial new ingredient in a noncommutative topology is that the order of intersections of opens matter !!!

Of course, this is just the germ of an idea. He then went on to properly define what a noncommutative topology (and even more generally a noncommutative Grothendieck topology) should be by using this localization-example as guidance. I will not state the precise definition here (as I will have to change it slightly later on) but early version of it can be found in the Antwerp Ph.D. thesis by Luc Willaert (1995) and in Fred’s book Algebraic geometry for associative algebras.

Although _qurves_ are decidedly non-Noetherian (apart from trivial cases), one can use Fred’s idea to associate a noncommutative topological space to a qurve as I will explain next time. The quick and impatient may already sneak at my old note a non-commutative topology on rep A but please bear in mind that I changed my mind since on several issues…

Leave a Comment

From Galois to NOG


Evariste Galois (1811-1832) must rank pretty high on the all-time
list of moving last words. Galois was mortally wounded in a duel he
fought with Perscheux d\’Herbinville on May 30th 1832, the reason for
the duel not being clear but certainly linked to a girl called
Stephanie, whose name appears several times as a marginal note in
Galois\’ manuscripts (see illustration). When he died in the arms of his
younger brother Alfred he reportedly said “Ne pleure pas, j\’ai besoin
de tout mon courage pour mourir ‚àö‚Ć 20 ans”. In this series I\’ll
start with a pretty concrete problem in Galois theory and explain its
elegant solution by Aidan Schofield and Michel Van den Bergh.
Next, I\’ll rephrase the problem in non-commutative geometry lingo,
generalise it to absurd levels and finally I\’ll introduce a coalgebra
(yes, a co-algebra…) that explains it all. But, it will take some time
to get there. Start with your favourite basefield $k$ of
characteristic zero (take $k = \mathbb{Q}$ if you have no strong
preference of your own). Take three elements $a,b,c$ none of which
squares, then what conditions (if any) must be imposed on $a,b,c$ and $n
\in \mathbb{N}$ to construct a central simple algebra $\Sigma$ of
dimension $n^2$ over the function field of an algebraic $k$-variety such
that the three quadratic fieldextensions $k\sqrt{a}, k\sqrt{b}$ and
$k\sqrt{c}$ embed into $\Sigma$? Aidan and Michel show in \’Division
algebra coproducts of index $n$\’ (Trans. Amer. Math. Soc. 341 (1994),
505-517) that the only condition needed is that $n$ is an even number.
In fact, they work a lot harder to prove that one can even take $\Sigma$
to be a division algebra. They start with the algebra free
product
$A = k\sqrt{a} \ast k\sqrt{b} \ast k\sqrt{c}$ which is a pretty
monstrous algebra. Take three letters $x,y,z$ and consider all
non-commutative words in $x,y$ and $z$ without repetition (that is, no
two consecutive $x,y$ or $z$\’s). These words form a $k$-basis for $A$
and the multiplication is induced by concatenation of words subject to
the simplifying relations $x.x=a,y.y=b$ and $z.z=c$.

Next, they look
at the affine $k$-varieties $\mathbf{rep}(n) A$ of $n$-dimensional
$k$-representations of $A$ and their irreducible components. In the
parlance of $\mathbf{geometry@n}$, these irreducible components correspond
to the minimal primes of the level $n$-approximation algebra $\int(n) A$.
Aidan and Michel worry a bit about reducedness of these components but
nowadays we know that $A$ is an example of a non-commutative manifold (a
la Cuntz-Quillen or Kontsevich-Rosenberg) and hence all representation
varieties $\mathbf{rep}n A$ are smooth varieties (whence reduced) though
they may have several connected components. To determine the number of
irreducible (which in this case, is the same as connected) components
they use _Galois descent
, that is, they consider the algebra $A
\otimes_k \overline{k}$ where $\overline{k}$ is the algebraic closure of
$k$. The algebra $A \otimes_k \overline{k}$ is the group-algebra of the
group free product $\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z}
\ast \mathbb{Z}/2\mathbb{Z}$. (to be continued…) A digression : I
cannot resist the temptation to mention the tetrahedral snake problem
in relation to such groups. If one would have started with $4$ quadratic
fieldextensions one would get the free product $G =
\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z} \ast
\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z}$. Take a supply of
tetrahedra and glue them together along common faces so that any
tertrahedron is glued to maximum two others. In this way one forms a
tetrahedral-snake and the problem asks whether it is possible to make
such a snake having the property that the orientation of the
\’tail-tetrahedron\’ in $\mathbb{R}^3$ is exactly the same as the
orientation of the \’head-tetrahedron\’. This is not possible and the
proof of it uses the fact that there are no non-trivial relations
between the four generators $x,y,z,u$ of $\mathbb{Z}/2\mathbb{Z} \ast
\mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z} \ast
\mathbb{Z}/2\mathbb{Z}$ which correspond to reflections wrt. a face of
the tetrahedron (in fact, there are no relations between these
reflections other than each has order two, so the subgroup generated by
these four reflections is the group $G$). More details can be found in
Stan Wagon\’s excellent book The Banach-tarski paradox, p.68-71.

Leave a Comment

a cosmic Galois group

Are
there hidden relations between mathematical and physical constants such
as

$\frac{e^2}{4 \pi \epsilon_0 h c} \sim \frac{1}{137} $

or are these numerical relations mere accidents? A couple of years
ago, Pierre Cartier proposed in his paper A mad day’s work : from Grothendieck to Connes and
Kontsevich : the evolution of concepts of space and symmetry
that
there are many reasons to believe in a cosmic Galois group acting on the
fundamental constants of physical theories and responsible for relations
such as the one above.

The Euler-Zagier numbers are infinite
sums over $n_1 > n_2 > ! > n_r \geq 1 $ of the form

$\zeta(k_1,\dots,k_r) = \sum n_1^{-k_1} \dots n_r^{-k_r} $

and there are polynomial relations with rational coefficients between
these such as the product relation

$\zeta(a)\zeta(b)=\zeta(a+b)+\zeta(a,b)+\zeta(b,a) $

It is
conjectured that all polynomial relations among Euler-Zagier numbers are
consequences of these product relations and similar explicitly known
formulas. A consequence of this conjecture would be that
$\zeta(3),\zeta(5),\dots $ are all trancendental!

Drinfeld
introduced the Grothendieck-Teichmuller group-scheme over $\mathbb{Q} $
whose Lie algebra $\mathfrak{grt}_1 $ is conjectured to be the free Lie
algebra on infinitely many generators which correspond in a natural way
to the numbers $\zeta(3),\zeta(5),\dots $. The Grothendieck-Teichmuller
group itself plays the role of the Galois group for the Euler-Zagier
numbers as it is conjectured to act by automorphisms on the graded
$\mathbb{Q} $-algebra whose degree $d $-term are the linear combinations
of the numbers $\zeta(k_1,\dots,k_r) $ with rational coefficients and
such that $k_1+\dots+k_r=d $.

The Grothendieck-Teichmuller
group also appears mysteriously in non-commutative geometry. For
example, the set of all Kontsevich deformation quantizations has a
symmetry group which Kontsevich conjectures to be isomorphic to the
Grothendieck-Teichmuller group. See section 4 of his paper Operads and motives in
deformation quantzation
for more details.

It also appears
in the renormalization results of Alain Connes and Dirk Kreimer. A very
readable introduction to this is given by Alain Connes himself in Symmetries Galoisiennes
et renormalisation
. Perhaps the latest news on Cartier’s dream of a
cosmic Galois group is the paper by Alain Connes and Matilde Marcolli posted
last month on the arXiv : Renormalization and
motivic Galois theory
. A good web-page on all of this, including
references, can be found here.

Leave a Comment

algebraic vs. differential nog


OK! I asked to get side-tracked by comments so now that there is one I’d better deal with it at once. So, is there any relation between the non-commutative (algebraic) geometry based on formally smooth algebras and the non-commutative _differential_ geometry advocated by Alain Connes?
Short answers to this question might be (a) None whatsoever! (b) Morally they are the same! and (c) Their objectives are quite different!

As this only adds to the confusion, let me try to explain each point separately after issuing a _disclaimer_ that I am by no means an expert in Connes’ NOG neither in $C^* $-algebras. All I know is based on sitting in some lectures by Alain Connes, trying at several times to make sense of his terribly written book and indeed by reading the Landi notes in utter desperation.
(a) _None whatsoever!_ : Connes’ approach via spectral triples is modelled such that one gets (suitable) ordinary (that is, commutative) manifolds into this framework. The obvious algebraic counterpart for this would be a statement to the effect that the affine coordinate ring $\mathbb{C}[X] $ of a (suitable) smooth affine variety X would be formally smooth. Now you’re in for a first shock : the only affine smooth varieties for which this holds are either _points_ or _curves_! Not much of a geometry huh? In fact, that is the reason why I prefer to call formally smooth algebras just _qurves_ …
(b) _Morally they are the same_ : If you ever want to get some differential geometry done, you’d better have a connection on the tangent bundle! Now, Alain Connes extended the notion of a connection to the non-commutative world (see for example _the_ book) and if you take the algebraic equivalent of it and ask for which algebras possess such a connection, you get _precisely_ the formally smooth algebras (see section 8 of the Cuntz-Quillen paper “Algebra extensions and nonsingularity” Journal AMS Vol 8 (1991). Besides there is a class of $C^* $-algebras which are formally smooth algebras : the AF-algebras which also feature prominently in the Landi notes (although they are virtually never affine, that is, finitely generated as an algebra).
(c) _Their objectives are quite different!_ : Connes’ formalism aims to define a length function on a non-commutative manifold associated to a $C^* $-algebra. Non-commutative geometry based on formally smooth algebras has no interest in defining some sort of space associated to the algebra. The major importance of formally smooth algebras (as advocated by Maxim Kontsevich is that such an algebra A can be seen as a _machine_ producing an infinite family of ordinary commutative manifolds via its _representation varieties_ $\mathbf{rep}_n~A $ which are manifolds equipped with a $GL_n $-action. Non-commutative functions and diifferential forms defined at the level of the formally smooth algebra A do determine similar $GL_n $-invariant features on _all_ of these representation varieties at once.

Leave a Comment