Skip to content →

Tag: geometry

version pi

Now
that versions 2 and 3 of my abandoned book project
noncommutative~geometry@n are being referenced (as suggested) as
“forgotten book” (see for example Michel's latest paper) it is
perhaps time to consider writing version $\\pi$. I haven't made up
my mind what to include in this version so if you had a go at these
versions (available no longer)
and have suggestions, please leave a comment. An housekeeping-note :
this blog is flooded with link-spammers recently so I did remove the
automatic posting of comments. I use the strategy proposed by Angsuman to combat
them. This sometimes means that I overlook a comment (this morning I
discovered a lost comment while cleaning up the spam-comments, sorry!)
but it is the only way to keep this blog poker-casino-sex-etc free. It
goes without saying that any relevant comment (positive or negative)
will be approved as soon as I spot it.

At the moment I
haven't the energy to start the writing phase yet, but I am slowly
preparing things

  • Emptied the big antique table upstairs
    to have plenty of place to put things.
  • Got myself a laser
    printer and put it into our home-network using AirportExpress which
    allows to turn any USB-printer into a network-printer.
  • Downloaded the Springer Verlag Book Stylefiles svmono.zip. This
    does not mean that I will submit it there (in fact, I promised at least
    one series-editor to send him a new version first) but these days I
    cannot bring myself to use AMS-stylefiles.
  • Accepted an
    invitation to give a master-course on noncommutative geometry in Granada in 2005 which, combined with
    the master-class here in Antwerp next semester may just be enough
    motivation to rewrite notes.
  • Bought all four volumes of the
    reprinted Winning Ways for your
    Mathematical Plays
    as inspiration for fancy terminology and notation
    (yes, it will be version $\\pi$ and _not_ version $e$).
  • etc.
Leave a Comment

padlock returns

A couple of months ago I spend some time modifying the WordPress ViewLevel
plugin
slightly to include in this blog. At the time, the idea was
to restrict the readership of certain posts (such as info meant for
master-class students etc.). In the sidebar these posts are prepended by
a padlock sign (together with the appropriate view-level). In the main
window these posts do _not_ show up unless you are logged in and
have the fitting view-level.
I hope that this tool may also prove
useful to combat spam-comments. Ideally, a weblog should be configured
to accept any comments but if you have to remove a 100 or more link-spam
'comments' each morning to keep your blog poker-free you have to
play defensive. Unfortunately, WordPress is not very good at it. Sure,
one can opt to put all comments on hold, awaiting moderation but (1)
this is unpleasant for genuine comments and (2) one still has to remove
all spam-comments manually from the moderation-queue. In the end, I had
to close all posts for comments to be spared from poker-online and
texas-online rubbish.
However, I appreciate comments and
suggestions especially at a time when this weblog is changing. So, if
you are working in either non-commutative algebra or non-commutative
geometry and want to give your suggestions, please get yourself a login.
I know, I know, it is a hassle with all those nonsense passwords but if
you are accessing this weblog from just one computer you only have to
remember it once (I forgot my own password but can still post
here…). I will then raise your ViewLevel from the default 0 value
to at least 1 so that you can read and comment the padlocked posts. If
you then want to make a comment on other posts, please use a nearby
padlocked post.
Today, I ask for suggestions for a good LaTeX
book-style. At the moment my favourite is the CTAN
thesis-package
but surely there are better packages out there!

again : this idea came to nothing!

Leave a Comment

double Poisson algebras

This morning,
Michel Van den Bergh
posted an interesting paper on the arXiv
entitled Double
Poisson Algebras
. His main motivation was the construction of a
natural Poisson structure on quotient varieties of representations of
deformed multiplicative preprojective algebras (introduced by
Crawley-Boevey and Shaw in Multiplicative
preprojective algebras, middle convolution and the Deligne-Simpson
problem
) which he achieves by extending his double Poisson structure
on the path algebra of the quiver to the 'obvious' universal
localization, that is the one by inverting all $1+aa^{\star} $ for $a $ an
arrow and $a^{\star} $ its double (the one in the other direction).
For me the more interesting fact of this paper is that his double
bracket on the path algebra of a double quiver gives finer information
than the _necklace Lie algebra_ as defined in my (old) paper with Raf
Bocklandt Necklace
Lie algebras and noncommutative symplectic geometry
. I will
certainly come back to this later when I have more energy but just to
wet your appetite let me point out that Michel calls a _double bracket_
on an algebra $A $ a bilinear map
$\{ \{ -,- \} \}~:~A \times A
\rightarrow A \otimes A $
which is a derivation in the _second_
argument (for the outer bimodulke structure on $A $) and satisfies
$\{ \{ a,b \} \} = – \{ \{ b,a \} \}^o $ with $~(u \otimes v)^0 = v
\otimes u $
Given such a double bracket one can define an ordinary
bracket (using standard Hopf-algebra notation)
$\{ a,b \} = \sum
\{ \{ a,b \} \}_{(1)} \{ \{ a,b \} \}_{(2)} $
which makes $A $ into
a Loday
algebra
and induces a Lie algebra structure on $A/[A,A] $. He then
goes on to define such a double bracket on the path algebra of a double
quiver in such a way that the associated Lie structure above is the
necklace Lie algebra.

2 Comments

icosahedral group

In my geometry 101 course I'm doing the rotation-symmetry groups
of the Platonic solids right now. This goes slightly slower than
expected as it turned out that some secondary schools no longer give a
formal definition of what a group is. So, a lot of time is taken up
explaining permutations and their properties as I want to view the
Platonic groups as subgroups of the permutation groups on the vertices.
To prove that the _tetrahedral group_ is isomorphic to $A_4$ was pretty
straigthforward and I'm half way through proving that the
_octahedral group_ is just $S_4$ (using the duality of the octahedron
with the cube and using the $4$ body diagonals of the cube).
Next
week I have to show that the _icosahedral group_ is isomorphic to $A_5$
which is a lot harder. The usual proof (that is, using the duality
between the icosahedron and the dodecahedron and using the $5$ cubes
contained in the dodecahedron, one for each of the diagonals of a face)
involves too much calculations to do in one hour. An alternative road is
to view the icosahedral group as a subgroup of $S_6$ (using the main
diagonals on the $12$ vertices of the icosahedron) and identifying this
subgroup as $A_5$. A neat exposition of this approach is given by John Baez in his
post Some thoughts on
the number $6$
. (He also has another post on the icosahedral group
in his Week 79's
finds in mathematical physics
).

But
probably I'll go for an “In Gap we
thrust”-argument. Using the numbers on the left, the rotation by
$72^o$ counter-clockwise in the top face we get the permutation in
$S_{20}$
$(1,2,3,4,5)(6,8,10,12,14)(7,9,11,13,15)(16,17,18,19,20)$
and the
rotation by $72^o$ counterclockwise along the face $(1,2,8,7,8)$ gives
the permutation
$(1,6,7,8,2)(3,5,15,16,9)(4,14,20,17,10)(12,13,19,18,11)$
GAP
calculates that the subgroup $dode$ of $S_{20}$ generated by these two
elements is $60$ (the correct number) and with $IsSimplegroup(dode);$ we
find that this group must be simple. Finally using
$IsomorphismTypeInfoFiniteSimplegroup(dode);$
we get the required
result that the group is indeed isomorphic to $A_5$. The time saved I
can then use to tell something about the classification project of
finite simple groups which might be more inspiring than tedious
calculations…

Leave a Comment

a cosmic Galois group

Are
there hidden relations between mathematical and physical constants such
as

$\frac{e^2}{4 \pi \epsilon_0 h c} \sim \frac{1}{137} $

or are these numerical relations mere accidents? A couple of years
ago, Pierre Cartier proposed in his paper A mad day’s work : from Grothendieck to Connes and
Kontsevich : the evolution of concepts of space and symmetry
that
there are many reasons to believe in a cosmic Galois group acting on the
fundamental constants of physical theories and responsible for relations
such as the one above.

The Euler-Zagier numbers are infinite
sums over $n_1 > n_2 > ! > n_r \geq 1 $ of the form

$\zeta(k_1,\dots,k_r) = \sum n_1^{-k_1} \dots n_r^{-k_r} $

and there are polynomial relations with rational coefficients between
these such as the product relation

$\zeta(a)\zeta(b)=\zeta(a+b)+\zeta(a,b)+\zeta(b,a) $

It is
conjectured that all polynomial relations among Euler-Zagier numbers are
consequences of these product relations and similar explicitly known
formulas. A consequence of this conjecture would be that
$\zeta(3),\zeta(5),\dots $ are all trancendental!

Drinfeld
introduced the Grothendieck-Teichmuller group-scheme over $\mathbb{Q} $
whose Lie algebra $\mathfrak{grt}_1 $ is conjectured to be the free Lie
algebra on infinitely many generators which correspond in a natural way
to the numbers $\zeta(3),\zeta(5),\dots $. The Grothendieck-Teichmuller
group itself plays the role of the Galois group for the Euler-Zagier
numbers as it is conjectured to act by automorphisms on the graded
$\mathbb{Q} $-algebra whose degree $d $-term are the linear combinations
of the numbers $\zeta(k_1,\dots,k_r) $ with rational coefficients and
such that $k_1+\dots+k_r=d $.

The Grothendieck-Teichmuller
group also appears mysteriously in non-commutative geometry. For
example, the set of all Kontsevich deformation quantizations has a
symmetry group which Kontsevich conjectures to be isomorphic to the
Grothendieck-Teichmuller group. See section 4 of his paper Operads and motives in
deformation quantzation
for more details.

It also appears
in the renormalization results of Alain Connes and Dirk Kreimer. A very
readable introduction to this is given by Alain Connes himself in Symmetries Galoisiennes
et renormalisation
. Perhaps the latest news on Cartier’s dream of a
cosmic Galois group is the paper by Alain Connes and Matilde Marcolli posted
last month on the arXiv : Renormalization and
motivic Galois theory
. A good web-page on all of this, including
references, can be found here.

Leave a Comment

anyone interested

I've been here before! I mean, I did try to set up
non-commutative algebra&geometry sites before and sooner or later
they always face the same basic problems :

a :
dyspnoea : one person does not have enough fresh ideas
to keep a mathematical site updated daily so that it continues to be of
interest (at least, I'm not one of those who can).

b :
claustrophobia : the topic of non-commutative algebra
& non-commutative geometry is too wide to be covered (cornered) by
one person. More (and differing) views are needed for balance and
continued interest.

c : paranoia : if one is
not entirely naive one has to exercise some restraint trying to protect
ones research plans (or those of students) so the most interesting ideas
never even get posted!

By definition, I cannot solve problems
a) and b) on my own. All I can hope is that, now that the basic
technological problems (such as including LaTeX-code in posts) are
solved, other people are willing to contribute. For this reason I
'depersonalized' this blog : I changed the title, removed all
personal links in the sidebar and so on. I want to open up this site
(but as I said, I've tried this before without much success) to
anyone working in non-commutative algebra and/or non-commutative
geometry who is willing to contribute posts on at least a monthly basis
(or fortnightly, weekly, daily…) for the foreseeable future. At
the moment the following 'categories' of posts are available
(others can be added on request) :

  • courses : if you want
    to tell about your topic of interest in small daily or weekly pieces.
  • columns : if you want to ventilate an opinion on something
    related (even vaguely) to na&g.
  • nc-algebra : for anything
    on non-commutative algebra not in the previous categories.
  • nc-geometry : for anything on non-commutative geometry not in the
    previous categories.
  • this blog : for suggestions or
    explanations on the technology of this site.

Mind you,
I am not looking for people who seek a forum to post
their questions (such people can still add questions as comments to
related posts) but rather for people active in na&g with a personal
opinion on relevance and future of the topic.
If you are
interested in contributing, please email me and we will work
something out. I'll also post information for authors (such as, how
to include tex, how to set restrictions etc.) in a _sticky_ post
soon.

Now, problem c) : in running sites for our master class
on noncommutative geometry I've noticed that some people are more
willing to post lectures notes etc. if they know that there is some
control on who can download their material. For this reason there will
be viewing restrictions on certain posts. Such posts will get a
padlock-sign next to them in the 'recent posts' sidebar (they
will not show up in your main page, if you are not authorized to see
them). I will add another sticky on all of this soon. For now, if you
would only be willing to contribute if there was this safeguard, rest
assured, it will be there soon. All others can of course already sign-up
or wait whether any of these plans (resp. day-dreams) ever work
out….

update (febr 2007) : still waiting
but the padlock idea is abandoned.

Leave a Comment

cotangent bundles

The
previous post in this sequence was [moduli spaces][1]. Why did we spend
time explaining the connection of the quiver
$Q~:~\xymatrix{\vtx{} \ar[rr]^a & & \vtx{} \ar@(ur,dr)^x} $
to moduli spaces of vectorbundles on curves and moduli spaces of linear
control systems? At the start I said we would concentrate on its _double
quiver_ $\tilde{Q}~:~\xymatrix{\vtx{} \ar@/^/[rr]^a && \vtx{}
\ar@(u,ur)^x \ar@(d,dr)_{x^*} \ar@/^/[ll]^{a^*}} $ Clearly,
this already gives away the answer : if the path algebra $C Q$
determines a (non-commutative) manifold $M$, then the path algebra $C
\tilde{Q}$ determines the cotangent bundle of $M$. Recall that for a
commutative manifold $M$, the cotangent bundle is the vectorbundle
having at the point $p \in M$ as fiber the linear dual $(T_p M)^*$ of
the tangent space. So, why do we claim that $C \tilde{Q}$
corresponds to the cotangent bundle of $C Q$? Fix a dimension vector
$\alpha = (m,n)$ then the representation space
$\mathbf{rep}_{\alpha}~Q = M_{n \times m}(C) \oplus M_n(C)$ is just
an affine space so in its point the tangent space is the representation
space itself. To define its linear dual use the non-degeneracy of the
_trace pairings_ $M_{n \times m}(C) \times M_{m \times n}(C)
\rightarrow C~:~(A,B) \mapsto tr(AB)$ $M_n(C) \times M_n(C)
\rightarrow C~:~(C,D) \mapsto tr(CD)$ and therefore the linear dual
$\mathbf{rep}_{\alpha}~Q^* = M_{m \times n}(C) \oplus M_n(C)$ which is
the representation space $\mathbf{rep}_{\alpha}~Q^s$ of the quiver
$Q^s~:~\xymatrix{\vtx{} & & \vtx{} \ar[ll] \ar@(ur,dr)} $
and therefore we have that the cotangent bundle to the representation
space $\mathbf{rep}_{\alpha}~Q$ $T^* \mathbf{rep}_{\alpha}~Q =
\mathbf{rep}_{\alpha}~\tilde{Q}$ Important for us will be that any
cotangent bundle has a natural _symplectic structure_. For a good
introduction to this see the [course notes][2] “Symplectic geometry and
quivers” by [Geert Van de Weyer][3]. As a consequence $C \tilde{Q}$
can be viewed as a non-commutative symplectic manifold with the
symplectic structure determined by the non-commutative 2-form
$\omega = da^* da + dx^* dx$ but before we can define all this we
will have to recall some facts on non-commutative differential forms.
Maybe [next time][4]. For the impatient : have a look at the paper by
Victor Ginzburg [Non-commutative Symplectic Geometry, Quiver varieties,
and Operads][5] or my paper with Raf Bocklandt [Necklace Lie algebras
and noncommutative symplectic geometry][6]. Now that we have a
cotangent bundle of $C Q$ is there also a _tangent bundle_ and does it
again correspond to a new quiver? Well yes, here it is
$\xymatrix{\vtx{} \ar@/^/[rr]^{a+da} \ar@/_/[rr]_{a-da} & & \vtx{}
\ar@(u,ur)^{x+dx} \ar@(d,dr)_{x-dx}} $ and the labeling of the
arrows may help you to work through some sections of the Cuntz-Quillen
paper…

[1]: http://www.neverendingbooks.org/index.php?p=39
[2]: http://www.win.ua.ac.be/~gvdwey/lectures/symplectic_moment.pdf
[3]: http://www.win.ua.ac.be/~gvdwey/
[4]: http://www.neverendingbooks.org/index.php?p=41
[5]: http://www.arxiv.org/abs/math.QA/0005165
[6]: http://www.arxiv.org/abs/math.AG/0010030

2 Comments

moduli spaces

In [the previous part][1] we saw that moduli spaces of suitable representations
of the quiver $\xymatrix{\vtx{} \ar[rr] & & \vtx{}
\ar@(ur,dr)} $ locally determine the moduli spaces of
vectorbundles over smooth projective curves. There is yet another
classical problem related to this quiver (which also illustrates the
idea of looking at families of moduli spaces rather than individual
ones) : _linear control systems_. Such a system with an $n$ dimensional
_state space_ and $m$ _controls_ (or inputs) is determined by the
following system of linear differential equations $ \frac{d x}{d t}
= A.x + B.u$ where $x(t) \in \mathbb{C}^n$ is the state of the system at
time $t$, $u(t) \in \mathbb{C}^m$ is the control-vector at time $t$ and $A \in
M_n(\mathbb{C}), B \in M_{n \times m}(\mathbb{C})$ are the matrices describing the
evolution of the system $\Sigma$ (after fixing bases in the state- and
control-space). That is, $\Sigma$ determines a representation of the
above quiver of dimension-vector $\alpha = (m,n)$
$\xymatrix{\vtx{m} \ar[rr]^B & & \vtx{n} \ar@(ur,dr)^A} $
Whereas in control theory (see for example Allen Tannenbaum\’s Lecture
Notes in Mathematics 845 for a mathematical introduction) it is natural
to call two systems equivalent when they only differ up to base change
in the state-space, one usually fixes the control knobs so it is not
natural to allow for base change in the control-space. So, at first
sight the control theoretic problem of classifying equivalent systems is
not the same problem as classifying representations of the quiver up to
isomorphism. Fortunately, there is an elegant way round this which is
called _deframing_. That is, for a fixed number $m$ of controls one
considers the quiver $Q_f$ having precisely $m$ arrows from the first to
the second vertex $\xymatrix{\vtx{1} \ar@/^4ex/[rr]^{B_1}
\ar@/^/[rr]^{B_2} \ar@/_3ex/[rr]_{B_m} & & \vtx{n} \ar@(ur,dr)^A} $
and the system $\Sigma$ does determine a representation of this new
quiver of dimension vector $\beta=(1,n)$ by assigning to the arrows the
different columns of the matrix $B$. Isomorphism classes of these
quiver-representations do correspond precisely to equivalence classes of
linear control systems. In [part 4][1] we introduced stable and
semi-stable representations. In this framed-quiver setting call a
representation $(A,B_1,\ldots,B_m)$ stable if there is no proper
subrepresentation of dimension vector $(1,p)$ for some $p \lneq n$.
Perhaps remarkable this algebraic notion has a counterpart in
system-theory : the systems corresponding to stable
quiver-representations are precisely the completely controllable
systems. That is, those which can be brought to any wanted state by
varying the controls. Hence, the moduli space
$M^s_{(1,n)}(Q_f,\theta)$ classifying stable representations is
exactly the moduli space of completely controllable linear systems
studied in control theory. For an excellent account of this moduli space
one can read the paper [Introduction to moduli spaces associated to
quivers by [Christof Geiss][2]. Fixing the number $m$ of controls but
varying the dimensions of teh state-spaces one would like to take all
the moduli spaces $ \bigsqcup_n~M^s_{(1,n)}(Q_f,\theta)$
together as they are all determined by the same formally smooth algebra
$\mathbb{C} Q_f$. This was done in a joint paper with [Markus Reineke][3] called
[Canonical systems and non-commutative geometry][4] in which we prove
that this disjoint union can be identified with the _infinite
Grassmannian_ $ \bigsqcup_n~M^s_{(1,n)}(Q_f,\theta) =
\mathbf{Gras}_m(\infty)$ of $m$-dimensional subspaces of an
infinite dimensional space. This result can be seen as a baby-version of
George Wilson\’s result relating the disjoint union of Calogero-Moser
spaces to the _adelic_ Grassmannian. But why do we stress this
particular quiver so much? This will be partly explained [next time][5].

[1]: http://www.neverendingbooks.org/index.php?p=350
[2]: http://www.matem.unam.mx/~christof/
[3]: http://wmaz1.math.uni-wuppertal.de/reineke/
[4]: http://www.arxiv.org/abs/math.AG/0303304
[5]: http://www.neverendingbooks.org/index.php?p=352

Leave a Comment

megaminx

In a few
weeks I will give a _geometry 101_ course! It was decided that in
this course I should try to explain what rotations in $\mathbb{R}^3’$
are, so the classification of all finite rotation groups seemed like a
fun topic. Along the way I’ll have to introduce groups so bringing in a
little bit of GAP
may be a good idea. Clearly, the real power of GAP is lost on the
symmetry groups of the Platonic solids so I’ll do the traditional
computation of the transformation group of the Rubik’s cube. But
then I discovered that there is also a version of it on the dodecahedron
which is called megaminx so I couldn’t resist trying to work out the order of its
transformation group. Fortunately Coreyanne Rickwalt did already the
hard work giving a presentation as
a permutation group. So giving the generators to GAP


f1:=(1,3,5,7,9)(2,4,6,8,10)(20,31,42,53,64)(19,30,41,52,63)(18,29,40,51,62);
f2:=(12,14,16,18,20)(13,15,17,19,21)(1,60,73,84,31)(3,62,75,86,23)(2,61,74,85,32);
f3:=(23,25,27,29,31)(24,26,28,30,32)(82,95,42,3,16)(83,96,43,4,17)(84,97,34,5,18);
f4:=(34,36,38,40,42)(35,37,39,41,43)(27,93,106,53,5)(28,94,107,54,6)(29,95,108,45,7);
f5:=(45,47,49,51,53)(46,48,50,52,54)(38,104,117,64,7)(39,105,118,65,8),(40,106,119,56,9);
f6:=(56,58,60,62,64)(57,59,61,63,65)(49,115,75,20,9)(50,116,76,21,10),(51,117,67,12,1);
f7:=(67,69,71,73,75)(68,70,72,74,76)(58,113,126,86,12)(59,114,127,7,13),(60,115,128,78,14);
f8:=(78,80,82,84,86)(79,81,83,85,87)(71,124,97,23,14)(72,125,98,24,15),(73,126,89,25,16);
f9:=(89,91,93,95,97)(90,92,94,96,98)(80,122,108,34,25)(81,123,109,35,26),(82,124,100,36,27);
f10:=(100,102,104,106,108)(101,103,105,107,109)(91,130,119,45,36),(92,131,120,46,37)(93,122,111,47,38);
f11:=(111,113,115,117,119)(112,114,116,118,120)(102,128,67,56,47),(103,129,68,57,48)(104,130,69,58,49);
f12:=(122,124,126,128,130)(123,125,127,129,131)(100,89,78,69,111),(101,90,79,70,112)(102,91,80,71,113);

and defining the
megaminx group by


megaminx:=Group(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12); Size(megaminx);

and asking for its order I was a bit surprised to get
after a couple of minutes the following awkward number


33447514567245635287940590270451862933763731665690149051478356761508167786224814946834370826
35992490654078818946607045276267204294704060929949240557194825002982480260628480000000000000
000000000000000

or if you prefer it is
$2^{115} 3^{58} 5^{28} 7^{19} 11^{10} 13^9 17^7 19^6 23^5 29^4 31^3
37^3 41^2 43^2 47^2 53^2 59^2 61 .67 .71. 73. 79 .83 .89 .97. 101 .103.
107 .109 .113$

One Comment

quiver representations

In what
way is a formally smooth algebra a _machine_ producing families of
manifolds? Consider the special case of the path algebra $\mathbb{C} Q$ of a
quiver and recall that an $n$-dimensional representation is an algebra
map $\mathbb{C} Q \rightarrow^{\phi} M_n(\mathbb{C})$ or, equivalently, an
$n$-dimensional left $\mathbb{C} Q$-module $\mathbb{C}^n_{\phi}$ with the action
determined by the rule $a.v = \phi(a) v~\forall v \in \mathbb{C}^n_{\phi},
\forall a \in \mathbb{C} Q$ If the $e_i~1 \leq i \leq k$ are the idempotents
in $\mathbb{C} Q$ corresponding to the vertices (see this [post][1]) then we get
a direct sum decomposition $\mathbb{C}^n_{\phi} = \phi(e_1)\mathbb{C}^n_{\phi} \oplus
\ldots \oplus \phi(e_k)\mathbb{C}^n_{\phi}$ and so every $n$-dimensional
representation does determine a _dimension vector_ $\alpha =
(a_1,\ldots,a_k)~\text{with}~a_i = dim_{\mathbb{C}} V_i = dim_{\mathbb{C}}
\phi(e_i)\mathbb{C}^n_{\phi}$ with $ | \alpha | = \sum_i a_i = n$. Further,
for every arrow $\xymatrix{\vtx{e_i} \ar[rr]^a & &
\vtx{e_j}} $ we have (because $e_j.a.e_i = a$ that $\phi(a)$
defines a linear map $\phi(a)~:~V_i \rightarrow V_j$ (that was the
whole point of writing paths in the quiver from right to left so that a
representation is determined by its _vertex spaces_ $V_i$ and as many
linear maps between them as there are arrows). Fixing vectorspace bases
in the vertex-spaces one observes that the space of all
$\alpha$-dimensional representations of the quiver is just an affine
space $\mathbf{rep}_{\alpha}~Q = \oplus_a~M_{a_j \times a_i}(\mathbb{C})$ and
base-change in the vertex-spaces does determine the action of the
_base-change group_ $GL(\alpha) = GL_{a_1} \times \ldots \times
GL_{a_k}$ on this space. Finally, as all this started out with fixing
a bases in $\mathbb{C}^n_{\phi}$ we get the affine variety of all
$n$-dimensional representations by bringing in the base-change
$GL_n$-action (by conjugation) and have $\mathbf{rep}_n~\mathbb{C} Q =
\bigsqcup_{| \alpha | = n} GL_n \times^{GL(\alpha)}
\mathbf{rep}_{\alpha}~Q$ and in this decomposition the connected
components are no longer just affine spaces with a groupaction but
essentially equal to them as there is a natural one-to-one
correspondence between $GL_n$-orbits in the fiber-bundle $GL_n
\times^{GL(\alpha)} \mathbf{rep}_{\alpha}~Q$ and $GL(\alpha)$-orbits in the
affine space $\mathbf{rep}_{\alpha}~Q$. In our main example
$\xymatrix{\vtx{e} \ar@/^/[rr]^a & & \vtx{f} \ar@(u,ur)^x
\ar@(d,dr)_y \ar@/^/[ll]^b} $ an $n$-dimensional representation
determines vertex-spaces $V = \phi(e) \mathbb{C}^n_{\phi}$ and $W = \phi(f)
\mathbb{C}^n_{\phi}$ of dimensions $p,q~\text{with}~p+q = n$. The arrows
determine linear maps between these spaces $\xymatrix{V
\ar@/^/[rr]^{\phi(a)} & & W \ar@(u,ur)^{\phi(x)} \ar@(d,dr)_{\phi(y)}
\ar@/^/[ll]^{\phi(b)}} $ and if we fix a set of bases in these two
vertex-spaces, we can represent these maps by matrices
$\xymatrix{\mathbb{C}^p \ar@/^/[rr]^{A} & & \mathbb{C}^q \ar@(u,ur)^{X}
\ar@(d,dr)_{Y} \ar@/^/[ll]^{B}} $ which can be considered as block
$n \times n$ matrices $a \mapsto \begin{bmatrix} 0 & 0 \\ A & 0
\end{bmatrix}~b \mapsto \begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix}$
$x \mapsto \begin{bmatrix} 0 & 0 \\ 0 & X \end{bmatrix}~y \mapsto
\begin{bmatrix} 0 & 0 \\ 0 & Y \end{bmatrix}$ The basechange group
$GL(\alpha) = GL_p \times GL_q$ is the diagonal subgroup of $GL_n$
$GL(\alpha) = \begin{bmatrix} GL_p & 0 \\ 0 & GL_q \end{bmatrix}$ and
acts on the representation space $\mathbf{rep}_{\alpha}~Q = M_{q \times
p}(\mathbb{C}) \oplus M_{p \times q}(\mathbb{C}) \oplus M_q(\mathbb{C}) \oplus M_q(\mathbb{C})$
(embedded as block-matrices in $M_n(\mathbb{C})^{\oplus 4}$ as above) by
simultaneous conjugation. More generally, if $A$ is a formally smooth
algebra, then all its representation varieties $\mathbf{rep}_n~A$ are
affine smooth varieties equipped with a $GL_n$-action. This follows more
or less immediately from the definition and [Grothendieck][2]\’s
characterization of commutative regular algebras. For the record, an
algebra $A$ is said to be _formally smooth_ if for every algebra map $A
\rightarrow B/I$ with $I$ a nilpotent ideal of $B$ there exists a lift
$A \rightarrow B$. The path algebra of a quiver is formally smooth
because for every map $\phi~:~\mathbb{C} Q \rightarrow B/I$ the images of the
vertex-idempotents form an orthogonal set of idempotents which is known
to lift modulo nilpotent ideals and call this lift $\psi$. But then also
every arrow lifts as we can send it to an arbitrary element of
$\psi(e_j)\pi^{-1}(\phi(a))\psi(e_i)$. In case $A$ is commutative and
$B$ is allowed to run over all commutative algebras, then by
Grothendieck\’s criterium $A$ is a commutative regular algebra. This
also clarifies why so few commutative regular algebras are formally
smooth : being formally smooth is a vastly more restrictive property as
the lifting property extends to all algebras $B$ and whenever the
dimension of the commutative variety is at least two one can think of
maps from its coordinate ring to the commutative quotient of a
non-commutative ring by a nilpotent ideal which do not lift (for an
example, see for example [this preprint][3]). The aim of
non-commutative algebraic geometry is to study _families_ of manifolds
$\mathbf{rep}_n~A$ associated to the formally-smooth algebra $A$. [1]:
http://www.matrix.ua.ac.be/wp-trackback.php/10 [2]:
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Grothendieck.
html [3]: http://www.arxiv.org/abs/math.AG/9904171

One Comment