Skip to content →

Tag: geometry

robots.txt

I
just finished the formal lecture-part of the course Projects in
non-commutative geometry
(btw. I am completely exhausted after this
afternoon\’s session but hopeful that some students actually may do
something with my crazy ideas), springtime seems to have arrived and
next week the easter-vacation starts so it may be time to have some fun
like making a new webpage (yes, again…). At the moment the main
matrix.ua.ac.be page is not really up to standards
and Raf and Hans will be using it soon for the information about the
Liegrits-project (at the moment they just have a beautiful logo). My aim is to make the main page to be the
starting page of the geoMetry site
(guess what M stands for ?) on which I want
to collect as much information as possible on non-commutative geometry.
To get at that info I plan to set some spiders or bots or
scrapers loose on the web (this is just an excuse to force myself
to learn Perl). But it seems one has to follow strict ethical guidelines
in doing so. One of the first sites I want to spider is clearly the arXiv but they have
a scary Robots Beware page! I don\’t know whether their
robots.txt file will allow me to get at any of
their goodies. In a robots.txt file the webmaster can put the
directories on his/her site which are off limits to robots and as I
don\’t want to do anything that may cause that the arXiv is no longer
available to me (or even worse, to the whole department) I better follow
these guidelines. First site on my list to study tomorrow will be The
Web Robots Pages

Leave a Comment

projects in noncommutative geometry

Tomorrow
I’ll start with the course Projects in non-commutative geometry
in our masterclass. The idea of this course (and its companion
Projects in non-commutative algebra run by Fred Van Oystaeyen) is
that students should make a small (original if possible) work, that may
eventually lead to a publication.
At this moment the students
have seen the following : definition and examples of quasi-free algebras
(aka formally smooth algebras, non-commutative curves), their
representation varieties, their connected component semigroup and the
Euler-form on it. Last week, Markus Reineke used all this in his mini-course
Rational points of varieties associated to quasi-free
algebras
. In it, Markus gave a method to compute (at least in
principle) the number of points of the non-commutative Hilbert
scheme
and the varieties of simple representations over a
finite field. Here, in principle means that Markus demands a lot of
knowledge in advance : the number of points of all connected components
of all representation schemes of the algebra as well as of its scalar
extensions over finite field extensions, together with the action of the
Galois group on them … Sadly, I do not know too many examples were all
this information is known (apart from path algebras of quivers).
Therefore, it seems like a good idea to run through Markus’
calculations in some specific examples were I think one can get all this
: free products of semi-simple algebras. The motivating examples
being the groupalgebra of the (projective) modular group
PSL(2,Z) = Z(2) * Z(3) and the free matrix-products $M(n,F_q) *
M(m,F_q)$. I will explain how one begins to compute things in these
examples and will also explain how to get the One
quiver to rule them all
in these cases. It would be interesting to
compare the calculations we will find with those corresponding to the
path algebra of this one quiver.
As Markus set the good
example of writing out his notes and posting them, I will try to do the
same for my previous two sessions on quasi-free algebras over the next
couple of weeks.

One Comment

noncommutative geometry 2

Again I
spend the whole morning preparing my talks for tomorrow in the master
class. Here is an outline of what I will cover :
– examples of
noncommutative points and curves. Grothendieck’s characterization of
commutative regular algebras by the lifting property and a proof that
this lifting property in the category alg of all l-algebras is
equivalent to being a noncommutative curve (using the construction of a
generic square-zero extension).
– definition of the affine
scheme rep(n,A) of all n-dimensional representations (as always,
l is still arbitrary) and a proof that these schemes are smooth
using the universal property of k(rep(n,A)) (via generic
matrices).
– whereas rep(n,A) is smooth it is in general
a disjoint union of its irreducible components and one can use the
sum-map to define a semigroup structure on these components when
l is algebraically closed. I’ll give some examples of this
semigroup and outline how the construction can be extended over
arbitrary basefields (via a cocommutative coalgebra).

definition of the Euler-form on rep A, all finite dimensional
representations. Outline of the main steps involved in showing that the
Euler-form defines a bilinear form on the connected component semigroup
when l is algebraically closed (using Jordan-Holder sequences and
upper-semicontinuity results).

After tomorrow’s
lectures I hope you are prepared for the mini-course by Markus Reineke on non-commutative Hilbert schemes
next week.

Leave a Comment

noncommutative geometry

Today I
did prepare my lectures for tomorrow for the NOG master-class on
non-commutative geometry. I\’m still doubting whether it is worth TeXing
my handwritten notes. Anyway, here is what I will cover tomorrow :

– Examples of l-algebras (btw. l is an
arbitrary field) : matrix-algebras, group-algebras lG of finite
groups, polynomial algebras, free and tensor-algebras, path algebras
lQ of a finite quiver, coordinaterings O(C) of affine smooth
curves C etc.
– Refresher on homological algebra : free and
projective modules, exact sequences and complexes, Hom and Ext groups
and how to calculate them from projective resolutions, interpretation of
Ext^1 via (non-split) short exact sequences and stuff like that.
– Hochschild cohomology and noncommutative differential forms.
Bimodules and their Hochschild cohomology, standard complex and
connection with differential forms, universal bimodule of derivations
etc.
– Non-commutative manifolds. Interpretation of low degree
Hochschild cohomology, characterization of non-commutative points as
separable l-algebras and examples. Formally smooth algebras
(non-commutative curves) characterised by the lifting property for
square-free extensions and a proof that formally smooth algebras are
hereditary.

Next week I will cover the representation
varieties of formally smooth algebras and the semigroup on their
connected (or irreducible) components.

Leave a Comment

Brauer’s forgotten group

Non-commutative geometry seems pretty trivial compared
to commutative geometry : there are just two types of manifolds,
points and curves. However, nobody knows how to start classifying
these non-commutative curves. I do have a conjecture that any
non-commutative curve can (up to non-commutative birationality) be
constructed from hereditary orders over commutative curves
by universal methods but I’ll try to explain that another
time.

On the other hand, non-commutative points
have been classified (at least in principle) for at least 50
years over an arbitrary basefield $l$. non-commutative
$l$-points $P$ is an $l$-algebra such that its double
$d(P) = P \\otimes P^o$ ( where $P^o$ is the opposite algebra,
that is with the reverse multiplication) has an element$c=\\sum_i
a_i \\otimes b_i with \\sum_i a_ib_i = 1 (in $P$)$ and such that for
all p in $P$ we have that $(1 \\otimes a).c = (a \\otimes 1).c$ For
people of my generation, c is called a separability idempotent
and $P$ itself is called a separable $l$-algebra.
Examples of $l$-points include direct sums of full matrixrings
(of varying sizes) over $l$ or group-algebras $lG$ for $G$ a
finite group of n elements where n is invertible in $l$. Hence, in
particular, the group-algebra $lG$ of a p-group $G$ over a field $l$
of characteristic p is a non-commutative singular point and
modular representation theory (a theory build almost single
handed by
Richard Brauer) can be viewed as
the methods needed to resolve this singularity. Brauer’s name is
still mentioned a lot in modular representation theory, but another
of his inventions, the Brauer group, seems to be hardly known
among youngsters.

Still, it is a crucial tool
in classifying all non-commutative $l$-points. The algebraic
structure of an $l$-point $P$ is as follows : $$P = S_1 + S_2 + …
+ S_k$$ where each S_i is a simple algebra (that is, it
contains no proper twosided ideals), finite dimensional over
its center $l_i$ which is in its turn a finite dimensional
separable field extension of $l$. So we need to know all
simple algebras $S$, finite dimensional over their center $L$ which
is any finite dimensional separable field extension of $l$. The
algebraic structure of such an $S$ is of the form$$S = M(a,D)$$ that
is, full axa matrices with entries in $D$ where $D$ is a
skew-field (or some say, a division algebra) with
center $L$. The $L$-dimension of such a $D$ is always a square,
say b^2, so that the $L$-dimension of $S$ itself is also a square
a^2b^2. There are usually plenty such division algebras, the simplest
examples being quaternion algebras. Let p and q be two
non-zero elements of $L$ such that the conic $C : X^2-pY^2-bZ^2 =
0$ has no $L$-points in the projective $L$-plane, then the
algebra$D=(p,q)_2 = L.1 + L.i + L.j + L.ij where i^2=p, j^2=q and
ji=-ij$ is a four-dimensional skew-field over $L$. Brauer’s idea to
classify all simple $L$-algebras was to associate a group to them,
the Brauer group, $Br(L)$. Its elements are equivalence
classes
of simple algebras where two simple algebras $S$ and
$S’$ are equivalent if and only if$M(m,S) = M(n,S’)$ for some sizes
m and n. Multiplication on these classes in induced by
the tensor-product (over $L$) as $S_1 \\otimes S_2$ is again a simple
$L$-algebra if $S_1$ and $S_2$ are. The Brauer group $Br(L)$ is an
Abelian torsion group and if we know its structure we know all
$L$-simple algebras so if we know $Br(L)$ for all finite dimensional
separable extensions $L$ of $l$ we have a full classification of
all non-commutative $l$-points.

Here are some examples
of Brauer groups : if $L$ is algebraically closed (or separable
closed), then $Br(L)=0$ so in particular, if $l$ is algebraically
closed, then the only non-commutative points are sums of matrix rings.
If $R$ is the field of real numbers, then $Br(R) = Z/2Z$ generated by
the Hamilton quaternion algebra (-1,-1)_2. If $L$ is a complete
valued number field, then $Br(L)=Q/Z$ which allows to describe also
the Brauer group of a number field in terms of its places. Brauer groups
of function fields of (commutative) varieties over an algebraically
closed basefield is usually huge but there is one noteworthy
exception $Tsen’s theorem$ which states that $Br(L)=0$ if $L$ is the
function field of a curve C over an algebraically closed field. In 1982
Merkurjev and Suslin proved a marvelous result about generators of
$Br(L)$ whenever $L$ is large enough to contain all primitive roots
of unity. They showed, in present day lingo, that $Br(L)$
is generated by non-commutative points of the quantum-planes
over $L$ at roots of unity. That is, it is generated by cyclic
algebras
of the form$(p,q)_n = L
\\< X,Y>/(X^n=p,Y^n=q,YX=zXY)$where z is an n-th primitive root of
unity. Next time we will recall some basic results on the relation
between the Brauer group and Galois cohomology.

2 Comments

NOG master class update


Yesterday I made a preliminary program for the first two months
of the masterclass non-commutative geometry. It is likely that
the program will still undergo changes as at the moment I included only
the mini-courses given by Bernhard
Keller
and Markus Reineke but several other people have
already agreed to come and give a talk. For example, Jacques Alev (Reims),
Tom Lenagan (Edinburgh),
Shahn Majid (London),
Giovanna Carnovale (Padua) among others. And in
may, Fred assures me, Maxim Kontsevich will give a couple of talks.

As for the contents of the two courses I will be
teaching I changed my mind slightly. The course non-commutative
geometry
I teach jointly with Markus Reineke and making the program
I realized that I have to teach the full 22 hours before he will start
his mini-course in the week of March 15-19 to explain the few
things
he needs, like :

To derive all the
counting of points formulas, I only need from your course:

the definition of formally smooth algebras basic properties, like
being
hereditary
– the definition of the component
semigroup
– the fact that dim Hom-dim Ext is constant along
components. This I need
even over finite fields $F_q$, but I
went through your proof in “One quiver”,
and it works. The
key fact is that even over $F_q$, the infinitesimal lifting
property implies smoothness in the sense Dimension of variety =
dimension of
(schematic) tangent space in any $F_q$-valued
point. But I think it’s fine for
the students if you do all
this over C, and I’ll only sketch the (few)
modifications for
algebras over $F_q$.

So my plan is to do all of
this first and leave the (to me) interesting problem of trying to
classify formally smooth algebras birationally to the second
course projects in non-commutative geometry which fits the title
as a lot of things still need to be done. The previous idea to give in
that course applications of non-commutative orders to the resolution of
singularities (in particular of quotient singularities) as very roughly
explained in my three talks on non-commutative geometry@n I now
propose to relegate to the friday afternoon seminar. I’ll be
happy to give more explanations on all this (in particular more
background on central simple algebras and the theory of (maximal)
orders) if other people work through the main part of the paper in the
seminar. In fact, all (other) suggestions for seminar-talks are welcome
: just tell me in person or post a comment to this post.

Leave a Comment

Bill Schelter’s Maxima

Bill
Schelter was a remarkable man. First, he was a top-class mathematician.
If you allow yourself to be impressed, read his proof of the
Artin-Procesi theorem. Bill was also among the first to take
non-commutative geometry seriously. Together with Mike Artin he
investigated a notion of non-commutative integral extensions and he was
the first to focuss attention to formally smooth algebras (a
suggestion later taken up by a.o. Cuntz-Quillen and Kontsevich) and a
relative version with respect to algebras satisfying all identities of
n x n matrices which (via work of Procesi) led to smooth@n
algebras. To youngsters, he is probably best know as the co-inventor of
Artin-Schelter regular algebras. I still vividly remember an
overly enthusiastic talk by him on the subject in Oberwolfach, sometime
in the late eighties. Secondly, Bill was a genuine Lisp-guru and
a strong proponent of open source software, see for example his
petition against software patents. He maintanind
his own version of Kyoto Common Lisp which developed into Gnu
Common Lisp
. A quote on its history :

GCL is
the product of many hands over many years. The original effort was known
as the Kyoto Common Lisp system, written by Taiichi Yuasa and Masami
Hagiya in 1984. In 1987 new work was begun by William Schelter, and that
version of the system was called AKCL (Austin Kyoto Common Lisp). In
1994 AKCL was released as GCL (GNU Common Lisp) under the GNU public
library license. The primary purpose of GCL during that phase of it’s
existence was to support the Maxima computer algebra system, also
maintained by Dr. Schelter. It existed largely as a subproject of
Maxima.

Maxima started as Bill’s version of
Macsyma an MIT-based symbolic computation program to which he
added many routines, one of which was Affine a package that
allowed to do Groebner-like computations in non-commutative
algebras (implementing Bergman’s diamond lemma) and which he
needed to get a grip on 3-dimensional Artin-Schelter regular
algebras
. Michel and me convinced Fred to acquire funds to
buy us a work-station (costing at the time 20 to 30 iMacs) and have Bill
flown in from the States with his tape of maxima and let him
port it to our Dec-station. Antwerp was probably for years
the only place in the world (apart from MIT) where one could do
calculations in affine (probably highly illegal at the time).
Still, lots of people benefitted from this, among others Michaela
Vancliff
and Kristel Van Rompay in their investigation
of 4-dimensional Artin-Schelter regular algebras associated to an
automorphism of a quadric in three-dimensional projective space.
Yesterday I ran into Bill (alas virtually) by browsing the
crypto-category of Fink. There it was, maxima, Bill’s package! I tried to install it
with the Fink Commander and failed but succeeded from the command line.
So, if you want to have your own version of it type

sudo fink
install maxima

from the Terminal and it will install without
problems (giving you also a working copy of common lisp). Unfortunately
I do not remember too much of Macsyma or Affine but there is plenty of
documentation on the net. Manuals and user guides can be obtained from
the maxima homepage and the University of Texas
(Bill’s university) maintains an online manual, including a cryptic description of
some Affine-commands. But probably I’ll have to send Michaela an
email asking for some guidance on this… Here, as a tribute to Bill who
died in july 2001 the opening banner

 iMacLieven:~ lieven$
/sw/bin/maxima Maxima 5.9.0 http://maxima.sourceforge.net 
Distributed under the GNU Public License. 
See the file COPYING. 
Dedicated to the memory of William Schelter. 
This is a development version of Maxima. 
The function bug_report() provides bug reporting information. 
(C1)
 
Leave a Comment

NOG master class


Yesterday I made reservations for lecture rooms to run the
master class on non-commutative geometry sponsored by the ESF-NOG project. We have a lecture room on
monday- and wednesday afternoon and friday the whole day which should be
enough. I will run two courses in the program : non-commutative
geometry
and projects in non-commutative geometry both 30
hours. I hope that Raf Bocklandt will do most of the work on the
Geometric invariant theory course so that my contribution to it
can be minimal. Here are the first ideas of topics I want to cover in my
courses. As always, all suggestions are wellcome (just add a
comment).

non-commutative geometry : As
I am running this course jointly with Markus Reineke and as Markus will give a
mini-course on his work on non-commutative Hilbert schemes, I will explain
the theory of formally smooth algebras. I will cover most of the
paper by Joachim Cuntz and Daniel Quillen “Algebra extensions and
nonsingularity”, Journal of AMS, v.8, no. 2, 1995, 251?289. Further,
I’ll do the first section of the paper by Alexander Rosenberg and Maxim Kontsevich,
Noncommutative smooth spaces“. Then, I will
explain some of my own work including the “One
quiver to rule them all
” paper and my recent attempts to classify
all formally smooth algebras up to non-commutative birational
equivalence. When dealing with the last topic I will explain some of Aidan Schofield‘s paper
Birational classification of moduli spaces of representations of quivers“.

projects in
non-commutative geometry
: This is one of the two courses (the other
being “projects in non-commutative algebra” run by Fred Van Oystaeyen)
for which the students have to write a paper so I will take as the topic
of my talks the application of non-commutative geometry (in particular
the theory of orders in central simple algebras) to the resolution of
commutative singularities and ask the students to carry out the detailed
analysis for one of the following important classes of examples :
quantum groups at roots of unity, deformed preprojective algebras or
symplectic reflexion algebras. I will explain in much more detail three talks I gave on the subject last fall in
Luminy. But I will begin with more background material on central simple
algebras and orders.

Leave a Comment

antwerp sprouts

The
game of sprouts is a two-person game invented by John Conway and Michael Paterson in 1967 (for some
historical comments visit the encyclopedia). You just need pen and paper to
play it. Here are the rules : Two players, Left and Right, alternate
moves until no more moves are possible. In the normal game, the last
person to move is the winner. In misere play, the last person to move is
the loser. The starting position is some number of small circles called
“spots”. A move consists of drawing a new spot g and then drawing two
lines, in the loose sense, each terminating at one end at spot g and at
the other end at some other spot. (The two lines can go to different
spots or the same spot, subject to the following conditions.) The lines
drawn cannot touch or cross any line or spot along the way. Also, no
more than three lines can terminate at any spot. A spot with three lines
attached is said to be “dead”, since it cannot facilitate any further
action.

You can play sprouts online using this Java applet.
There is also an ongoing discussion about sprouts on the geometry math forum. Probably the most complete
information can be found at the world game
of sprouts association
. The analysis of the game involves some nice
topology (the Euler number) and as the options for Left and Right are
the same at each position it is an impartial game and the outcome
depends on counting arguments. There is also a (joke) variation on the
game called Brussels sprouts (although some people seem to miss the point
entirely).

Some years ago I invented some variations
on sprouts making it into a partizan game (that is, at a given
position, Left and Right have different legal moves). Here are the rules
:

Cold Antwerp Sprouts : We start with n White
dots. Left is allowed to connect two White dots or a White and bLue dot
or two bLue dots and must draw an additional Red dot on the connecting
line. Right is allowed to connect two White dots, a Red and a White dot
or two Red dots and must draw an additional bLue dot on the connecting
line.

Hot Antwerp Sprouts : We start with n
White dots. Left is allowed to connect two White dots or a White and
bLue dot or two bLue dots and must draw an additional bLue dot on the
connecting line. Right is allowed to connect two White dots, a Red and a
White dot or two Red dots and must draw an additional Red dot on the
connecting line.

Although the rules look pretty
similar, the analysis of these two games in entirely different. On
february 11th I’ll give a talk on this as an example in
Combinatorial Game Theory. I will show that Cold Antwerp Sprouts
is very similar to the game of COL, whereas Hot Antwerp Sprouts resembles SNORT.

Leave a Comment

SSL on Mac OSX

A
longer term project is to get the web-server www.matrix.ua.ac.be integrated in our home-network
as an external WebDAV-server (similar to the .Mac-service
offered by Apple). But as this server runs all information about the
master-class on non-comutative geometry connecting to it via HTTP to use
WebDAV is too great of a security risk as all username/password
combinations will be send without encryption. Hence the natural question
whether this server can be set up to run SSL (Secure Sockets
Layer) such that one can connect via HTTPS and all exchanged information
will be encrypted. As the server is an Apache it comes down to get
mod-ssl running. A Google on mod_ssl OS X gives the
ADC-document Using mod-ssl on Mac OS X which seems to be just
what I want. This page is very well documented giving detailed
instructions of using the openssl command. However, the
end-result is rather weak : it only makes the localhost running
HTTPS, that is, one can connect to your own computer safely… which is
pretty ridiculous (other computers in the same network cannot even
connect safely).

So, back to the Google-list on which
one link raises my interest Configuring mod-ssl on Mac OS X which looks like
the previous link but has one essential difference : the page is written
by Marc Liyanage. If you ever tried to get PHP and/or MySQL
running under OS X you will have noticed that his pages are by far the
most reliable on the subject, hence maybe he has also something
interesting to say on mod-ssl. However, the bottom line of the
document is not very promising :

You
should now be able to access the content with https://127.0.0.1 from
the same machine.

which is again the
localhost. So perhaps it is just impossible to run mod-ssl
without having an X-server. Anyway, let us try out his procedure.
Begin by issuing the following commands in the Terminal

sudo -s cd /etc/httpd mkdir ssl chmod 700 ssl cd
ssl gzip -c --best /var/log/system.log > random.dat openssl rand
-rand file:random.dat 0

Next, we need a server certificate. If you
want to do it properly you need a certificate from a certification
authority
such as Thawte but this costs at least $200 a year which I
am not willing to pay. The alternative is to use a self-signed
certificate
which will force the browser to display an error-message
but if the user dismisses it all traffic exchanged with the server will
still be encrypted which is just what I want. So, type the command

openssl req -keyout privkey-2001.pem -newkey rsa:1024
 -nodes -x509 -days 365 -out cert-2001.pem

(all on one line).
You will be asked a couple of questions (the only important one is the
Common Name (eg, YOUR name). Here you should take care to enter
the host name of your web server exactly as it will be used later in the
common name field. In my test-case, if I want to get my server
used by other computers in the network this name will be
imaclieven.local. (note the trailing .). Now issue the following
commands

chmod 600 privkey-2001.pem chown root
privkey-2001.pem apxs -e -a -n ssl /usr/libexec/httpd/libssl.so

which will activate the SSL-module (if at a later state you want
to de-activate it you have to change -a by -A in the last command).
Finally, we have to change the /etc/httpd/httpd.conf file so
first save a backup-version and then add the following lines at the end
of the file :

(IfModule mod-ssl.c)     Listen 80    
Listen 443     SSLCertificateFile /etc/httpd/ssl/cert-2001.pem    
SSLCertificateKeyFile /etc/httpd/ssl/privkey-2001.pem    
SSLRandomSeed startup builtin     SSLRandomSeed connect builtin   
 (VirtualHost -default- :443)         SSLEngine on    
(/VirtualHost) (/IfModule)

Observe that round brackets ()
should be replaced by <>. Finally, we do

apachectl
stop apachectl start

and we are done! Going to another computer
in the network and typing in Safari https://imaclieven.local./
will result in an error message


Just click Continue and you will have a secure connection
to the server. Thanks Marc Liyanage!

(Added january
11th) Whereas the above allows one to make a HTTPS connection it is not
enough for my intended purposes. In order to get a secure connection to
a WebDAV server, this server must have the mod-auth-digest module
running which seems to be impossible for the standard Apache server of
10.3. You need an X-server to have this facility. So I think I have to
scale down my ambitions a bit.

Leave a Comment