Skip to content →

Tag: google

Seriously now, where was the Bourbaki wedding?

A few days before Halloween, Norbert Dufourcq (who died december 17th 1990…), sent me a comment, containing lots of useful information, hinting I did get it wrong about the church of the Bourbali wedding in the previous post.

Norbert Dufourcq, an organist and student of Andre Machall, the organist-in-charge at the Saint-Germain-des-Prés church in 1939, the place where I speculated the Bourbaki wedding took place, concluded his comment with :

“P.S. Lieven, you _do_ know about the Schola Cantorum, now, don’t you?!?”.

Euh… actually … no, I did not …

La Schola Cantorum is a private music school in Paris. It was founded in 1894 by Charles Bordes, Alexandre Guilmant and Vincent d’Indy as a counterbalance to the Paris Conservatoire’s emphasis on opera. Its alumni include many significant figures in 20th century music, such as Erik Satie and Cole Porter.

Schola Cantorum is situated 69, rue Saint Jacques, Paris, just around the corner of the Ecole Normal Superieure, home base to the Bourbakis. In fact, closer investigation reveals striking similarities and very close connections between the circle of artists at la Schola and the Bourbaki group.

In december 1934, the exact month the Bourbaki group was formed, a radical reorganisation took place at the Schola, when Nestor Lejeune became the new director. He invited several young musicians, many from the famous Dukas-class, to take up teaching positions at the Schola.

Here’s a picture of part of the Dukas class of 1929, several of its members will play a role in the upcoming events :
from left to right next to the piano : Pierre Maillard-Verger, Elsa Barraine, Yvonne Desportes, Tony Aubin, Pierre Revel, Georges Favre, Paul Dukas, René Duclos, Georges Hugon, Maurice Duruflé. Seated on the right : Claude Arrieu, Olivier Messiaen.



The mid-1930s in Paris saw the emergence of two closely-related groups with a membership which overlapped : La Spirale and La Jeune France. La Spirale was founded in 1935 under the leadership of Georges Migot; its other committee members were Paul Le Flem, his pupil André Jolivet, Edouard Sciortino, Claire Delbos, her husband Olivier Messiaen, Daniel-Lesur and Jules Le Febvre. The common link between almost all of these musicians was their connection with the Schola Cantorum.

On the left : Les Jeunes Musiciens Français : André Jolivet on the Piano. Standing from left to right :
Olivier Messiaen, Yves Baudrier, Daniel-Lesur.

Nigel Simeone wrote this about Messiaen and La Jeune France :
“The extremely original and independent-minded Messiaen had already shown himself to be a rather unexpected enthusiast for joining groups: in December 1932 he wrote to his friend Claude Arrieu about a letter from another musician, Jacques Porte, outlining plans for a new society to be called Les Jeunes Musiciens Français.
Messiaen agreed to become its vice-president, but nothing seems to have come of the project. Six months later, in June 1933, he had a frustrating meeting with Roger Désormière on behalf of the composers he described to Arrieu as ‘les quatre’, all of them Dukas pupils: Elsa Barraine, the recently-deceased Jean Cartan, Arrieu and Messiaen himself; during the early 1930s Messiaen and Arrieu organised concerts featuring all four composers.”

Finally, we’re getting a connection with the Bourbaki group! Norbert Dufourcq mentioned it already in his comment “Messiaen was also a good friend of Jean Cartan (himself a composer, and Henri’s brother)”. Henri Cartan was one of the first Bourbakis and an excellent piano player himself.

The Cartan family picture on the right : standing from left to right, father Elie Cartan (one of the few older French mathematicians respected by the Bourbakis), Henri and his mother Marie-Louise. Seated, the younger children, from left to right : Louis, Helene (who later became a mathematician, herself) and the composer Jean Cartan, who sadly died very young from tuberculoses in 1932…

The december 1934 revolution in French music at the Schola Cantorum, instigated by Messiaen and followers, was the culmination of a process that started a few years before when Jean Cartan was among the circle of revolutionados. Because Messiaen was a fiend of the Cartan family, they surely must have been aware of the events at the Schola (or because it was merely a block away from the ENS), and, the musicians’ revolt may very well have been an example to follow for the first Bourbakis…(?!)

Anyway, we now know the intended meaning of the line “with lemmas sung by the Scholia Cartanorum” on the wedding-invitation. Cartanorum is NOT (as I claimed last time) bad Latin for ‘Cartesiorum’, leading to Descartes and the Saint-Germain-des-Pres church, but is in fact passable Latin (plur. gen.) of CARTAN(us), whence the translation “with lemmas sung by the school of the Cartans”. There’s possibly a double pun intended here : first, a reference to (father) Cartan’s lemma and, of course, to La Schola where the musical Cartan-family felt at home.

Fine, but does this brings us any closer to the intended place of the Bourbaki-Petard wedding? Well, let’s reconsider the hidden ‘clues’ we discovered last time : the phrase “They will receive the trivial isomorphism from P. Adic, of the Order of the Diophantines” might suggest that the church belongs to a a religious order and is perhaps an abbey- or convent-church and the phrase “the organ will be played by Monsieur Modulo” requires us to identify this mysterious Mister Modulo, because Norbert Dufourcq rightfully observed :

“note however that in 1939, it wasn’t as common to have a friend-organist perform at a wedding as it is today: the appointed organists, especially at prestigious Paris positions, were much less likely to accept someone play in their stead.”

The history of La Schola Cantorum reveals something that might have amused Frank Smithies (remember he was one of the wedding-invitation-composers) : the Schola is located in the Convent(!) of the Brittish Benedictines…

In 1640 some Benedictine monks, on the run after the religious schism in Britain, found safety in Paris under the protection of Cardinal Richelieu and Anne of Austria at Val-de-Grace, where the Schola is now housed.

As is the case with most convents, the convent of the Brittish Benedictines did have its own convent church, now called l’église royale Notre-Dame du Val-de-Grâce (remember that one of the possible interpretations for “of the universal variety” was that the name of the church would be “Notre-Dame”…).

This church is presently used as the concert hall of La Schola and is famous for its … musical organ : “In 1853, Aristide Cavaillé-Coll installed a new organ in the Church of Sainte-geneviève which had been restored in its rôle as a place of worship by Prince President Louis-Napoléon. In 1885, upon the decision of President Jules Grévy, this church once again became the Pantheon and, six years later, according to an understanding between the War and Public Works Departments, the organ was transferred to the Val-de-Grâce, under the supervision of the organ builder Merklin. Beforehand, the last time it was heard in the Pantheon must have been for the funeral service of Victor Hugo.
In 1927, a raising was carried out by the builder Paul-Marie Koenig, and the inaugural concert was given by André Marchal and Achille Philippe, the church’s organist. Added to the register of historic monument in 1979, Val-de-Grâce’s “ little great organ ”, as Cavaillé-Coll called it, was restored in 1993 by the organ builders François Delangue and Bernard Hurvy.
The organ of Val-de-Grâce is one the rare parisian surviving witnesses of the art of Aristide Cavaillé-Coll, an instrument that escaped abusive and definitive transformations or modernizations. This explain why, in spite of its relatively modest scale, this organ enjoys quite a reputation, and this, as far as the United States.”

By why would the Val-de-Grace organiste at the time Achille Philip, “organiste titulaire du Val-de-Grâce de 1903 à 1950 et professeur d’orgue et d’harmonie à la Schola Cantorum de 1904 à 1950”, be called ‘Mister Modulo’ in the wedding-invitations line “L’orgue sera tenu par Monsieur Modulo”???

Again, the late Norbert Dufourcq comes to our rescue, proposing a good candidate for ‘Monsieur Modulo’ : “As for “modulo”, note that the organist at Notre-Dame at that time, Léonce de Saint-Martin, was also the composer of a “Suite Cyclique”, though I admit that this is just wordplay: there is nothing “modular” about this work. Maybe a more serious candidate would be Olivier Messiaen (who was organist at the Église de la Trinité): his “modes à transposition limitée” are really about Z/12Z→Z/3Z and Z/12Z→Z/4Z. “

Messiaen’s ‘Modes of limited transposition’ were compiled in his book ‘Technique de mon langage musical’. This book was published in Paris by Leduc, as late as 1944, 5 years after the wedding-invitation.

Still, several earlier works of Messiaen used these schemes, most notably La Nativité du Seigneur, composed in 1935 : “The work is one of the earliest to feature elements that were to become key to Messiaen’s later compositions, such as the extensive use of the composer’s own modes of limited transposition, as well as influence from birdsong, and the meters and rhythms of Ancient Greek and traditional Indian music.”

More details on Messiaen’s modes and their connection to modular arithmetic can be found in the study Implementing Modality in Algorithmic Composition by Vincent Joseph Manzo.

Hence, Messiaen is a suitable candidate for the title ‘Monsieur Modulo’, but would he be able to play the Val-de-Grace organ while not being the resident organist?

Remember, the Val-de-Grace church was the concert hall of La Schola, and its musical organ the instrument of choice for the relevant courses. Now … Olivier Messiaen taught at the Schola Cantorum and the École Normale de Musique from 1936 till 1939. So, at the time of the Bourbaki-Petard wedding he would certainly be allowed to play the Cavaillé-Coll organ.

Perhaps we got it right, the second time around : the Bourbaki-Pétard wedding was held on June 3rd 1939 in the church ‘l’église royale Notre-Dame du Val-de-Grâce’ at 12h?

3 Comments

Where was the Bourbaki wedding?

I’m pretty certain I got the intended date & time of the Bourbaki-Pétard wedding right : June 3rd 1939 at 12h.
Finding the exact location of the wedding-ceremony is an entirely different matter. And, quite probably, we are reading way too much in these pranks of the Weil-clan.

Still, it’s fun trying to find an elegant answer, based on the (intended or imagined) clues in the text and the little we know about the early Bourbaki-days. Here, the translation of the relevant part of the wedding announcement :


“They will receive the trivial isomorphism from P. Adic, of the Order of the Diophantines, in the Principal Cohomology of the Universal Variety, on the third of Cartember, year VI, at the usual hour.
The organ will be played by Monsieur Modulo, Assintant Simplex of the Grassmannian (with lemmas sung by the Scholia Cartanorum). The collection will be donated in full to the retirement home for Poor Abstracts. Convergence will be guaranteed.”

First solution : Perhaps one might read “in the Principal Cohomology of the Universal Variety” as : “in the Principal Church of the generic type/name”. In many French cities the main church is the Cathedral and an awful lot of them are called Notre Dame, so it might mean : in the Notre Dame Cathedral. But even then, we have to choose between these two




On the left, the Notre Dame Cathedral in Paris. On the right the Cathédrale Notre-Dame-de-l’Annonciation in Nancy. As the invitation promises guests to be entertained after the ceremony by Monsieur et Madame Bourbaki at their ‘Fundamental Domains’, the choice depends on the location of the Bourbaki-household in June 1939.

‘Bourbaki’ made two applications to become an AMS-member. The first, in 1948, tells us that Bourbaki is a scientific advisor to the Hermann Publishing Co. in Paris since 1934, and, the second in 1950, that he is ‘Directeur Libre de Recherches a l’Université de Nancy’.
I couldn’t find out when exactly Nicolas did change cities, and even Liliane Beaulieu’s talk Bourbaki a Nancy does not provide an answer.

Second solution : Or, one can read that sentence as a mathematical, perhaps proto-motivic, statement, and, hunt for clues elsewhere in the text. But then, what are these clues?

  • Mass is celebrated by “P. Adic, of the Order of the Diophantines”. This suggests that the church itself belongs to a monastic order, and is perhaps a convent-church.
  • Hymns are “sung by the Scholia Cartanorum”. Scholia Cartanorum is Latin of sorts and refers perhaps to the Paris’ Latin Quarter, le Quartier Latin.
  • The collection is donated to the “retirement home for Poor Abstracts”. Perhaps the church is connected to a saint for the poor.

Let’s consider “Scholia Cartanorum” more closely. It may be Latin, admittedly very bad Latin, for ‘the Scholiums of Cartesius’, that is, ‘of Descartes‘.

One of the more famous ‘Scholia’ in scientific history is Newton’s general scholium to the Principia, which is a prime example of Descartes-bashing. Newton attacks Descartes on his vortical theory of planetary motion, his aeter to explain gravity, his God-axiom (unlike Descartes, Newton induced God from nature, rather than starting with God as an axiom) and his hypothetico-deductive method. So, there is a link between Descartes and ‘Scholium’, although the genitive form ‘Cartesiorum’ might be fairly inappropriate…

But then, Descartes died on 11 February 1650 in Stockholm (Sweden) where he was buried, so there won’t be a connection to a French or Parisian church, right? Well, not quite. The fate of Descartes’ remains is a rather strange story : “In 1666, sixteen years after his death, the bones of René Descartes
were dug up in the middle of the night and transported from Sweden to
France under the watchful eye of the French Ambassador. This was only
the beginning of the journey for Descartes’ bones, which, over the
next 350 years, were fought over, stolen, sold, revered as relics,
studied by scientists, used in séances, and passed surreptitiously
from hand to hand. ” For example, during the French Revolution, his remains were disinterred for burial
in the Pantheon in Paris among the great French thinkers. But today, his ashes are burried in…

the abbay church of Saint-Germain-des-Prés, located in the Quartier Latin, within walking distance of the Bourbaki-café Capoulade and the Ecole Normal Superieure.

Now all the hints fall handsomely in place. St-Germain-des-Prés is the oldest church in Paris. Parts of it date to the 6th century, when a Benedictine abbey was founded on the site by Childebert, son of Clovis. Hence the sentence ‘in the Principal Cohomology of the Universal Variety’ might simply mean ‘in the first church, ever’. In medieval times, the Left Bank of Paris was prone to flooding from the Seine, so much of the land could not be built upon and the Abbey stood in the middle of fields, or prés in French, thereby explaining its appellation.

The other part of its name, Saint Germain, comes from Saint Germanus of Paris, also known as the ‘father of the poor’ (!). His remains were interred in St. Symphorien’s chapel in the vestibule of St. Vincent’s church, but in 754, when he was canonized, his relics were solemnly removed into the body of the church, in the presence of Pepin and his son, Charlemagne, then a child of seven, and the church was reconsecrated as Saint-Germain-des-Prés. That is, also the remains of the ‘father of the poor’ are buried in this church.

Here’s my best guess : the Bourbaki-Pétard wedding was held on June 3rd 1939 in the church Saint-Germain-des-Prés at 12h. Genuine aficionados of the Da Vinci code may regret it wasn’t held in the neighboring Saint-Sulpice church, but then, perhaps someone can bend the clues accordingly…

Remains this problem : who was the organist, Monsieur Modulo? Suggestions anyone?

7 Comments

Where is the Royal Poldavian Academy?

Among the items found on Andre Weil at the time of his arrest was “a packet of calling cards belonging
to Nicolas Bourbaki, member of the Royal Academy of Poldavia”.

But then, where is the Royal Poldavian Academy situated? Well, surely in the Kingdom of Poldavia, which is a very strange country indeed, its currency unit being the bourbaki and there exist only two types of coins: gold ones (worth n bourbakis) and silver ones (worth m bourbakis). Using gold and silver coins, it is possible to obtain sums such as 10000 bourbakis, 1875 bourbakis, 3072 bourbakis, and so on. Prove that any payment above mn-2 bourbakis can be made without the need to receive change.

However, the Kingdom of Poldavia isn’t another Bourbaki concoction. The name goes back at least to a joke pulled by the right-wingers of the Action Francaise in may 1929. Here’s the TIME article of May 20th 1929 :

“When 28 French Republican deputies sat down to their breakfast coffee and croissants early last week, each found a large crinkly letter from Geneva in his morning’s mail. Innocent and refreshed after a sound night’s sleep, not one Republican deputy saw anything untoward in the fact that the large crinkly letters were embossed on the stationery of “Foreign Minister Lamidaeff, of the Kingdom of Poldavia.” They saw nothing strange in the fact that Poldavians were in financial difficulties, and they found Minister Lamidaeff most thoughtful in not asking for money, but merely for an expression of “moral support” from the Deputies in his campaign to aid Poldavian sufferers. “We believe that our interests were betrayed at the Peace Conference,” wrote Poldavian Lamidaeff. “and we appeal to you as a member of the French Parliament to do your utmost to help us in this our hour of need. The whole nation of Poldavia and its noble monarch who disregarded personal safety in 1916, and joined France in her War for justice and righteousness, pray you to remember our sacrifices.”

What could be fairer than that? Legislators all over the world are always ready to write enthusiastic platitudes in favor of anything that sounds like a good cause. The wronged Poldavians seemed a very good cause. Each of the 28 deputies sat down at his desk and pledged his moral support to “Foreign Minister Lamidaeff of Poldavia.”

None of the 28 deputies noticed that the old Poldavian name of Lamidaeff might read “I’Ami d’A. F.”—”the friend of A. F.,” “the friend of L’Action Française” famed royalist newspaper of which the editor is Leon Daudet, bon vivant, practical jokester, son of famed Author Alphonse Daudet (Tartarin de Tarascon), exile from the republic he has so consistently lampooned (TIME, June 13, 1927, et seq.). Three days after the 28 gullible deputies replied to the “Poldavian Minister,” a special edition of L’Action Française appeared.

“People of France,” wrote exiled Editor Daudet, who once escaped from La Sante prison through a hoaxed release order telephoned from the office of the Minister of the Interior, “—People of France, how much longer will you permit such ignorant deputies to represent you before the world? Here are 28 of your elected representatives, and they actually believe there is a Kingdom of Poldavia, and that Lamidaeff is its Foreign Minister. Lamidaeff, c’est moi!””

The consul of Poldavia also appears in the 1936 Tintin-story The Blue Lotus by Hergé. In view of the above AF-connection, it should’t come as a surprise that Hergé is often accused of extreme-right sympathies and racism.

To some, Poldavia is a small country in the Balkans, to others it lies in the Caucasus, but has disappeared from the map of Europe. All accounts do agree on one point, namely that Poldavia is a mountainous region.

Today we are pleased to disclose the exact location of the Royal Poldavian Academy, and, thanks to the wonders of Google Earth you can explore the Kingdom of Poldavia at your leisure if you give it the coordinates 45.521082N,2.935495E. Or, you can use the Google-map below :

View Larger Map

The evidence is based on a letter sent by Andre Weil to Elie Cartan when the Bourbakis wanted to submit a note for the Comptes Rendus des Séances Hebdomadaires de l’Académie des Sciences under the pseudonyme Nicolas Bourbaki. As the academy requires a biographical note on the author, Weil provided the following information about Bourbaki’s life :

“Cher Monsieur,
Je vous envoie ci-joint, pour les C.R., une note que M.Bourbaki m’a chargé de vous transmettre. Vous n’ignorez pas que M.Bourbaki est cet ancien professeur à l’Université Royale de Besse-en-Poldévie, dont j’ai fait la connaissance il y a quelque temps dans un café de Clichy où il passe la plus grande partie de la journée et même de la nuit ; ayant perdu, non seulement sa situation, mais presque toute sa fortune dans les troubles qui firent disparaître de la carte d’Europe la malheureuse nation poldève, il gagne maintenant sa vie en donnant, dans ce café, des leçons de belote, jeu où il est de première force.
Il fait profession de ne plus s’occuper de mathématiques, mais il a bien voulu cependant s’entretenir avec moi de quelques questions importantes et même [ajout manuscrit : me laisser] jeter un coup d’œil sur une partie de ses papiers ; et j’ai réussi à le persuader de publier, pour commencer, la note ci-jointe, qui contient un résultat fort utile pour la théorie moderne de l’intégration, je pense que vous ne verrez pas de difficulté à l’accueillir pour les Comptes-Rendus ; si même les renseignements que je vous donne au sujet de M.Bourbaki ne paraissaient pas suffisamment clairs, j’imagine qu’il n’appartient à l’Académie, et en particulier à celui qui présente la note, que de s’assurer de la valeur scientifique de celle-ci, et non de faire une enquête au sujet de l’auteur. Or j’ai examiné soigneusement le résultat de M.Bourbaki, et son exactitude est hors de doute.
Veuillez recevoir, je vous prie, les remerciements de M.Bourbaki et les miens, et croyez toujours à mes sentiments bien affectueusement et respectueusement dévoués.
A.Weil”

That is, ‘Besse-en-Poldevie’, or simply ‘Besse’ as in this line from the wedding announcement “Mademoiselle Betti Bourbaki, a former student of the Well-Ordereds of Besse” must be the capital of Poldavia where the Academy is housed.

You may have never heard of Poldavia, but if you are a skiing or cycling enthusiast, the name of its capital sure does ring a bell, or rather so does the name of its sub-part Super Besse. The winter sports resort of Super Besse is located in the commune of Besse-et-Saint-Anastaise in the Parc naturel régional des volcans d’Auvergne in the department of Puy de Dôme, in Auvergne. Situated approximately 50 km from Clermont-Ferrand, it is located at an altitude of 1350 m on the slopes of Puy de Sancy, Puy de la Perdrix and Puy Ferrand. Surely a mountainous region …

Besse-et-Saint-Anastaise, or rather Besse-en-Chandesse as it was formerly called, was the venue of the very first Bourbaki Congres 1935. Surely, they used the ‘Royal Poldavian Academy’ as their meeting place. But, where is it?




At the Besse meeting were present : Claude Chevalley, Jean Dieudonné, René de Possel, Henri Cartan, Szolem Mandelbrojt, Jean Delsarte, André Weil, the physicist Jean Coulomb, Charles Ehresmann and a ‘cobaye’ called Mirles.

Of these men three held a position at the University Blaise Pascal of Clermont-Ferrand : Mandelbrojt, de Possel and Coulomb and they arranged that the Bourbaki-group could use the universities’ biology-outpost in Besse-en-Chandesse. Photographic evidence for this is provided by the man standing apart in the right hand-picture above : the biologist Luc Olivier.

Concluding : the Royal Poldavian Academy is located at the ‘Station Biologique de l’Université Blaise Pascal’, Rue du Lavoir, Besse-et-Saint-Anastaise.

On July 12th 2003 a ceremony was held at the Biology-station commemorating the birth of Nicolas Bourbaki (the group), supposedly born July 12th 1935. A plate at an exterior wall of the Biology-station was unveiled.

More information about the mysterious country of Poldavia can be found in the article La verité sur la Poldévie by Michele Audin.

Leave a Comment

bloomsday, again

Bloomsday has a tradition of bringing drastic changes to this blog.

Two years ago, it signaled a bloomsday-ending to the original neverendingbooks, giving birth (at least for a couple of months) to MoonshineMath.

Last year, the bloomsday 2 post was the first of several ‘conceptual’ blog proposals, voicing my conviction that a math-blog can only survive as a group-blog.

A few months later, I launched yet another proposal and promised that neverendingbooks would end on new-years eve, exactly five years after it started.

And, here we are again, half a year later, still struggling on … barely.

Well, don’t expect drastic statements from me today. I’ll continue to post when I do feel I’ve something to say (and won’t if I don’t) ((that is, apart from this silly post)). Also, there won’t be another pathetic cry-for-cooperation. I must have given up on that hope.

In fact, there isn’t much I can add to the post just mentioned (in particular my comment to it) to explain my present state of mind when it comes to blogging (and maths).

Let’s hope google wave will be released soon and that some of you will use it to make relevant waves. I promise to add blips when possible.

2 Comments

math2.0-setup : final comments

Last time I promised to come back explaining how to set-up LaTeX-support, figuring I had to tell you about a few modifications I had to make in order to get Latexrender run on my mac…

A few google searches made it plain how out of touch I am on these matters (details below). But first, there was this comment to this series by Link Starbureiy :

“I took part in Gowers’ blog discussion. My input was to move things over to Google collaboration tools, like Google Knol, and perhaps Google Sites. However, those tools for large-scale collaboration may not be the best solution anymore. I like the NSN idea, but worry about it’s very long-term stability. Would you consider porting the project over to the Google App Engine so that it can be played with in the orkut sandbox (http://sandbox.orkut.com)?”

I thought I made it clear from the outset that I didn’t want to spend the rest of my life web-mastering a site such as NSN. All I wanted to show is that the technology is there free for the taking, and show that you do not have to be a wizard to get it running even on a mac…

I would really love it when some groups, or universities, on institutes, would set up something resembling this dedicated to a single arXiv-topic. Given our history, Antwerp University might be convinced to do this for math.RA but (a) I’m not going to maintain this on my own and (b) there may very well be a bandwidth problem if such a thing would become successful… (although, from past experiences and attempts I’ve made over the years, this is extremely unlikely for this target-group).

So please, if your group has some energy to spare, set-up your own math2.0-network, port it to Google Apps, Knol, Orkut or whatever, and I’d love to join and contribute to it.

As to LaTeX-support : this is trivial these days. First you need a working LaTeX-system on your virgin macbook. The best way is to download The MacTeX-2008 Distribution at work (it is a huge 1.19Gb download…). Next, install the fauxml-wordpress plugin (that is, download it to YourHome/Downloads and then drag the file faux-ml.php to the Library/WebServer/Documents/wp-content/plugins/ directory. Next, install likewise the WP-LateX plugin following the instructions, go to the configuring page and set the directory for latex and dvipng (if you follow my instructions they should be located at /usr/texbin/latex and /usr/texbin/dvipng), fill in the text color and background color you desire and clip your default latex-documentstyle/includepackages/newcommands section from your latest paper into the LaTeX Preamble window and believe me, you’re done!!!



One Comment

Ceci n’est pas un blog…

“Lieven le Bruyn’s NEVERENDINGBOOKS isn’t really a blog at all…”

Vlorbik’s unintentional [smack in the face](http://vlorbik.wordpress.com/2009/02/05/kiss-joy-as-it-flies $ left me bewildered ever since.

There aren’t that many [mathematical blogs](http://www-irma.u-strasbg.fr/article817.html) around, and, sure enough, we all have a different temperament, and hence a distinct style. I have no definition of what a mathematical blog should (or should not) be.

All I can say is that I try to reconcile an introvert character with a very public medium, partly because I think it is important for mathematics to be www-visible, but mostly because I’ve enjoyed exploring web-possibilities ever since someone told me of the existence of a language called html.

I’m a [Bauhaus](http://en.wikipedia.org/wiki/Bauhaus)-fan and hence like minimal wordpress-themes such as [Equilibrium](http://madebyon.com/equilibrium-wordpress-theme $. Perhaps this confuses some.

For this reason I’ve reinstalled the old-theme as default, and leave the reader to decide in the sidebar. This may not make this a blog yet, but it sure looks more like one…

As a one-time attempt to fit into the vast scenery of link-post-blogs, let’s try to increase the google visibility of some family-related sites (sorry, no math-links beyond) :

– The economic crisis is hitting hard at small companies such as my [sister’s-in-law](http://www.tuinkultuurlava.be) offering gardening-services.
– My god-child Tine is away for six months on a scholarship to Austria and blogging at [Tine’s adventures in Graz](http://www.tinesavontuuringraz.blogspot.com $.
– My daughter Gitte (aka here as PD1) is an [artist](http://www.gittte.be).
– My father, who will turn 79 next week, runs one of the most [popular blogs on skynet.be](http://zonnehart2008.skynetblogs.be $.

Leave a Comment

best of 2008 (2) : big theorems

Charles Siegel of Rigorous Trivialities ran a great series on big theorems.

The series started january 10th 2008 with a post on Bezout’s theorem, followed by posts on Chow’s lemma, Serre duality, Riemann-Roch, Bertini, Nakayama’s lemma, Groebner bases, Hurwitz to end just before christmas with a post on Kontsevich’s formula.

Also at other blogs, 2008 was the year of series of long posts containing substantial pure mathematics.

Out of many, just two examples : Chris Schommer-Pries ran a three part series on TQFTs via planar algebras starting here, at the secret blogging seminar.
And, Peter Woit of Not Even Wrong has an ungoing series of posts called Notes on BRST, starting here. At the moment he is at episode nine.

It suffices to have a quick look at the length of any of these posts, to see that a great deal of work was put into these series (and numerous similar ones, elsewhere). Is this amount of time well spend? Or, should we focus on shorter, easier digestible math-posts?

What got me thinking was this merciless comment Charles got after a great series of posts leading up to Kontsevich’s formula :

“Perhaps you should make a New Years commitment to not be so obscurantist, like John Armstrong, and instead promote the public understanding of math!”

Well, if this doesn’t put you off blogging for a while, what will?

So, are we really writing the wrong sort of posts? Do math-blog readers only want short, flashy, easy reading posts these days? Or, is anyone out there taking notice of the hard work it takes to write such a technical post, let alone a series of them?

At first I was rather pessimistic about the probable answer to all these questions, but, fortunately we have Google Analytics to quantify things a bit.

Clearly I can only rely on the statistics for my own site, so I’ll treat the case of a recent post here : Mumford’s treasure map which tried to explain the notion of a generic point and how one might depict an affine scheme.

Here’s some of the Google Analytics data :



The yellow function gives the number of pageviews for that post, the value ranges between 0 and 600 (the number to the right of the picture). In total this post was viewed 2470 times, up till now.

The blue function tells the average time a visitor spend reading that post, the numbers range between 0 and 8 minutes (the times to the left of the picture). On average the time-on-page was 2.24 minutes, so in all people spend well over 92 hours reading this one post! This seems like a good return for the time it took me to write it…

Some other things can be learned from this data. Whereas the number of page-views has two peaks early on (one the day it was posted, the second one when Peter Woit linked to it) and is now steadily decreasing, the time-on-page for the later visitors is substantially longer than the early readers.

Some of this may be explained (see comment below) by returning visits. Here is a more detailed picture (orange = new visits, green=returning visits, blue=’total’ whatever this means).



All in all good news : there is indeed a market for longer technical math-posts and people (eventually) take time to read the post in detail.

6 Comments

Mazur’s knotty dictionary

In the previous posts, we have depicted the ‘arithmetic line’, that is the prime numbers, as a ‘line’ and individual primes as ‘points’.

However, sometime in the roaring 60-ties, Barry Mazur launched the crazy idea of viewing the affine spectrum of the integers, $\mathbf{spec}(\mathbb{Z}) $, as a 3-dimensional manifold and prime numbers themselves as knots in this 3-manifold…

After a long silence, this idea was taken up recently by Mikhail Kapranov and Alexander Reznikov (1960-2003) in a talk at the MPI-Bonn in august 1996. Pieter Moree tells the story in his recollections about Alexander (Sacha) Reznikov in Sipping Tea with Sacha : “Sasha’s paper is closely related to his paper where the analogy of covers of three-manifolds and class field theory plays a big role (an analogy that was apparently first noticed by B. Mazur). Sasha and Mikhail Kapranov (at the time also at the institute) were both very interested in this analogy. Eventually, in August 1996, Kapranov and Reznikov both lectured on this (and I explained in about 10 minutes my contribution to Reznikov’s proof). I was pleased to learn some time ago that this lecture series even made it into the literature, see Morishita’s ‘On certain analogies between knots and primes’ J. reine angew. Math 550 (2002) 141-167.”

Here’s a part of what is now called the Kapranov-Reznikov-Mazur dictionary :



What is the rationale behind this dictionary? Well, it all has to do with trying to make sense of the (algebraic) fundamental group $\pi_1^{alg}(X) $ of a general scheme $X $. Recall that for a manifold $M $ there are two different ways to define its fundamental group $\pi_1(M) $ : either as the closed loops in a given basepoint upto homotopy or as the automorphism group of the universal cover $\tilde{M} $ of $M $.

For an arbitrary scheme the first definition doesn’t make sense but we can use the second one as we have a good notion of a (finite) cover : an etale morphism $Y \rightarrow X $ of the scheme $X $. As they form an inverse system, we can take their finite automorphism groups $Aut_X(Y) $ and take their projective limit along the system and call this the algebraic fundamental group $\pi^{alg}_1(X) $.

Hendrik Lenstra has written beautiful course notes on ‘Galois theory for schemes’ on all of this starting from scratch. Besides, there are also two video-lectures available on this at the MSRI-website : Etale fundamental groups 1 by H.W. Lenstra and Etale fundamental groups 2 by F. Pop.

But, what is the connection with the ‘usual’ fundamental group in case both of them can be defined? Well, by construction the algebraic fundamental group is always a profinite group and in the case of manifolds it coincides with the profinite completion of the standard fundamental group, that is,
$\pi^{alg}_1(M) \simeq \widehat{\pi_1(M)} $ (recall that the cofinite completion is the projective limit of all finite group quotients).

Right, so all we have to do to find a topological equivalent of an algebraic scheme is to compute its algebraic fundamental group and find an existing topological space of which the profinite completion of its standard fundamental group coincides with our algebraic fundamental group. An example : a prime number $p $ (as a ‘point’ in $\mathbf{spec}(\mathbb{Z}) $) is the closed subscheme $\mathbf{spec}(\mathbb{F}_p) $ corresponding to the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} $. For any affine scheme of a field $K $, the algebraic fundamental group coincides with the absolute Galois group $Gal(\overline{K}/K) $. In the case of $\mathbb{F}_p $ we all know that this abslute Galois group is isomorphic with the profinite integers $\hat{\mathbb{Z}} $. Now, what is the first topological space coming to mind having the integers as its fundamental group? Right, the circle $S^1 $. Hence, in arithmetic topology we view prime numbers as topological circles, that is, as knots in some bigger space.

But then, what is this bigger space? That is, what is the topological equivalent of $\mathbf{spec}(\mathbb{Z}) $? For this we have to go back to Mazur’s original paper Notes on etale cohomology of number fields in which he gives an Artin-Verdier type duality theorem for the affine spectrum $X=\mathbf{spec}(D) $ of the ring of integers $D $ in a number field. More precisely, there is a non-degenerate pairing $H^r_{et}(X,F) \times Ext^{3-r}_X(F, \mathbb{G}_m) \rightarrow H^3_{et}(X,F) \simeq \mathbb{Q}/\mathbb{Z} $ for any constructible abelian sheaf $F $. This may not tell you much, but it is a ‘sort of’ Poincare-duality result one would have for a compact three dimensional manifold.

Ok, so in particular $\mathbf{spec}(\mathbb{Z}) $ should be thought of as a 3-dimensional compact manifold, but which one? For this we have to compute the algebraic fundamental group. Fortunately, this group is trivial as there are no (non-split) etale covers of $\mathbf{spec}(\mathbb{Z}) $, so the corresponding 3-manifold should be simple connected… but wenow know that this has to imply that the manifold must be $S^3 $, the 3-sphere! Summarizing : in arithmetic topology, prime numbers are knots in the 3-sphere!

More generally (by the same arguments) the affine spectrum $\mathbf{spec}(D) $ of a ring of integers can be thought of as corresponding to a closed oriented 3-dimensional manifold $M $ (which is a cover of $S^3 $) and a prime ideal $\mathfrak{p} \triangleleft D $ corresponds to a knot in $M $.

But then, what is an ideal $\mathfrak{a} \triangleleft D $? Well, we have unique factorization of ideals in $D $, that is, $\mathfrak{a} = \mathfrak{p}_1^{n_1} \ldots \mathfrak{p}_k^{n_k} $ and therefore $\mathfrak{a} $ corresponds to a link in $M $ of which the constituent knots are the ones corresponding to the prime ideals $\mathfrak{p}_i $.

And we can go on like this. What should be an element $w \in D $? Well, it will be an embedded surface $S \rightarrow M $, possibly with a boundary, the boundary being the link corresponding to the ideal $\mathfrak{a} = Dw $ and Seifert’s algorithm tells us how we can produce surfaces having any prescribed link as its boundary. But then, in particular, a unit $w \in D^* $ should correspond to a closed surface in $M $.

And all these analogies carry much further : for example the class group of the ring of integers $Cl(D) $ then corresponds to the torsion part $H_1(M,\mathbb{Z})_{tor} $ because principal ideals $Dw $ are trivial in the class group, just as boundaries of surfaces $\partial S $ vanish in $H_1(M,\mathbb{Z}) $. Similarly, one may identify the unit group $D^* $ with $H_2(M,\mathbb{Z}) $… and so on, and on, and on…

More links to papers on arithmetic topology can be found in John Baez’ week 257 or via here.

Leave a Comment

noncommutative F_un geometry (2)

Last time we tried to generalize the Connes-Consani approach to commutative algebraic geometry over the field with one element $\mathbb{F}_1 $ to the noncommutative world by considering covariant functors

$N~:~\mathbf{groups} \rightarrow \mathbf{sets} $

which over $\mathbb{C} $ resp. $\mathbb{Z} $ become visible by a complex (resp. integral) algebra having suitable universal properties.

However, we didn’t specify what we meant by a complex noncommutative variety (resp. an integral noncommutative scheme). In particular, we claimed that the $\mathbb{F}_1 $-‘points’ associated to the functor

$D~:~\mathbf{groups} \rightarrow \mathbf{sets} \qquad G \mapsto G_2 \times G_3 $ (here $G_n $ denotes all elements of order $n $ of $G $)

were precisely the modular dessins d’enfants of Grothendieck, but didn’t give details. We’ll try to do this now.

For algebras over a field we follow the definition, due to Kontsevich and Soibelman, of so called “noncommutative thin schemes”. Actually, the thinness-condition is implicit in both Soule’s-approach as that of Connes and Consani : we do not consider R-points in general, but only those of rings R which are finite and flat over our basering (or field).

So, what is a noncommutative thin scheme anyway? Well, its a covariant functor (commuting with finite projective limits)

$\mathbb{X}~:~\mathbf{Alg}^{fd}_k \rightarrow \mathbf{sets} $

from finite-dimensional (possibly noncommutative) $k $-algebras to sets. Now, the usual dual-space operator gives an anti-equivalence of categories

$\mathbf{Alg}^{fd}_k \leftrightarrow \mathbf{Coalg}^{fd}_k \qquad A=C^* \leftrightarrow C=A^* $

so a thin scheme can also be viewed as a contra-variant functor (commuting with finite direct limits)

$\mathbb{X}~:~\mathbf{Coalg}^{fd}_k \rightarrow \mathbf{Sets} $

In particular, we are interested to associated to any {tex]k $-algebra $A $ its representation functor :

$\mathbf{rep}(A)~:~\mathbf{Coalg}^{fd}_k \rightarrow \mathbf{Sets} \qquad C \mapsto Alg_k(A,C^*) $

This may look strange at first sight, but $C^* $ is a finite dimensional algebra and any $n $-dimensional representation of $A $ is an algebra map $A \rightarrow M_n(k) $ and we take $C $ to be the dual coalgebra of this image.

Kontsevich and Soibelman proved that every noncommutative thin scheme $\mathbb{X} $ is representable by a $k $-coalgebra. That is, there exists a unique coalgebra $C_{\mathbb{X}} $ (which they call the coalgebra of ‘distributions’ of $\mathbb{X} $) such that for every finite dimensional $k $-algebra $B $ we have

$\mathbb{X}(B) = Coalg_k(B^*,C_{\mathbb{X}}) $

In the case of interest to us, that is for the functor $\mathbf{rep}(A) $ the coalgebra of distributions is Kostant’s dual coalgebra $A^o $. This is the not the full linear dual of $A $ but contains only those linear functionals on $A $ which factor through a finite dimensional quotient.

So? You’ve exchanged an algebra $A $ for some coalgebra $A^o $, but where’s the geometry in all this? Well, let’s look at the commutative case. Suppose $A= \mathbb{C}[X] $ is the coordinate ring of a smooth affine variety $X $, then its dual coalgebra looks like

$\mathbb{C}[X]^o = \oplus_{x \in X} U(T_x(X)) $

the direct sum of all universal (co)algebras of tangent spaces at points $x \in X $. But how do we get the variety out of this? Well, any coalgebra has a coradical (being the sun of all simple subcoalgebras) and in the case just mentioned we have

$corad(\mathbb{C}[X]^o) = \oplus_{x \in X} \mathbb{C} e_x $

so every point corresponds to a unique simple component of the coradical. In the general case, the coradical of the dual coalgebra $A^o $ is the direct sum of all simple finite dimensional representations of $A $. That is, the direct summands of the coalgebra give us a noncommutative variety whose points are the simple representations, and the remainder of the coalgebra of distributions accounts for infinitesimal information on these points (as do the tangent spaces in the commutative case).

In fact, it was a surprise to me that one can describe the dual coalgebra quite explicitly, and that $A_{\infty} $-structures make their appearance quite naturally. See this paper if you’re in for the details on this.

That settles the problem of what we mean by the noncommutative variety associated to a complex algebra. But what about the integral case? In the above, we used extensively the theory of Kostant-duality which works only for algebras over fields…

Well, not quite. In the case of $\mathbb{Z} $ (or more general, of Dedekind domains) one can repeat Kostant’s proof word for word provided one takes as the definition of the dual $\mathbb{Z} $-coalgebra
of an algebra (which is $\mathbb{Z} $-torsion free)

$A^o = { f~:~A \rightarrow \mathbb{Z}~:~A/Ker(f)~\text{is finitely generated and torsion free}~} $

(over general rings there may be also variants of this duality, as in Street’s book an Quantum groups). Probably lots of people have come up with this, but the only explicit reference I have is to the first paper I’ve ever written. So, also for algebras over $\mathbb{Z} $ we can define a suitable noncommutative integral scheme (the coradical approach accounts only for the maximal ideals rather than all primes, but somehow this is implicit in all approaches as we consider only thin schemes).

Fine! So, we can make sense of the noncommutative geometrical objects corresponding to the group-algebras $\mathbb{C} \Gamma $ and $\mathbb{Z} \Gamma $ where $\Gamma = PSL_2(\mathbb{Z}) $ is the modular group (the algebras corresponding to the $G \mapsto G_2 \times G_3 $-functor). But, what might be the points of the noncommutative scheme corresponding to $\mathbb{F}_1 \Gamma $???

Well, let’s continue the path cut out before. “Points” should correspond to finite dimensional “simple representations”. Hence, what are the finite dimensional simple $\mathbb{F}_1 $-representations of $\Gamma $? (Or, for that matter, of any group $G $)

Here we come back to Javier’s post on this : a finite dimensional $\mathbb{F}_1 $-vectorspace is a finite set. A $\Gamma $-representation on this set (of n-elements) is a group-morphism

$\Gamma \rightarrow GL_n(\mathbb{F}_1) = S_n $

hence it gives a permutation representation of $\Gamma $ on this set. But then, if finite dimensional $\mathbb{F}_1 $-representations of $\Gamma $ are the finite permutation representations, then the simple ones are the transitive permutation representations. That is, the points of the noncommutative scheme corresponding to $\mathbb{F}_1 \Gamma $ are the conjugacy classes of subgroups $H \subset \Gamma $ such that $\Gamma/H $ is finite. But these are exactly the modular dessins d’enfants introduced by Grothendieck as I explained a while back elsewhere (see for example this post and others in the same series).

Leave a Comment

Monstrous frustrations

Thanks for clicking through… I guess.

If nothing else, it shows that just as much as the stock market is fueled by greed, mathematical reasearch is driven by frustration (or the pleasure gained from knowing others to be frustrated).

I did spend the better part of the day doing a lengthy, if not laborious, calculation, I’ve been postponing for several years now. Partly, because I didn’t know how to start performing it (though the basic strategy was clear), partly, because I knew beforehand the final answer would probably offer me no further insight.

Still, it gives the final answer to a problem that may be of interest to anyone vaguely interested in Moonshine :

What does the Monster see of the modular group?

I know at least two of you, occasionally reading this blog, understand what I was trying to do and may now wonder how to repeat the straightforward calculation. Well the simple answer is : Google for the number 97239461142009186000 and, no doubt, you will be able to do the computation overnight.

One word of advice : don’t! Get some sleep instead, or make love to your partner, because all you’ll get is a quiver on nine vertices (which is pretty good for the Monster) but having an horrible amount of loops and arrows…

If someone wants the details on all of this, just ask. But, if you really want to get me exited : find a moonshine reason for one of the following two numbers :

$791616381395932409265430144165764500492= 2^2 * 11 * 293 * 61403690769153925633371869699485301 $

(the dimension of the monster-singularity upto smooth equivalence), or,

$1575918800531316887592467826675348205163= 523 * 1655089391 * 15982020053213 * 113914503502907 $

(the dimension of the moduli space).

One Comment