Absolute geometry is the attempt to develop algebraic geometry over the elusive field with one element $\mathbb{F}_1$. The idea being that the set of all prime numbers is just too large for $\mathbf{Spec}(\mathbb{Z})$ to be a terminal object (as it is in the category of schemes). So, one wants to view $\mathbf{Spec}(\mathbb{Z})$ as a geometric object over something ‘deeper’, the… Read more →

# Tag Archive for F1

# 3 related new math-sites

F_un Mathematics Hardly a ‘new’ blog, but one that is getting a new life! On its old homepage you’ll find a diagonal banner stating ‘This site has moved’ and clicking on it will guide you to its new location : cage.ugent.be/~kthas/Fun. From now on, this site will be hosted at the University of Ghent and maintained by Koen Thas. So,… Read more →

# eBook ‘geometry and the absolute point’ v0.1

In preparing for next year’s ‘seminar noncommutative geometry’ I’ve converted about 30 posts to LaTeX, centering loosely around the topics students have asked me to cover : noncommutative geometry, the absolute point (aka the field with one element), and their relation to the Riemann hypothesis. The idea being to edit these posts thoroughly, add much more detail (and proofs) and… Read more →

# Art and the absolute point

In his paper Cyclotomy and analytic geometry over $\mathbb{F}_1$ Yuri I. Manin sketches and compares four approaches to the definition of a geometry over $\mathbb{F}_1$, the elusive field with one element. He writes : “Preparing a colloquium talk in Paris, I have succumbed to the temptation to associate them with some dominant trends in the history of art.” Remember that… Read more →