Skip to content →

Tag: Grothendieck

Grothendieck’s gribouillis (6)

After the death of Grothendieck in November 2014, about 30.000 pages of his writings were found in Lasserre.



Since then I’ve been trying to follow what happened to them:

So, what’s new?

Well, finally we have closure!

Last Friday, Grothendieck’s children donated the 30.000 Laserre pages to the Bibliotheque Nationale de France.

Via Des manuscrits inédits du génie des maths Grothendieck entrent à la BnF (and Google-translate):

“The singularity of these manuscripts is that they “cover many areas at the same time” to form “a whole, a + cathedral work +, with undeniable literary qualities”, analyzes Jocelyn Monchamp, curator in the manuscripts department of the BnF.

More than in “Récoltes et semailles”, very autobiographical, the author is “in a metaphysical retreat”, explains the curator, who has been going through the texts with passion for a month. A long-term task as the writing, in fountain pen, is dense and difficult to decipher. “I got used to it… And the advantage for us was that the author had methodically paginated and dated the texts.” One of the parts, entitled “Structures of the psyche”, a book of enigmatic diagrams translating psychology into algebraic language. In another, “The Problem of Evil”, he unfolds over 15,000 pages metaphysical meditations and thoughts on Satan. We sense a man “caught up by the ghosts of his past”, with an adolescence marked by the Shoah, underlines Johanna Grothendieck whose grandfather, a Russian Jew who fled Germany during the war, died at Auschwitz.

The deciphering work will take a long time to understand everything this genius wanted to say.

On Friday, the collection joined the manuscripts department of the Richelieu site, the historic cradle of the BnF, alongside the writings of Pierre and Marie Curie and Louis Pasteur. It will only be viewable by researchers.“This is a unique testimony in the history of science in the 20th century, of major importance for research,” believes Jocelyn Monchamp.

During the ceremony, one of the volumes was placed in a glass case next to a manuscript by the ancient Greek mathematician Euclid.”

Probably, the recent publication of Récoltes et Semailles clinched the deal.

Also, it is unclear at this moment whether the Istituto Grothendieck, which harbours The centre for Grothendieck studies coordinated by Mateo Carmona (see this post) played a role in the decision making, nor what role the Centre will play in the further studies of Grothendieck’s gribouillis.

For other coverage on this, see Hermit ‘scribblings’ of eccentric French math genius unveiled.

3 Comments

Grothendieck’s gribouillis (5)

After the death of Grothendieck in November 2014, about 30.000 pages of his writings were found in Lasserre.



Since then I’ve been trying to follow what happened to them:

So, what’s new?

In December last year, there was the official opening of the Istituto Grothendieck in the little town of Mondovi in Northern Italy.The videos of the talks given at that meeting are now online.

The Institute houses two centres, the Centre for topos theory and its applications with mission statement:

The Centre for Topoi Theory and its Applications carries out highly innovative research in the field of Grothendieck’s topos theory, oriented towards the development of the unifying role of the concept of topos across different areas of mathematics.

Particularly relevant to these aims is the theory of topos-theoretic ‘bridges’ of Olivia Caramello, coordinator of the Centre and principal investigator of the multi-year project “Topos theory and its applications”.

and the Centre for Grothendiecian studies with mission:

The Centre for Grothendiecian Studies is dedicated to honoring the memory of Alexander Grothendieck through extensive work to valorize his work and disseminate his ideas to the general public.

In particular, the Centre aims to carry out historical/philosophical and editorial work to promote the publication of the unpublished works of A. Grothendieck, as well as to promote the production of translations of already published works in various languages.

No comment on the first. You can look up the Institute’s Governance page, contemplate recent IHES-events, and conjure up your own story.

More interesting is the Centre of Grothendiec(k)ian studies. Here’s the YouTube-clip of the statement made by Johanna Grothendieck (daughter of) at the opening.

She hopes for two things: to find money and interested persons to decrypt and digitalise Grothendieck’s Lasserre gribouillis, and to initiate the re-edition of the complete mathematical works of Grothendieck.

So far, Grothendieck’s family was withholding access to the Lasserre writings. Now they seem to grant access to the Istituto Grothendieck and authorise it to digitalise the 30.000 pages.

Further good news is that a few weeks ago Mateo Carmona was appointed as coordinator of the Centre of grothendieckian studies.



You may know Mateo from his Grothendieck Github Archive. A warning note on that page states: “This site no longer updates (since Feb. 2023) and has been archived. Please visit [Instituto Grothendieck] or write to Mateo Carmona at mateo.carmona@csg.igrothendieck.org”. So probably the site will be transferred to the Istituto.

Mateo Carmona says:

As Coordinator of the CSG, I will work tirelessly to ensure that the Centre provides comprehensive resources for scholars, students, and enthusiasts interested in Grothendieck’s original works and modern scholarship. I look forward to using my expertise to coordinate and supervise the work of the international group of researchers and volunteers who will promote Grothendieck’s scientific and cultural heritage through the CSG.

It looks as if Grothendieck’s gribouillis are in good hands, at last.

One Comment

Stella Maris (Cormac McCarthy)

This week, I was hit hard by synchronicity.

Lately, I’ve been reading up a bit on psycho-analysis, tried to get through Grothendieck’s La clef des songes (the key to dreams) and I’m in the process of writing a series of blogposts on how to construct a topos of the unconscious.

And then I read Cormac McCarthy‘s novels The passenger and Stella Maris, and got hit.



Stella Maris is set in 1972, when the math-prodigy Alicia Western, suffering from hallucinations, admits herself to a psychiatric hospital, carrying a plastic bag containing forty thousand dollars. The book consists entirely of dialogues, the transcripts of seven sessions with her psychiatrist Dr. Cohen (nomen est omen).

Alicia is a doctoral candidate at the University Of Chicago who got a scholarship to visit the IHES to work with Grothendieck on toposes.

During the psychiatric sessions, they talk on a wide variety of topics, including the nature of mathematics, quantum mechanics, music theory, dreams, and the unconscious (and its role in doing mathematics).

The core question is not how you do math but how does the unconscious do it. How it is that it’s demonstrably better at it than you are? You work on a problem and then you put it away for a while. But it doesnt go away. It reappears at lunch. Or while you’re taking a shower. It says: Take a look at this. What do you think? Then you wonder why the shower is cold. Or the soup. Is this doing math? I’m afraid it is. How is it doing it? We dont know. How does the unconscious do math? (page 99)

Before going to the IHES she had to send Grothendieck a paper (‘It was an explication of topos theory that I thought he probably hadn’t considered.’ page 136, and ‘while it proved three problems in topos theory it then set about dismantling the mechanism of the proofs.’ page 151). At the IHES ‘I met three men that I could talk to: Grothendieck, Deligne, and Oscar Zariski.’ (page 136).

I don’t know whether Zariski visited the IHES in the early 70ties, and while most historical allusions (to Grothendieck’s life, his role in Bourbaki etc.) are correct, Alicia mentions the ‘Langlands project’ (page 66) which may very well have been the talk of town at the IHES in 1972, but the mention of Witten ‘Grothendieck writes everything down. Witten nothing.’ (page 100) raised an eyebrow.

The book also contains these two nice attempts to capture some of the essence of topos theory:

When you get to topos theory you are at the edge of another universe.
You have found a place to stand where you can look back at the world from nowhere. It’s not just some gestalt. It’s fundamental. (page 13)

You asked me about Grothendieck. The topos theory he came up with is a witches’ brew of topology and algebra and mathematical logic.
It doesnt even have a clear identity. The power of the theory is still speculative. But it’s there.
You have a sense that it is waiting quietly with answers to questions that nobody has asked yet. (page 68)

I did read ‘The passenger’ first, which is probably better as then you’d know already some of the ghosts haunting Alicia, but it’s not a must if you are only interested in their discussions about the nature of mathematics. Be warned that it is a pretty dark book, better not read when you’re already feeling low, and it should come with a link to a suicide prevention line.

Here’s a more considered take on Stella Maris:

3 Comments

The topology of dreams

Last May, the meeting Lacan et Grothendieck, l’impossible rencontre? took place in Paris (see this post). Video’s of that meeting are now available online.

Here’s the talk by Alain Connes and Patrick Gauthier-Lafaye on their book A l’ombre de Grothendieck et de Lacan : un topos sur l’inconscient ? (see this post ).

Let’s quickly recall their main ideas:

1. The unconscious is structured as a topos (Jacques Lacan argued it was structured as a language), because we need a framework allowing logic without the law of the excluded middle for Lacan’s formulas of sexuation to make some sense at all.

2. This topos may differs from person to person, so we do not all share the same rules of logic (as observed in real life).

3. Consciousness is related to the points of the topos (they are not precise on this, neither in the talk, nor the book).

4. All these individual toposes are ruled by a classifying topos, and they see Lacan’s work as the very first steps towards trying to describe the unconscious by a geometrical theory (though his formulas are not first order).

Surely these are intriguing ideas, if only we would know how to construct the topos of someone’s unconscious.

Let’s go looking for clues.

At the same meeting, there was a talk by Daniel Sibony: “Mathématiques et inconscient”

Sibony started out as mathematician, then turned to psychiatry in the early 70ties. He was acquainted with both Grothendieck and Lacan, and even brought them together once, over lunch, some day in 1973. He makes a one-line appearance in Grothendieck’s Récoltes et Semailles, when G discribes his friends in ‘Survivre et Vivre’:

“Daniel Sibony (who stayed away from this group, while pursuing its evolution out of the corner of a semi-disdainful, smirking eye)”

In his talk, Sibony said he had a similar idea, 50 years before Connes and Gauthier-Lafaye (3.04 into the clip):

“At the same time (early 70ties) I did a seminar in Vincennes, where I was a math professor, on the topology of dreams. At the time I didn’t have categories at my disposal, but I used fibered spaces instead. I showed how we could interpret dreams with a fibered space. This is consistent with the Freudian idea, except that Freud says we should take the list of words from the story of the dream and look for associations. For me, these associations were in the fibers, and these thoughts on fibers and sheaves have always followed me. And now, after 50 years I find this pretty book by Alain Connes and Patrick Gauthier-Lafaye on toposes, and see that my thoughts on dreams as sheaves and fibered spaces are but a special case of theirs.”

This looks interesting. After all, Freud called dream interpretation the ‘royal road’ to the unconscious. “It is the ‘King’s highway’ along which everyone can travel to discover the truth of unconscious processes for themselves.”

Sibony clarifies his idea in the interview L’utilisation des rêves en psychothérapie with Maryse Siksou.

“The dream brings blocks of words, of “compacted” meanings, and we question, according to the good old method, each of these blocks, each of these points and which we associate around (we “unblock” around…), we let each point unfold according to the “fiber” which is its own.

I introduced this notion of the dream as fibered space in an article in the review Scilicet in 1972, and in a seminar that I gave at the University of Vincennes in 1973 under the title “Topologie et interpretation des rêves”, to which Jacques Lacan and his close retinue attended throughout the year.

The idea is that the dream is a sheaf, a bundle of fibers, each of which is associated with a “word” of the dream; interpretation makes the fibers appear, and one can pick an element from each, which is of course “displaced” in relation to the word that “produced” the fiber, and these elements are articulated with other elements taken in other fibers, to finally create a message which, once again, does not necessarily say the meaning of the dream because a dream has as many meanings as recipients to whom it is told, but which produces a strong statement, a relevant statement, which can restart the work.”



Key images in the dream (the ‘points’ of the base-space) can stand for entirely different situations in someone’s life (the points in the ‘fiber’ over an image). The therapist’s job is to find a suitable ‘section’ in this ‘sheaf’ to further the theraphy.

It’s a bit like translating a sentence from one language to another. Every word (point of the base-space) can have several possible translations with subtle differences (the points in the fiber over the word). It’s the translator’s job to find the best ‘section’ in this sheaf of possibilities.

This translation-analogy is used by Daniel Sibony in his paper Traduire la passe:

“It therefore operates just like the dream through articulated choices, from one fiber to another, in a bundle of speaking fibers; it articulates them by seeking the optimal section. In fact, the translation takes place between two fiber bundles, each in a language, but in the starting bundle the choice seems fixed by the initial text. However, more or less consciously, the translator “bursts” each word into a larger fiber, he therefore has a bundle of fibers where the given text seems after the fact a singular choice, which will produce another choice in the bundle of the other language.”

This paper also contains a pre-ChatGPT story (we’re in 1998), in which the language model fails because it has far too few alternatives in its fibers:

I felt it during a “humor festival” where I was approached by someone (who seemed to have some humor) and who was a robot. We had a brief conversation, very acceptable, beyond the conventional witticisms and knowing sighs he uttered from time to time to complain about the lack of atmosphere, repeating that after all we are not robots.

I thought at first that it must be a walking walkie-talkie and that in fact I was talking to a guy who was remote control from his cabin. But the object was programmed; the unforeseen effects of meaning were all the more striking. To my question: “Who created you?” he answered with a strange word, a kind of technical god.

I went on to ask him who he thought created me; his answer was immediate: “Oedipus”. (He knew, having questioned me, that I was a psychoanalyst.) The piquancy of his answer pleased me (without Oedipus, at least on a first level, no analyst). These bursts of meaning that we know in children, psychotics, to whom we attribute divinatory gifts — when they only exist, save their skin, questioning us about our being to defend theirs — , these random strokes of meaning shed light on the classic aftermaths where when a tile arrives, we hook it up to other tiles from the past, it ties up the pain by chaining the meaning.

Anyway, the conversation continuing, the robot asked me to psychoanalyse him; I asked him what he was suffering from. His answer was immediate: “Oedipus”.

Disappointing and enlightening: it shows that with each “word” of the interlocutor, the robot makes correspond a signifying constellation, a fiber of elements; choosing a word in each fiber, he then articulates the whole with obvious sequence constraints: a bit of readability and a certain phrasal push that leaves open the game of exchange. And now, in the fiber concerning the “psy” field, chance or constraint had fixed him on the same word, “Oedipus”, which, by repeating itself, closed the scene heavily.

Okay, we have a first potential approximation to Connes and Gauthier-Lafaye’s elusive topos, a sheaf of possible interpretation of base-words in a language.

But, the base-space is still rather discrete, or at best linearly ordered. And also in the fibers, and among the sections, there’s not much of a topology at work.

Perhaps, we should have a look at applications of topology and/or topos theory in large language models?

(tbc)

Next:

The shape of languages

2 Comments

Leila Schneps on Grothendieck

If you have neither the time nor energy to watch more than one interview or talk about Grothendieck’s life and mathematics, may I suggest to spare that privilege for Leila Schneps’ talk on ‘Le génie de Grothendieck’ in the ‘Thé & Sciences’ series at the Salon Nun in Paris.

I was going to add some ‘relevant’ time slots after the embedded YouTube-clip below, but I really think it is better to watch Leila’s interview in its entirety. Enjoy!

One Comment

Cartan meets Lacan

In the Grothendieck meets Lacan-post we did mention that Alain Connes wrote a book together with Patrick Gauthier-Lafaye “A l’ombre de Grothendieck et de Lacan, un topos sur l’inconscient”, on the potential use of Grothendieck’s toposes for the theory of unconsciousness, proposed by the French psychoanalyst Jacques Lacan.

A bit more on that book you can read in the topos of unconsciousness. For another take on this you can visit the blog of l’homme quantique – Sur les traces de Lévi-Strauss, Lacan et Foucault, filant comme le sable au vent marin…. There is a series of posts dedicated to the reading of ‘A l’ombre de Grothendieck et de Lacan’:

Alain Connes isn’t the first (former) Bourbaki-member to write a book together with a Lacan-disciple.

In 1984, Henri Cartan (one of the founding fathers of Bourbaki) teamed up with the French psychoanalyst (and student of Lacan) Jean-Francois Chabaud for “Le Nœud dit du fantasme – Topologie de Jacques Lacan”.



(Chabaud on the left, Cartan on the right, Cartan’s wife Nicole in the mddle)

“Dans cet ouvrage Jean François Chabaud, psychanalyste, effectue la monstration de l’interchangeabilité des consistances de la chaîne de Whitehead (communément nommée « Noeud dit du fantasme » ou du « Non rapport sexuel » dans l’aire analytique), et peut ainsi se risquer à proposer, en s’appuyant sur les remarques essentielles de Jacques Lacan, une écriture du virage, autre nom de la passe. Henri Cartan (1904-2008), l’un des Membres-fondateur de N. Bourbaki, a contribué à ce travail avec deux réflexions : la première, considère cette monstration et l’augmente d’une présentation ; la seconde, traite tout particulièrement de l’orientation des consistances. Une suite de traces d’une séquence de la chaîne précède ce cahier qui s’achève par : « L’en-plus-de-trait », une contribution à l’écriture nodale.”

Lacan was not only fascinated by the topology of surfaces such as the crosscap (see the topos of unconsciousness), but also by the theory of knots and links.

The Borromean link figures in Lacan’s world for the Real, the Imaginary and the Symbolic. The Whitehead link (that is, two unknots linked together) is thought to be the knot (sic) of phantasy.

In 1986, there was the exposition “La Chaine de J.H.C. Whitehead” in the
Palais de la découverte in Paris (from which also the Chabaud-Cartan picture above is taken), where la Salle de Mathématiques was filled with different models of the Whitehead link.

In 1988, the exposition was held in the Deutches Museum in Munich and was called “Wandlung – Darstellung der topologischen Transformationen der Whitehead-Kette”



The set-up in Munich was mathematically more interesting as one could see the link-projection on the floor, and use it to compute the link-number. It might have been even more interesting if the difference in these projections between two subsequent models was exactly one Reidemeister move

You can view more pictures of these and subsequent expositions on the page dedicated to the work of Jean-Francois Chabaud: La Chaîne de Whitehead ou Le Nœud dit du fantasme Livre et Expositions 1980/1997.

Part of the first picture featured also in the Hommage to Henri Cartan (1904-2008) by Michele Audin in the Notices of the AMS. She writes (about the 1986 exposition):

“At the time, Henri Cartan was 82 years old and retired, but he continued to be interested in mathematics and, as one sees, its popularization.”

Leave a Comment

From Weil’s foundations to schemes

Last time, we’ve seen that the first time ‘schemes’ were introduced was in ‘La Tribu’ (the internal Bourbaki-account of their congresses) of the May-June 1955 congress in Chicago.

Here, we will focus on the events leading up to that event. If you always thought Grothendieck invented the word ‘schemes’, here’s what Colin McLarty wrote:

“A story says that in a Paris café around 1955 Grothendieck asked his friends “what is a scheme?”. At the time only an undefined idea of “schéma” was current in Paris, meaning more or less whatever would improve on Weil’s foundations.” (McLarty in The Rising Sea)

What were Weil’s foundations of algebraic geometry?

Well, let’s see how Weil defined an affine variety over a field $k$. First you consider a ‘universal field’ $K$ containing $k$, that is, $K$ is an algebraically closed field of infinite transcendence degree over $k$. A point of $n$-dimensional affine space is an $n$-tuple $x=(x_1,\dots,x_n) \in K^n$. For such a point $x$ you consider the field $k(x)$ which is the subfield of $K$ generated by $k$ and the coordinates $x_i$ of $x$.

Alternatively, the field $k(x)$ is the field of fractions of the affine domain $R=k[z_1,\dots,z_n]/I$ where $I$ is the prime ideal of all polynomials $f \in k[z_1,\dots,z_n]$ such that $f(x) = f(x_1,\dots,x_n)=0$.

An affine $k$-variety $V$ is associated to a ‘generic point’ $x=(x_1,\dots,x_n)$, meaning that the field $k(x)$ is a ‘regular extension’ of $k$ (that is, for all field-extensions $k’$ of $k$, the tensor product $k(x) \otimes_k k’$ does not contain zero-divisors.

The points of $V$ are the ‘specialisations’ of $x$, that is, all points $y=(y_1,\dots,y_n)$ such that $f(y_1,\dots,y_n)=0$ for all $f \in I$.

Perhaps an example? Let $k = \mathbb{Q}$ and $K=\mathbb{C}$ and take $x=(i,\pi)$ in the affine plane $\mathbb{C}^2$. What is the corresponding prime ideal $I$ of $\mathbb{Q}[z_1,z_2]$? Well, $i$ is a solution to $z_1^2+1=0$ whereas $\pi$ is transcendental over $\mathbb{Q}$, so $I=(z_1^2+1)$ and $R=\mathbb{Q}[z_1,z_2]/I= \mathbb{Q}(i)[z_2]$.

Is $x=(i,\pi)$ a generic point? Well, suppose it were, then the points of the corresponding affine variety $V$ would be all couples $(\pm i, \lambda)$ with $\lambda \in \mathbb{C}$ which is the union of two lines in $\mathbb{C}^2$. But then $i \otimes 1 + 1 \otimes i$ is a zero-divisor in $\mathbb{Q}(x) \otimes_{\mathbb{Q}} \mathbb{Q}(i)$. So no, it is not a generic point over $\mathbb{Q}$ and does not define an affine $\mathbb{Q}$-variety.

If we would have started with $k=\mathbb{Q}(i)$, then $x=(i,\pi)$ is generic and the corresponding affine variety $V$ consists of all points $(i,\lambda) \in \mathbb{C}^2$.

If this is new to you, consider yourself lucky to be young enough to have learned AG from Fulton’s Algebraic curves, or Hartshorne’s chapter 1 if you were that ambitious.

By 1955, Serre had written his FAC, and Bourbaki had developed enough commutative algebra to turn His attention to algebraic geometry.

La Ciotat congress (February 27th – March 6th, 1955)

With a splendid view on the mediterranean, a small group of Bourbaki members (Henri Cartan (then 51), with two of his former Ph.D. students: Jean-Louis Koszul (then 34), and Jean-Pierre Serre (then 29, and fresh Fields medaillist), Jacques Dixmier (then 31), and Pierre Samuel (then 34), a former student of Zariski’s) discussed a previous ‘Rapport de Geometrie Algebrique'(no. 206) and arrived at some unanimous decisions:

1. Algebraic varieties must be sets of points, which will not change at every moment.
2. One should include ‘abstract’ varieties, obtained by gluing (fibres, etc.).
3. All necessary algebra must have been previously proved.
4. The main application of purely algebraic methods being characteristic p, we will hide nothing of the unpleasant phenomena that occur there.



(Henri Cartan and Jean-Pierre Serre, photo by Paul Halmos)

The approach the propose is clearly based on Serre’s FAC. The points of an affine variety are the maximal ideals of an affine $k$-algebra, this set is equipped with the Zariski topology such that the local rings form a structure sheaf. Abstract varieties are then constructed by gluing these topological spaces and sheaves.

At the insistence of the ‘specialistes’ (Serre, and Samuel who had just written his book ‘Méthodes d’algèbre abstraite en géométrie algébrique’) two additional points are adopted, but with some hesitation. The first being a jibe at Weil:
1. …The congress, being a little disgusted by the artificiality of the generic point, does not want $K$ to be always of infinite transcendent degree over $k$. It admits that generic points are convenient in certain circumstances, but refuses to see them put to all the sauces: one could speak of a coordinate ring or of a functionfield without stuffing it by force into $K$.
2. Trying to include the arithmetic case.

The last point was problematic as all their algebras were supposed to be affine over a field $k$, and they wouldn’t go further than to allow the overfield $K$ to be its algebraic closure. Further, (and this caused a lot of heavy discussions at coming congresses) they allowed their varieties to be reducible.

The Chicago congress (May 30th – June 2nd 1955)

Apart from Samuel, a different group of Bourbakis gathered for the ‘second Caucus des Illinois’ at Eckhart Hall, including three founding members Weil (then 49), Dixmier (then 49) and Chevalley (then 46), and two youngsters, Armand Borel (then 32) and Serge Lang (then 28).

Their reaction to the La Ciotat meeting (the ‘congress of the public bench’) was swift:

(page 1) : “The caucus discovered a public bench near Eckhart Hall, but didn’t do much with it.”
(page 2) : “The caucus did not judge La Ciotat’s plan beyond reproach, and proposed a completely different plan.”

They wanted to include the arithmetic case by defining as affine scheme the set of all prime ideals (or rather, the localisations at these prime ideals) of a finitely generated domain over a Dedekind domain. They continue:

(page 4) : “The notion of a scheme covers the arithmetic case, and is extracted from the illustrious works of Nagata, themselves inspired by the scholarly cogitations of Chevalley. This means that the latter managed to sell all his ideas to the caucus. The Pope of Chicago, very happy to be able to reject very far projective varieties and Chow coordinates, willingly rallied to the suggestions of his illustrious colleague. However, we have not attempted to define varieties in the arithmetic case. Weil’s principle is that it is unclear what will come out of Nagata’s tricks, and that the only stable thing in arithmetic theory is reduction modulo $p$ a la Shimura.”

“Contrary to the decisions of La Ciotat, we do not want to glue reducible stuff, nor call them varieties. … We even decide to limit ourselves to absolutely irreducible varieties, which alone will have the right to the name of varieties.”

The insistence on absolutely irreducibility is understandable from Weil’s perspective as only they will have a generic point. But why does he go along with Chevalley’s proposal of an affine scheme?

In Weil’s approach, a point of the affine variety $V$ determined by a generic point $x=(x_1,\dots,x_n)$ determines a prime ideal $Q$ of the domain $R=k[x_1,\dots,x_n]$, so Chevalley’s proposal to consider all prime ideals (rather than only the maximal ideals of an affine algebra) seems right to Weil.

However in Weil’s approach there are usually several points corresponding to the same prime ideal $Q$ of $R$, namely all possible embeddings of the ring $R/Q$ in that huge field $K$, so whenever $R/Q$ is not algebraic over $k$, there are infinitely Weil-points of $V$ corresponding to $Q$ (whence the La Ciotat criticism that points of a variety were not supposed to change at every moment).

According to Ralf Krömer in his book Tool and Object – a history and philosophy of category theory this shift from Weil-points to prime ideals of $R$ may explain Chevalley’s use of the word ‘scheme’:

(page 164) : “The ‘scheme of the variety’ denotes ‘what is invariant in a variety’.”

Another time we will see how internal discussion influenced the further Bourbaki congresses until Grothendieck came up with his ‘hyperplan’.

Leave a Comment

Le Guide Bourbaki : La Ciotat (2)

Rereading the Grothendieck-Serre correspondence I found a letter from Serre to Grothendieck, dated October 22nd 1958, which forces me to retract some claims from the previous La Ciotat post.

Serre writes this ten days after the second La Ciotat-congress (La Tribu 46), held from October 5th-12th 1958:

“The Bourbaki meeting was very pleasant; we all stayed in the home of a man called Guérin (a friend of Schwartz’s – a political one, I think); Guérin himself was in Paris and we had the whole house to ourselves. We worked outside most of the time, the weather was beautiful, we went swimming almost every day; in short, it was one of the best meetings I have ever been to.”

So far so good, we did indeed find Guérin’s property ‘Maison Rustique Olivette’ as the location of Bourbaki’s La Ciotat-congresses. But, Serre was present at both meetings (the earlier one, La Tribu 35, was held from February 27th – March 6th, 1955), so wouldn’t he have mentioned that they returned to that home when both meetings took place there?

From La Tribu 35:

“The Congress was held “chez Patrice”, in La Ciotat, from February 27 to March 6, 1955. Present: Cartan, Dixmier, Koszul, Samuel, Serre, le Tableau (property, fortunately divisible, of Bourbaki).”

In the previous post I mentioned that there was indeed a Hotel-Restaurant “Chez Patrice” in La Ciotat, but mistakingly assumed both meetings took place at Guérin’s property.

Can we locate this place?

On the backside of this old photograph

we read:

“Chez Patrice”
seul au bord de la mer
Hotel Restaurant tout confort
Spécialités Provençales
Plage privée Parc auto
Ouvert toute l’année
Sur la route de La Ciota-Bandol
Tel 465
La Ciota (B.-d.-R.)

So it must be on the scenic coastal road from La Ciotat to Bandol. My best guess is that “Chez Patrice” is today the one Michelin-star Restaurant “La Table de Nans”, located at 126 Cor du Liouquet, in La Ciotat.

Their website has just this to say about the history of the place:

“Located in an exceptional setting between La Ciotat and Saint Cyr, the building of “l’auberge du Revestel” was restored in 2016.”

And a comment on a website dedicated to the nearby Restaurant Roche Belle confirms that “Chez Patrice”, “l’auberge du Revestel” and “table de Nans” were all at the same place:

“Nous sommes locaux et avons découverts ce restaurant seulement le mois dernier (suite infos copains) alors que j’ai passé une partie de mon enfance et adolescence “chez Patrice” (Revestel puis chez Nans)!!!”

I hope to have it right this time: the first Bourbaki La Ciotat-meeting in 1955 took place “Chez Patrice” whereas the second 1958-congress was held at ‘Maison Rustique Olivette’, the property of Schwartz’s friend Daniel Guérin.

Still, if you compare Serre’s letter to this paragraph from Schwartz’s autobiography, there’s something odd:

“I knew Daniel Guérin very well until his death. Anarchist, close to Trotskyism, he later joined Marceau Prevert’s PSOP. He had the kindness, after the war, to welcome in his property near La Ciotat one of the congresses of the Bourbaki group. He shared, in complete camaraderie, our life and our meals for two weeks. I even went on a moth hunt at his house and caught a death’s-head hawk-moth (Acherontia atropos).”

Schwartz was not present at the second La Ciotat-meeting, and he claims Guérin shared meals with the Bourbakis whereas Serre says he was in Paris and they had the whole house to themselves.

Moral of the story: accounts right after the event (Serre’s letter) are more trustworthy than later recollections (Schwartz’s autobiography).

Dear Collaborators of Nicolas Bourbaki, please make all Bourbaki material (Diktat, La Tribu, versions) publicly available, certainly those documents older than 50 years.

Perhaps you can start by adding the missing numbers 36 and 49 to your La Tribu: 1940-1960 list.

Thank you!

Leave a Comment

Charlie Hebdo on Grothendieck

Charlie Hebdo, the French satirical weekly newspaper, victim of a terroristic raid in 2015, celebrates the 30th anniversary of its restart in 1992 (it appeared earlier from 1969 till 1981).

Charlie’s collaborators have looked at figures who embody, against all odds, freedom, and one of the persons they selected is Alexandre Grothendieck, ‘Alexandre Grothendieck – l’équation libertaire’. Here’s why

“A Fields Medal winner, ecology pioneer and hermit, he threw honours, money and his career away to defend his ideas.”

If you want to learn something about Grothendieck’s life and work, you’d better read the Wikipedia entry than this article.

Some of the later paragraphs are even debatable:

“But at the end of his life, total derailment, he gets lost in the meanders of madness. Is it the effect of desperation? of too much freedom? or the abuse of logic (madness is not uncommon among mathematicians, from Kürt Godel to Grigori Perelman…)? The rebel genius withdraws to a village in the Pyrenees and refuses all contact with the outside world.”

“However, he silently continues to do math. Upon his death in 2014, thousands of pages will be discovered, of which the mathematician Michel Demazure estimates that “it will take fifty years to transform [them] into accessible mathematics”.”

If you want to read more on these ‘Grothendieck gribouillis’, see here, here, here, here, here, and here.

Leave a Comment

Grothendieck’s haircut

Browsing through La Tribu (the internal report of Bourbaki-congresses), sometimes you’ll find an answer to a question you’d never ask?

Such as: “When did Grothendieck decide to change his looks?”

Photo on the left is from 1951 taken by Paulo Ribenboim, on a cycling tour to Pont-a-Mousson (between Nancy and Metz). The photo on the right is from 1965 taken by Karin Tate.

From La Tribu 43, the second Bourbaki-congress in Marlotte from October 6th-11th 1957:

“The congress gave an enthusiastic welcome to Yul Grothendieck, who arrived in his Khrushchev haircut, in order to enjoy more comfortably the shadow of the sputniks. Seized with jealousy, Dixmier and Samuel rushed to the local hairdresser, who was, alas, quite unable to imitate this masterpiece.”

This Marlotte-meeting was called ‘Congres de la deuxieme lune’, because at their first congress in Marlotte, the hotel-owner thought this group of scientists was preparing for a journey to the moon. Bourbaki was saddened to find out that ownership of the ‘Hotel de la mare aux fées’ changed over the two years between meetings, for He hoped to surprise her with a return visit just at the time the first Sputnik was launched (October 4th, 1957).

Given the fact that the 1957-summer Bourbaki-congress lasted until July 7th, and that most of the B’s may have bumped into G over the summer, I’d wager that the answer to this most important of questions is: late summer 1957.

Leave a Comment