Skip to content →

Tag: geometry

double Poisson algebras

This morning,
Michel Van den Bergh
posted an interesting paper on the arXiv
entitled Double
Poisson Algebras
. His main motivation was the construction of a
natural Poisson structure on quotient varieties of representations of
deformed multiplicative preprojective algebras (introduced by
Crawley-Boevey and Shaw in Multiplicative
preprojective algebras, middle convolution and the Deligne-Simpson
problem
) which he achieves by extending his double Poisson structure
on the path algebra of the quiver to the 'obvious' universal
localization, that is the one by inverting all $1+aa^{\star} $ for $a $ an
arrow and $a^{\star} $ its double (the one in the other direction).
For me the more interesting fact of this paper is that his double
bracket on the path algebra of a double quiver gives finer information
than the _necklace Lie algebra_ as defined in my (old) paper with Raf
Bocklandt Necklace
Lie algebras and noncommutative symplectic geometry
. I will
certainly come back to this later when I have more energy but just to
wet your appetite let me point out that Michel calls a _double bracket_
on an algebra $A $ a bilinear map
$\{ \{ -,- \} \}~:~A \times A
\rightarrow A \otimes A $
which is a derivation in the _second_
argument (for the outer bimodulke structure on $A $) and satisfies
$\{ \{ a,b \} \} = – \{ \{ b,a \} \}^o $ with $~(u \otimes v)^0 = v
\otimes u $
Given such a double bracket one can define an ordinary
bracket (using standard Hopf-algebra notation)
$\{ a,b \} = \sum
\{ \{ a,b \} \}_{(1)} \{ \{ a,b \} \}_{(2)} $
which makes $A $ into
a Loday
algebra
and induces a Lie algebra structure on $A/[A,A] $. He then
goes on to define such a double bracket on the path algebra of a double
quiver in such a way that the associated Lie structure above is the
necklace Lie algebra.

2 Comments

icosahedral group

In my geometry 101 course I'm doing the rotation-symmetry groups
of the Platonic solids right now. This goes slightly slower than
expected as it turned out that some secondary schools no longer give a
formal definition of what a group is. So, a lot of time is taken up
explaining permutations and their properties as I want to view the
Platonic groups as subgroups of the permutation groups on the vertices.
To prove that the _tetrahedral group_ is isomorphic to $A_4$ was pretty
straigthforward and I'm half way through proving that the
_octahedral group_ is just $S_4$ (using the duality of the octahedron
with the cube and using the $4$ body diagonals of the cube).
Next
week I have to show that the _icosahedral group_ is isomorphic to $A_5$
which is a lot harder. The usual proof (that is, using the duality
between the icosahedron and the dodecahedron and using the $5$ cubes
contained in the dodecahedron, one for each of the diagonals of a face)
involves too much calculations to do in one hour. An alternative road is
to view the icosahedral group as a subgroup of $S_6$ (using the main
diagonals on the $12$ vertices of the icosahedron) and identifying this
subgroup as $A_5$. A neat exposition of this approach is given by John Baez in his
post Some thoughts on
the number $6$
. (He also has another post on the icosahedral group
in his Week 79's
finds in mathematical physics
).

But
probably I'll go for an “In Gap we
thrust”-argument. Using the numbers on the left, the rotation by
$72^o$ counter-clockwise in the top face we get the permutation in
$S_{20}$
$(1,2,3,4,5)(6,8,10,12,14)(7,9,11,13,15)(16,17,18,19,20)$
and the
rotation by $72^o$ counterclockwise along the face $(1,2,8,7,8)$ gives
the permutation
$(1,6,7,8,2)(3,5,15,16,9)(4,14,20,17,10)(12,13,19,18,11)$
GAP
calculates that the subgroup $dode$ of $S_{20}$ generated by these two
elements is $60$ (the correct number) and with $IsSimplegroup(dode);$ we
find that this group must be simple. Finally using
$IsomorphismTypeInfoFiniteSimplegroup(dode);$
we get the required
result that the group is indeed isomorphic to $A_5$. The time saved I
can then use to tell something about the classification project of
finite simple groups which might be more inspiring than tedious
calculations…

Leave a Comment

a cosmic Galois group

Are
there hidden relations between mathematical and physical constants such
as

$\frac{e^2}{4 \pi \epsilon_0 h c} \sim \frac{1}{137} $

or are these numerical relations mere accidents? A couple of years
ago, Pierre Cartier proposed in his paper A mad day’s work : from Grothendieck to Connes and
Kontsevich : the evolution of concepts of space and symmetry
that
there are many reasons to believe in a cosmic Galois group acting on the
fundamental constants of physical theories and responsible for relations
such as the one above.

The Euler-Zagier numbers are infinite
sums over $n_1 > n_2 > ! > n_r \geq 1 $ of the form

$\zeta(k_1,\dots,k_r) = \sum n_1^{-k_1} \dots n_r^{-k_r} $

and there are polynomial relations with rational coefficients between
these such as the product relation

$\zeta(a)\zeta(b)=\zeta(a+b)+\zeta(a,b)+\zeta(b,a) $

It is
conjectured that all polynomial relations among Euler-Zagier numbers are
consequences of these product relations and similar explicitly known
formulas. A consequence of this conjecture would be that
$\zeta(3),\zeta(5),\dots $ are all trancendental!

Drinfeld
introduced the Grothendieck-Teichmuller group-scheme over $\mathbb{Q} $
whose Lie algebra $\mathfrak{grt}_1 $ is conjectured to be the free Lie
algebra on infinitely many generators which correspond in a natural way
to the numbers $\zeta(3),\zeta(5),\dots $. The Grothendieck-Teichmuller
group itself plays the role of the Galois group for the Euler-Zagier
numbers as it is conjectured to act by automorphisms on the graded
$\mathbb{Q} $-algebra whose degree $d $-term are the linear combinations
of the numbers $\zeta(k_1,\dots,k_r) $ with rational coefficients and
such that $k_1+\dots+k_r=d $.

The Grothendieck-Teichmuller
group also appears mysteriously in non-commutative geometry. For
example, the set of all Kontsevich deformation quantizations has a
symmetry group which Kontsevich conjectures to be isomorphic to the
Grothendieck-Teichmuller group. See section 4 of his paper Operads and motives in
deformation quantzation
for more details.

It also appears
in the renormalization results of Alain Connes and Dirk Kreimer. A very
readable introduction to this is given by Alain Connes himself in Symmetries Galoisiennes
et renormalisation
. Perhaps the latest news on Cartier’s dream of a
cosmic Galois group is the paper by Alain Connes and Matilde Marcolli posted
last month on the arXiv : Renormalization and
motivic Galois theory
. A good web-page on all of this, including
references, can be found here.

Leave a Comment

anyone interested

I've been here before! I mean, I did try to set up
non-commutative algebra&geometry sites before and sooner or later
they always face the same basic problems :

a :
dyspnoea : one person does not have enough fresh ideas
to keep a mathematical site updated daily so that it continues to be of
interest (at least, I'm not one of those who can).

b :
claustrophobia : the topic of non-commutative algebra
& non-commutative geometry is too wide to be covered (cornered) by
one person. More (and differing) views are needed for balance and
continued interest.

c : paranoia : if one is
not entirely naive one has to exercise some restraint trying to protect
ones research plans (or those of students) so the most interesting ideas
never even get posted!

By definition, I cannot solve problems
a) and b) on my own. All I can hope is that, now that the basic
technological problems (such as including LaTeX-code in posts) are
solved, other people are willing to contribute. For this reason I
'depersonalized' this blog : I changed the title, removed all
personal links in the sidebar and so on. I want to open up this site
(but as I said, I've tried this before without much success) to
anyone working in non-commutative algebra and/or non-commutative
geometry who is willing to contribute posts on at least a monthly basis
(or fortnightly, weekly, daily…) for the foreseeable future. At
the moment the following 'categories' of posts are available
(others can be added on request) :

  • courses : if you want
    to tell about your topic of interest in small daily or weekly pieces.
  • columns : if you want to ventilate an opinion on something
    related (even vaguely) to na&g.
  • nc-algebra : for anything
    on non-commutative algebra not in the previous categories.
  • nc-geometry : for anything on non-commutative geometry not in the
    previous categories.
  • this blog : for suggestions or
    explanations on the technology of this site.

Mind you,
I am not looking for people who seek a forum to post
their questions (such people can still add questions as comments to
related posts) but rather for people active in na&g with a personal
opinion on relevance and future of the topic.
If you are
interested in contributing, please email me and we will work
something out. I'll also post information for authors (such as, how
to include tex, how to set restrictions etc.) in a _sticky_ post
soon.

Now, problem c) : in running sites for our master class
on noncommutative geometry I've noticed that some people are more
willing to post lectures notes etc. if they know that there is some
control on who can download their material. For this reason there will
be viewing restrictions on certain posts. Such posts will get a
padlock-sign next to them in the 'recent posts' sidebar (they
will not show up in your main page, if you are not authorized to see
them). I will add another sticky on all of this soon. For now, if you
would only be willing to contribute if there was this safeguard, rest
assured, it will be there soon. All others can of course already sign-up
or wait whether any of these plans (resp. day-dreams) ever work
out….

update (febr 2007) : still waiting
but the padlock idea is abandoned.

Leave a Comment

cotangent bundles

The
previous post in this sequence was [moduli spaces][1]. Why did we spend
time explaining the connection of the quiver
$Q~:~\xymatrix{\vtx{} \ar[rr]^a & & \vtx{} \ar@(ur,dr)^x} $
to moduli spaces of vectorbundles on curves and moduli spaces of linear
control systems? At the start I said we would concentrate on its _double
quiver_ $\tilde{Q}~:~\xymatrix{\vtx{} \ar@/^/[rr]^a && \vtx{}
\ar@(u,ur)^x \ar@(d,dr)_{x^*} \ar@/^/[ll]^{a^*}} $ Clearly,
this already gives away the answer : if the path algebra $C Q$
determines a (non-commutative) manifold $M$, then the path algebra $C
\tilde{Q}$ determines the cotangent bundle of $M$. Recall that for a
commutative manifold $M$, the cotangent bundle is the vectorbundle
having at the point $p \in M$ as fiber the linear dual $(T_p M)^*$ of
the tangent space. So, why do we claim that $C \tilde{Q}$
corresponds to the cotangent bundle of $C Q$? Fix a dimension vector
$\alpha = (m,n)$ then the representation space
$\mathbf{rep}_{\alpha}~Q = M_{n \times m}(C) \oplus M_n(C)$ is just
an affine space so in its point the tangent space is the representation
space itself. To define its linear dual use the non-degeneracy of the
_trace pairings_ $M_{n \times m}(C) \times M_{m \times n}(C)
\rightarrow C~:~(A,B) \mapsto tr(AB)$ $M_n(C) \times M_n(C)
\rightarrow C~:~(C,D) \mapsto tr(CD)$ and therefore the linear dual
$\mathbf{rep}_{\alpha}~Q^* = M_{m \times n}(C) \oplus M_n(C)$ which is
the representation space $\mathbf{rep}_{\alpha}~Q^s$ of the quiver
$Q^s~:~\xymatrix{\vtx{} & & \vtx{} \ar[ll] \ar@(ur,dr)} $
and therefore we have that the cotangent bundle to the representation
space $\mathbf{rep}_{\alpha}~Q$ $T^* \mathbf{rep}_{\alpha}~Q =
\mathbf{rep}_{\alpha}~\tilde{Q}$ Important for us will be that any
cotangent bundle has a natural _symplectic structure_. For a good
introduction to this see the [course notes][2] “Symplectic geometry and
quivers” by [Geert Van de Weyer][3]. As a consequence $C \tilde{Q}$
can be viewed as a non-commutative symplectic manifold with the
symplectic structure determined by the non-commutative 2-form
$\omega = da^* da + dx^* dx$ but before we can define all this we
will have to recall some facts on non-commutative differential forms.
Maybe [next time][4]. For the impatient : have a look at the paper by
Victor Ginzburg [Non-commutative Symplectic Geometry, Quiver varieties,
and Operads][5] or my paper with Raf Bocklandt [Necklace Lie algebras
and noncommutative symplectic geometry][6]. Now that we have a
cotangent bundle of $C Q$ is there also a _tangent bundle_ and does it
again correspond to a new quiver? Well yes, here it is
$\xymatrix{\vtx{} \ar@/^/[rr]^{a+da} \ar@/_/[rr]_{a-da} & & \vtx{}
\ar@(u,ur)^{x+dx} \ar@(d,dr)_{x-dx}} $ and the labeling of the
arrows may help you to work through some sections of the Cuntz-Quillen
paper…

[1]: http://www.neverendingbooks.org/index.php?p=39
[2]: http://www.win.ua.ac.be/~gvdwey/lectures/symplectic_moment.pdf
[3]: http://www.win.ua.ac.be/~gvdwey/
[4]: http://www.neverendingbooks.org/index.php?p=41
[5]: http://www.arxiv.org/abs/math.QA/0005165
[6]: http://www.arxiv.org/abs/math.AG/0010030

2 Comments

moduli spaces

In [the previous part][1] we saw that moduli spaces of suitable representations
of the quiver $\xymatrix{\vtx{} \ar[rr] & & \vtx{}
\ar@(ur,dr)} $ locally determine the moduli spaces of
vectorbundles over smooth projective curves. There is yet another
classical problem related to this quiver (which also illustrates the
idea of looking at families of moduli spaces rather than individual
ones) : _linear control systems_. Such a system with an $n$ dimensional
_state space_ and $m$ _controls_ (or inputs) is determined by the
following system of linear differential equations $ \frac{d x}{d t}
= A.x + B.u$ where $x(t) \in \mathbb{C}^n$ is the state of the system at
time $t$, $u(t) \in \mathbb{C}^m$ is the control-vector at time $t$ and $A \in
M_n(\mathbb{C}), B \in M_{n \times m}(\mathbb{C})$ are the matrices describing the
evolution of the system $\Sigma$ (after fixing bases in the state- and
control-space). That is, $\Sigma$ determines a representation of the
above quiver of dimension-vector $\alpha = (m,n)$
$\xymatrix{\vtx{m} \ar[rr]^B & & \vtx{n} \ar@(ur,dr)^A} $
Whereas in control theory (see for example Allen Tannenbaum\’s Lecture
Notes in Mathematics 845 for a mathematical introduction) it is natural
to call two systems equivalent when they only differ up to base change
in the state-space, one usually fixes the control knobs so it is not
natural to allow for base change in the control-space. So, at first
sight the control theoretic problem of classifying equivalent systems is
not the same problem as classifying representations of the quiver up to
isomorphism. Fortunately, there is an elegant way round this which is
called _deframing_. That is, for a fixed number $m$ of controls one
considers the quiver $Q_f$ having precisely $m$ arrows from the first to
the second vertex $\xymatrix{\vtx{1} \ar@/^4ex/[rr]^{B_1}
\ar@/^/[rr]^{B_2} \ar@/_3ex/[rr]_{B_m} & & \vtx{n} \ar@(ur,dr)^A} $
and the system $\Sigma$ does determine a representation of this new
quiver of dimension vector $\beta=(1,n)$ by assigning to the arrows the
different columns of the matrix $B$. Isomorphism classes of these
quiver-representations do correspond precisely to equivalence classes of
linear control systems. In [part 4][1] we introduced stable and
semi-stable representations. In this framed-quiver setting call a
representation $(A,B_1,\ldots,B_m)$ stable if there is no proper
subrepresentation of dimension vector $(1,p)$ for some $p \lneq n$.
Perhaps remarkable this algebraic notion has a counterpart in
system-theory : the systems corresponding to stable
quiver-representations are precisely the completely controllable
systems. That is, those which can be brought to any wanted state by
varying the controls. Hence, the moduli space
$M^s_{(1,n)}(Q_f,\theta)$ classifying stable representations is
exactly the moduli space of completely controllable linear systems
studied in control theory. For an excellent account of this moduli space
one can read the paper [Introduction to moduli spaces associated to
quivers by [Christof Geiss][2]. Fixing the number $m$ of controls but
varying the dimensions of teh state-spaces one would like to take all
the moduli spaces $ \bigsqcup_n~M^s_{(1,n)}(Q_f,\theta)$
together as they are all determined by the same formally smooth algebra
$\mathbb{C} Q_f$. This was done in a joint paper with [Markus Reineke][3] called
[Canonical systems and non-commutative geometry][4] in which we prove
that this disjoint union can be identified with the _infinite
Grassmannian_ $ \bigsqcup_n~M^s_{(1,n)}(Q_f,\theta) =
\mathbf{Gras}_m(\infty)$ of $m$-dimensional subspaces of an
infinite dimensional space. This result can be seen as a baby-version of
George Wilson\’s result relating the disjoint union of Calogero-Moser
spaces to the _adelic_ Grassmannian. But why do we stress this
particular quiver so much? This will be partly explained [next time][5].

[1]: http://www.neverendingbooks.org/index.php?p=350
[2]: http://www.matem.unam.mx/~christof/
[3]: http://wmaz1.math.uni-wuppertal.de/reineke/
[4]: http://www.arxiv.org/abs/math.AG/0303304
[5]: http://www.neverendingbooks.org/index.php?p=352

Leave a Comment

megaminx

In a few
weeks I will give a _geometry 101_ course! It was decided that in
this course I should try to explain what rotations in $\mathbb{R}^3’$
are, so the classification of all finite rotation groups seemed like a
fun topic. Along the way I’ll have to introduce groups so bringing in a
little bit of GAP
may be a good idea. Clearly, the real power of GAP is lost on the
symmetry groups of the Platonic solids so I’ll do the traditional
computation of the transformation group of the Rubik’s cube. But
then I discovered that there is also a version of it on the dodecahedron
which is called megaminx so I couldn’t resist trying to work out the order of its
transformation group. Fortunately Coreyanne Rickwalt did already the
hard work giving a presentation as
a permutation group. So giving the generators to GAP


f1:=(1,3,5,7,9)(2,4,6,8,10)(20,31,42,53,64)(19,30,41,52,63)(18,29,40,51,62);
f2:=(12,14,16,18,20)(13,15,17,19,21)(1,60,73,84,31)(3,62,75,86,23)(2,61,74,85,32);
f3:=(23,25,27,29,31)(24,26,28,30,32)(82,95,42,3,16)(83,96,43,4,17)(84,97,34,5,18);
f4:=(34,36,38,40,42)(35,37,39,41,43)(27,93,106,53,5)(28,94,107,54,6)(29,95,108,45,7);
f5:=(45,47,49,51,53)(46,48,50,52,54)(38,104,117,64,7)(39,105,118,65,8),(40,106,119,56,9);
f6:=(56,58,60,62,64)(57,59,61,63,65)(49,115,75,20,9)(50,116,76,21,10),(51,117,67,12,1);
f7:=(67,69,71,73,75)(68,70,72,74,76)(58,113,126,86,12)(59,114,127,7,13),(60,115,128,78,14);
f8:=(78,80,82,84,86)(79,81,83,85,87)(71,124,97,23,14)(72,125,98,24,15),(73,126,89,25,16);
f9:=(89,91,93,95,97)(90,92,94,96,98)(80,122,108,34,25)(81,123,109,35,26),(82,124,100,36,27);
f10:=(100,102,104,106,108)(101,103,105,107,109)(91,130,119,45,36),(92,131,120,46,37)(93,122,111,47,38);
f11:=(111,113,115,117,119)(112,114,116,118,120)(102,128,67,56,47),(103,129,68,57,48)(104,130,69,58,49);
f12:=(122,124,126,128,130)(123,125,127,129,131)(100,89,78,69,111),(101,90,79,70,112)(102,91,80,71,113);

and defining the
megaminx group by


megaminx:=Group(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12); Size(megaminx);

and asking for its order I was a bit surprised to get
after a couple of minutes the following awkward number


33447514567245635287940590270451862933763731665690149051478356761508167786224814946834370826
35992490654078818946607045276267204294704060929949240557194825002982480260628480000000000000
000000000000000

or if you prefer it is
$2^{115} 3^{58} 5^{28} 7^{19} 11^{10} 13^9 17^7 19^6 23^5 29^4 31^3
37^3 41^2 43^2 47^2 53^2 59^2 61 .67 .71. 73. 79 .83 .89 .97. 101 .103.
107 .109 .113$

One Comment

quiver representations

In what
way is a formally smooth algebra a _machine_ producing families of
manifolds? Consider the special case of the path algebra $\mathbb{C} Q$ of a
quiver and recall that an $n$-dimensional representation is an algebra
map $\mathbb{C} Q \rightarrow^{\phi} M_n(\mathbb{C})$ or, equivalently, an
$n$-dimensional left $\mathbb{C} Q$-module $\mathbb{C}^n_{\phi}$ with the action
determined by the rule $a.v = \phi(a) v~\forall v \in \mathbb{C}^n_{\phi},
\forall a \in \mathbb{C} Q$ If the $e_i~1 \leq i \leq k$ are the idempotents
in $\mathbb{C} Q$ corresponding to the vertices (see this [post][1]) then we get
a direct sum decomposition $\mathbb{C}^n_{\phi} = \phi(e_1)\mathbb{C}^n_{\phi} \oplus
\ldots \oplus \phi(e_k)\mathbb{C}^n_{\phi}$ and so every $n$-dimensional
representation does determine a _dimension vector_ $\alpha =
(a_1,\ldots,a_k)~\text{with}~a_i = dim_{\mathbb{C}} V_i = dim_{\mathbb{C}}
\phi(e_i)\mathbb{C}^n_{\phi}$ with $ | \alpha | = \sum_i a_i = n$. Further,
for every arrow $\xymatrix{\vtx{e_i} \ar[rr]^a & &
\vtx{e_j}} $ we have (because $e_j.a.e_i = a$ that $\phi(a)$
defines a linear map $\phi(a)~:~V_i \rightarrow V_j$ (that was the
whole point of writing paths in the quiver from right to left so that a
representation is determined by its _vertex spaces_ $V_i$ and as many
linear maps between them as there are arrows). Fixing vectorspace bases
in the vertex-spaces one observes that the space of all
$\alpha$-dimensional representations of the quiver is just an affine
space $\mathbf{rep}_{\alpha}~Q = \oplus_a~M_{a_j \times a_i}(\mathbb{C})$ and
base-change in the vertex-spaces does determine the action of the
_base-change group_ $GL(\alpha) = GL_{a_1} \times \ldots \times
GL_{a_k}$ on this space. Finally, as all this started out with fixing
a bases in $\mathbb{C}^n_{\phi}$ we get the affine variety of all
$n$-dimensional representations by bringing in the base-change
$GL_n$-action (by conjugation) and have $\mathbf{rep}_n~\mathbb{C} Q =
\bigsqcup_{| \alpha | = n} GL_n \times^{GL(\alpha)}
\mathbf{rep}_{\alpha}~Q$ and in this decomposition the connected
components are no longer just affine spaces with a groupaction but
essentially equal to them as there is a natural one-to-one
correspondence between $GL_n$-orbits in the fiber-bundle $GL_n
\times^{GL(\alpha)} \mathbf{rep}_{\alpha}~Q$ and $GL(\alpha)$-orbits in the
affine space $\mathbf{rep}_{\alpha}~Q$. In our main example
$\xymatrix{\vtx{e} \ar@/^/[rr]^a & & \vtx{f} \ar@(u,ur)^x
\ar@(d,dr)_y \ar@/^/[ll]^b} $ an $n$-dimensional representation
determines vertex-spaces $V = \phi(e) \mathbb{C}^n_{\phi}$ and $W = \phi(f)
\mathbb{C}^n_{\phi}$ of dimensions $p,q~\text{with}~p+q = n$. The arrows
determine linear maps between these spaces $\xymatrix{V
\ar@/^/[rr]^{\phi(a)} & & W \ar@(u,ur)^{\phi(x)} \ar@(d,dr)_{\phi(y)}
\ar@/^/[ll]^{\phi(b)}} $ and if we fix a set of bases in these two
vertex-spaces, we can represent these maps by matrices
$\xymatrix{\mathbb{C}^p \ar@/^/[rr]^{A} & & \mathbb{C}^q \ar@(u,ur)^{X}
\ar@(d,dr)_{Y} \ar@/^/[ll]^{B}} $ which can be considered as block
$n \times n$ matrices $a \mapsto \begin{bmatrix} 0 & 0 \\ A & 0
\end{bmatrix}~b \mapsto \begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix}$
$x \mapsto \begin{bmatrix} 0 & 0 \\ 0 & X \end{bmatrix}~y \mapsto
\begin{bmatrix} 0 & 0 \\ 0 & Y \end{bmatrix}$ The basechange group
$GL(\alpha) = GL_p \times GL_q$ is the diagonal subgroup of $GL_n$
$GL(\alpha) = \begin{bmatrix} GL_p & 0 \\ 0 & GL_q \end{bmatrix}$ and
acts on the representation space $\mathbf{rep}_{\alpha}~Q = M_{q \times
p}(\mathbb{C}) \oplus M_{p \times q}(\mathbb{C}) \oplus M_q(\mathbb{C}) \oplus M_q(\mathbb{C})$
(embedded as block-matrices in $M_n(\mathbb{C})^{\oplus 4}$ as above) by
simultaneous conjugation. More generally, if $A$ is a formally smooth
algebra, then all its representation varieties $\mathbf{rep}_n~A$ are
affine smooth varieties equipped with a $GL_n$-action. This follows more
or less immediately from the definition and [Grothendieck][2]\’s
characterization of commutative regular algebras. For the record, an
algebra $A$ is said to be _formally smooth_ if for every algebra map $A
\rightarrow B/I$ with $I$ a nilpotent ideal of $B$ there exists a lift
$A \rightarrow B$. The path algebra of a quiver is formally smooth
because for every map $\phi~:~\mathbb{C} Q \rightarrow B/I$ the images of the
vertex-idempotents form an orthogonal set of idempotents which is known
to lift modulo nilpotent ideals and call this lift $\psi$. But then also
every arrow lifts as we can send it to an arbitrary element of
$\psi(e_j)\pi^{-1}(\phi(a))\psi(e_i)$. In case $A$ is commutative and
$B$ is allowed to run over all commutative algebras, then by
Grothendieck\’s criterium $A$ is a commutative regular algebra. This
also clarifies why so few commutative regular algebras are formally
smooth : being formally smooth is a vastly more restrictive property as
the lifting property extends to all algebras $B$ and whenever the
dimension of the commutative variety is at least two one can think of
maps from its coordinate ring to the commutative quotient of a
non-commutative ring by a nilpotent ideal which do not lift (for an
example, see for example [this preprint][3]). The aim of
non-commutative algebraic geometry is to study _families_ of manifolds
$\mathbf{rep}_n~A$ associated to the formally-smooth algebra $A$. [1]:
http://www.matrix.ua.ac.be/wp-trackback.php/10 [2]:
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Grothendieck.
html [3]: http://www.arxiv.org/abs/math.AG/9904171

One Comment

representation spaces

The
previous part of this sequence was [quiver representations][1]. When $A$
is a formally smooth algebra, we have an infinite family of smooth
affine varieties $\mathbf{rep}_n~A$, the varieties of finite dimensional
representations. On $\mathbf{rep}_n~A$ there is a basechange action of
$GL_n$ and we are really interested in _isomorphism classes_ of
representations, that is, orbits under this action. Mind you, an orbit
space does not always exist due to the erxistence of non-closed orbits
so one often has to restrict to suitable representations of $A$ for
which it _is_ possible to construct an orbit-space. But first, let us
give a motivating example to illustrate the fact that many interesting
classification problems can be translated into the setting of this
non-commutative algebraic geometry. Let $X$ be a smooth projective
curve of genus $g$ (that is, a Riemann surface with $g$ holes). A
classical object of study is $M = M_X^{ss}(0,n)$ the _moduli space
of semi-stable vectorbundles on $X$ of rank $n$ and degree $0$_. This
space has an open subset (corresponding to the _stable_ vectorbundles)
which classify the isomorphism classes of unitary simple representations
$\pi_1(X) = \frac{\langle x_1,\ldots,x_g,y_1,\ldots,y_g
\rangle}{([x_1,y_1] \ldots [x_g,y_g])} \rightarrow U_n(\mathbb{C})$ of the
fundamental group of $X$. Let $Y$ be an affine open subset of the
projective curve $X$, then we have the formally smooth algebra $A =
\begin{bmatrix} \mathbb{C} & 0 \\ \mathbb{C}[Y] & \mathbb{C}[Y] \end{bmatrix}$ As $A$ has two
orthogonal idempotents, its representation varieties decompose into
connected components according to dimension vectors $\mathbf{rep}_m~A
= \bigsqcup_{p+q=m} \mathbf{rep}_{(p,q)}~A$ all of which are smooth
varieties. As mentioned before it is not possible to construct a
variety classifying the orbits in one of these components, but there are
two methods to approximate the orbit space. The first one is the
_algebraic quotient variety_ of which the coordinate ring is the ring of
invariant functions. In this case one merely recovers for this quotient
$\mathbf{rep}_{(p,q)}~A // GL_{p+q} = S^q(Y)$ the symmetric product
of $Y$. A better approximation is the _moduli space of semi-stable
representations_ which is an algebraic quotient of the open subset of
all representations having no subrepresentation of dimension vector
$(u,v)$ such that $-uq+vp < 0$ (that is, cover this open set by $GL_{p+q}$ stable affine opens and construct for each the algebraic quotient and glue them together). Denote this moduli space by $M_{(p,q)}(A,\theta)$. It is an unpublished result of Aidan Schofield that the moduli spaces of semi-stable vectorbundles are birational equivalent to specific ones of these moduli spaces $M_X^{ss}(0,n)~\sim^{bir}~M_{(n,gn)}(A,\theta)$ Rather than studying the moduli spaces of semi-stable vectorbundles $M^{ss}_X(0,n)$ on the curve $X$ one at a time for each rank $n$, non-commutative algebraic geometry allows us (via the translation to the formally smooth algebra $A$) to obtain common features on all these moduli spaces and hence to study $\bigsqcup_n~M^{ss}_X(0,n)$ the moduli space of all semi-stable bundles on $X$ of degree zero (but of varying ranks). There exists a procedure to associate to any formally smooth algebra $A$ a quiver $Q_A$ (playing roughly the role of the tangent space to the manifold determined by $A$). If we do this for the algebra described above we find the quiver $\xymatrix{\vtx{} \ar[rr] & & \vtx{} \ar@(ur,dr)}$ and hence the representation theory of this quiver plays an important role in studying the geometric properties of the moduli spaces $M^{ss}_X(0,n)$, for instance it allows to determine the smooth loci of these varieties. Move on the the [next part. [1]: http://www.neverendingbooks.org/index.php/quiver-representations.html

Leave a Comment

algebraic vs. differential nog


OK! I asked to get side-tracked by comments so now that there is one I’d better deal with it at once. So, is there any relation between the non-commutative (algebraic) geometry based on formally smooth algebras and the non-commutative _differential_ geometry advocated by Alain Connes?
Short answers to this question might be (a) None whatsoever! (b) Morally they are the same! and (c) Their objectives are quite different!

As this only adds to the confusion, let me try to explain each point separately after issuing a _disclaimer_ that I am by no means an expert in Connes’ NOG neither in $C^* $-algebras. All I know is based on sitting in some lectures by Alain Connes, trying at several times to make sense of his terribly written book and indeed by reading the Landi notes in utter desperation.
(a) _None whatsoever!_ : Connes’ approach via spectral triples is modelled such that one gets (suitable) ordinary (that is, commutative) manifolds into this framework. The obvious algebraic counterpart for this would be a statement to the effect that the affine coordinate ring $\mathbb{C}[X] $ of a (suitable) smooth affine variety X would be formally smooth. Now you’re in for a first shock : the only affine smooth varieties for which this holds are either _points_ or _curves_! Not much of a geometry huh? In fact, that is the reason why I prefer to call formally smooth algebras just _qurves_ …
(b) _Morally they are the same_ : If you ever want to get some differential geometry done, you’d better have a connection on the tangent bundle! Now, Alain Connes extended the notion of a connection to the non-commutative world (see for example _the_ book) and if you take the algebraic equivalent of it and ask for which algebras possess such a connection, you get _precisely_ the formally smooth algebras (see section 8 of the Cuntz-Quillen paper “Algebra extensions and nonsingularity” Journal AMS Vol 8 (1991). Besides there is a class of $C^* $-algebras which are formally smooth algebras : the AF-algebras which also feature prominently in the Landi notes (although they are virtually never affine, that is, finitely generated as an algebra).
(c) _Their objectives are quite different!_ : Connes’ formalism aims to define a length function on a non-commutative manifold associated to a $C^* $-algebra. Non-commutative geometry based on formally smooth algebras has no interest in defining some sort of space associated to the algebra. The major importance of formally smooth algebras (as advocated by Maxim Kontsevich is that such an algebra A can be seen as a _machine_ producing an infinite family of ordinary commutative manifolds via its _representation varieties_ $\mathbf{rep}_n~A $ which are manifolds equipped with a $GL_n $-action. Non-commutative functions and diifferential forms defined at the level of the formally smooth algebra A do determine similar $GL_n $-invariant features on _all_ of these representation varieties at once.

Leave a Comment