Skip to content →

Tag: differential

Arnold’s trinities

Referring to the triple of exceptional Galois groups $L_2(5),L_2(7),L_2(11) $ and its connection to the Platonic solids I wrote : “It sure seems that surprises often come in triples…”. Briefly I considered replacing triples by trinities, but then, I didnt want to sound too mystic…

David Corfield of the n-category cafe and a dialogue on infinity (and perhaps other blogs I’m unaware of) pointed me to the paper Symplectization, complexification and mathematical trinities by Vladimir I. Arnold. (Update : here is a PDF-conversion of the paper)

The paper is a write-up of the second in a series of three lectures Arnold gave in june 1997 at the meeting in the Fields Institute dedicated to his 60th birthday. The goal of that lecture was to explain some mathematical dreams he had.

The next dream I want to present is an even more fantastic set of theorems and conjectures. Here I also have no theory and actually the ideas form a kind of religion rather than mathematics.
The key observation is that in mathematics one encounters many trinities. I shall present a list of examples. The main dream (or conjecture) is that all these trinities are united by some rectangular “commutative diagrams”.
I mean the existence of some “functorial” constructions connecting different trinities. The knowledge of the existence of these diagrams provides some new conjectures which might turn to be true theorems.

Follows a list of 12 trinities, many taken from Arnold’s field of expertise being differential geometry. I’ll restrict to the more algebraically inclined ones.

1 : “The first trinity everyone knows is”

where $\mathbb{H} $ are the Hamiltonian quaternions. The trinity on the left may be natural to differential geometers who see real and complex and hyper-Kaehler manifolds as distinct but related beasts, but I’m willing to bet that most algebraists would settle for the trinity on the right where $\mathbb{O} $ are the octonions.

2 : The next trinity is that of the exceptional Lie algebras E6, E7 and E8.

with corresponding Dynkin-Coxeter diagrams

Arnold has this to say about the apparent ubiquity of Dynkin diagrams in mathematics.

Manin told me once that the reason why we always encounter this list in many different mathematical classifications is its presence in the hardware of our brain (which is thus unable to discover a more complicated scheme).
I still hope there exists a better reason that once should be discovered.

Amen to that. I’m quite hopeful human evolution will overcome the limitations of Manin’s brain…

3 : Next comes the Platonic trinity of the tetrahedron, cube and dodecahedron

Clearly one can argue against this trinity as follows : a tetrahedron is a bunch of triangles such that there are exactly 3 of them meeting in each vertex, a cube is a bunch of squares, again 3 meeting in every vertex, a dodecahedron is a bunch of pentagons 3 meeting in every vertex… and we can continue the pattern. What should be a bunch a hexagons such that in each vertex exactly 3 of them meet? Well, only one possibility : it must be the hexagonal tiling (on the left below). And in normal Euclidian space we cannot have a bunch of septagons such that three of them meet in every vertex, but in hyperbolic geometry this is still possible and leads to the Klein quartic (on the right). Check out this wonderful post by John Baez for more on this.

4 : The trinity of the rotation symmetry groups of the three Platonics

where $A_n $ is the alternating group on n letters and $S_n $ is the symmetric group.

Clearly, any rotation of a Platonic solid takes vertices to vertices, edges to edges and faces to faces. For the tetrahedron we can easily see the 4 of the group $A_4 $, say the 4 vertices. But what is the 4 of $S_4 $ in the case of a cube? Well, a cube has 4 body-diagonals and they are permuted under the rotational symmetries. The most difficult case is to see the $5 $ of $A_5 $ in the dodecahedron. Well, here’s the solution to this riddle

there are exactly 5 inscribed cubes in a dodecahedron and they are permuted by the rotations in the same way as $A_5 $.

7 : The seventh trinity involves complex polynomials in one variable

the Laurant polynomials and the modular polynomials (that is, rational functions with three poles at 0,1 and $\infty $.

8 : The eight one is another beauty

Here ‘numbers’ are the ordinary complex numbers $\mathbb{C} $, the ‘trigonometric numbers’ are the quantum version of those (aka q-numbers) which is a one-parameter deformation and finally, the ‘elliptic numbers’ are a two-dimensional deformation. If you ever encountered a Sklyanin algebra this will sound familiar.

This trinity is based on a paper of Turaev and Frenkel and I must come back to it some time…

The paper has some other nice trinities (such as those among Whitney, Chern and Pontryagin classes) but as I cannot add anything sensible to it, let us include a few more algebraic trinities. The first one attributed by Arnold to John McKay

13 : A trinity parallel to the exceptional Lie algebra one is

between the 27 straight lines on a cubic surface, the 28 bitangents on a quartic plane curve and the 120 tritangent planes of a canonic sextic curve of genus 4.

14 : The exceptional Galois groups

explained last time.

15 : The associated curves with these groups as symmetry groups (as in the previous post)

where the ? refers to the mysterious genus 70 curve. I’ll check with one of the authors whether there is still an embargo on the content of this paper and if not come back to it in full detail.

16 : The three generations of sporadic groups

Do you have other trinities you’d like to worship?

Leave a Comment


It’s been a while, so let’s include a recap : a (transitive) permutation representation of the modular group $\Gamma = PSL_2(\mathbb{Z}) $ is determined by the conjugacy class of a cofinite subgroup $\Lambda \subset \Gamma $, or equivalently, to a dessin d’enfant. We have introduced a quiver (aka an oriented graph) which comes from a triangulation of the compactification of $\mathbb{H} / \Lambda $ where $\mathbb{H} $ is the hyperbolic upper half-plane. This quiver is independent of the chosen embedding of the dessin in the Dedeking tessellation. (For more on these terms and constructions, please consult the series Modular subgroups and Dessins d’enfants).

Why are quivers useful? To start, any quiver $Q $ defines a noncommutative algebra, the path algebra $\mathbb{C} Q $, which has as a $\mathbb{C} $-basis all oriented paths in the quiver and multiplication is induced by concatenation of paths (when possible, or zero otherwise). Usually, it is quite hard to make actual computations in noncommutative algebras, but in the case of path algebras you can just see what happens.

Moreover, we can also see the finite dimensional representations of this algebra $\mathbb{C} Q $. Up to isomorphism they are all of the following form : at each vertex $v_i $ of the quiver one places a finite dimensional vectorspace $\mathbb{C}^{d_i} $ and any arrow in the quiver
[tex]\xymatrix{\vtx{v_i} \ar[r]^a & \vtx{v_j}}[/tex] determines a linear map between these vertex spaces, that is, to $a $ corresponds a matrix in $M_{d_j \times d_i}(\mathbb{C}) $. These matrices determine how the paths of length one act on the representation, longer paths act via multiplcation of matrices along the oriented path.

A necklace in the quiver is a closed oriented path in the quiver up to cyclic permutation of the arrows making up the cycle. That is, we are free to choose the start (and end) point of the cycle. For example, in the one-cycle quiver

[tex]\xymatrix{\vtx{} \ar[rr]^a & & \vtx{} \ar[ld]^b \\ & \vtx{} \ar[lu]^c &}[/tex]

the basic necklace can be represented as $abc $ or $bca $ or $cab $. How does a necklace act on a representation? Well, the matrix-multiplication of the matrices corresponding to the arrows gives a square matrix in each of the vertices in the cycle. Though the dimensions of this matrix may vary from vertex to vertex, what does not change (and hence is a property of the necklace rather than of the particular choice of cycle) is the trace of this matrix. That is, necklaces give complex-valued functions on representations of $\mathbb{C} Q $ and by a result of Artin and Procesi there are enough of them to distinguish isoclasses of (semi)simple representations! That is, linear combinations a necklaces (aka super-potentials) can be viewed, after taking traces, as complex-valued functions on all representations (similar to character-functions).

In physics, one views these functions as potentials and it then interested in the points (representations) where this function is extremal (minimal) : the vacua. Clearly, this does not make much sense in the complex-case but is relevant when we look at the real-case (where we look at skew-Hermitian matrices rather than all matrices). A motivating example (the Yang-Mills potential) is given in Example 2.3.2 of Victor Ginzburg’s paper Calabi-Yau algebras.

Let $\Phi $ be a super-potential (again, a linear combination of necklaces) then our commutative intuition tells us that extrema correspond to zeroes of all partial differentials $\frac{\partial \Phi}{\partial a} $ where $a $ runs over all coordinates (in our case, the arrows of the quiver). One can make sense of differentials of necklaces (and super-potentials) as follows : the partial differential with respect to an arrow $a $ occurring in a term of $\Phi $ is defined to be the path in the quiver one obtains by removing all 1-occurrences of $a $ in the necklaces (defining $\Phi $) and rearranging terms to get a maximal broken necklace (using the cyclic property of necklaces). An example, for the cyclic quiver above let us take as super-potential $abcabc $ (2 cyclic turns), then for example

$\frac{\partial \Phi}{\partial b} = cabca+cabca = 2 cabca $

(the first term corresponds to the first occurrence of $b $, the second to the second). Okay, but then the vacua-representations will be the representations of the quotient-algebra (which I like to call the vacualgebra)

$\mathcal{U}(Q,\Phi) = \frac{\mathbb{C} Q}{(\partial \Phi/\partial a, \forall a)} $

which in ‘physical relevant settings’ (whatever that means…) turn out to be Calabi-Yau algebras.

But, let us return to the case of subgroups of the modular group and their quivers. Do we have a natural super-potential in this case? Well yes, the quiver encoded a triangulation of the compactification of $\mathbb{H}/\Lambda $ and if we choose an orientation it turns out that all ‘black’ triangles (with respect to the Dedekind tessellation) have their arrow-sides defining a necklace, whereas for the ‘white’ triangles the reverse orientation makes the arrow-sides into a necklace. Hence, it makes sense to look at the cubic superpotential $\Phi $ being the sum over all triangle-sides-necklaces with a +1-coefficient for the black triangles and a -1-coefficient for the white ones. Let’s consider an index three example from a previous post

[tex]\xymatrix{& & \rho \ar[lld]_d \ar[ld]^f \ar[rd]^e & \\
i \ar[rrd]_a & i+1 \ar[rd]^b & & \omega \ar[ld]^c \\
& & 0 \ar[uu]^h \ar@/^/[uu]^g \ar@/_/[uu]_i &}[/tex]

In this case the super-potential coming from the triangulation is

$\Phi = -aid+agd-cge+che-bhf+bif $

and therefore we have a noncommutative algebra $\mathcal{U}(Q,\Phi) $ associated to this index 3 subgroup. Contrary to what I believed at the start of this series, the algebras one obtains in this way from dessins d’enfants are far from being Calabi-Yau (in whatever definition). For example, using a GAP-program written by Raf Bocklandt Ive checked that the growth rate of the above algebra is similar to that of $\mathbb{C}[x] $, so in this case $\mathcal{U}(Q,\Phi) $ can be viewed as a noncommutative curve (with singularities).

However, this is not the case for all such algebras. For example, the vacualgebra associated to the second index three subgroup (whose fundamental domain and quiver were depicted at the end of this post) has growth rate similar to that of $\mathbb{C} \langle x,y \rangle $…

I have an outlandish conjecture about the growth-behavior of all algebras $\mathcal{U}(Q,\Phi) $ coming from dessins d’enfants : the algebra sees what the monodromy representation of the dessin sees of the modular group (or of the third braid group).
I can make this more precise, but perhaps it is wiser to calculate one or two further examples…

One Comment

Vacation reading

Im in the process of writing/revising/extending the course notes for next year and will therefore pack more math-books than normal.

These are for a 3rd year Bachelor course on Algebraic Geometry and a 1st year Master course on Algebraic and Differential Geometry. The bachelor course was based this year partly on Miles Reid’s Undergraduate Algebraic Geometry and partly on David Mumford’s Red Book, but this turned out to be too heavy going. Next year I’ll be happy if they know enough on algebraic curves. The backbone of these two courses will be Fulton’s old but excellent Algebraic curves. It’s self contained (unlike Hartshorne’s book that assumes a prior course on commutative algebra), contains a lot of exercises and goes on to the Brill-Noether proof of Riemann-Roch. Still, Id like to extend it with the introductory chapter and the chapters on Riemann surfaces from Complex Algebraic Curves by Frances Kirwan, a bit on elliptic and modular functions from Elliptic curves by Henry McKean and Victor Moll and the adelic proof of Riemann-Roch and applications of it to the construction of algebraic codes from Algebraic curves over finite fields by Carlos Moreno. If time allows Id love to include also the chapter on zeta functions but I fear this will be difficult.

These are to spice up a 2nd year Bachelor course on Representations of Finite Groups with a tiny bit of Galois representations, both as motivation and to wet their appetite for elliptic curves and algebraic geometry. Ive received Fearless Symmetry by Avner Ash and Robert Gross only yesterday and find it hard to stop reading. It attempts to explain Galois representations and generalized reciprocity laws to a general audience and from what I read so far, they really do a terrific job. Another excellent elementary introduction to elliptic curves and Galois representations is in Invitation to the Mathematics of Fermat-Wiles by Yves Hellegouarch. On a gossipy note, the appendix “The origin of the elliptic approach to Fermat’s last theorem” is fun reading. Finally, Ill also take Introduction to Fermat’s Last Theorem by Alf van der Poorten along simply because I love his writing style.

These are included just for fun. The Poincare Conjecture by Donal O’Shea because I know far too little about it, Letters to a Young Mathematician by Ian Stewart because I like the concept of the book and finally The sensual (quadratic) form by John Conway because I need to have at all times at least one Conway-book nearby.


the Manin-Marcolli cave

Yesterday, Yuri Manin and Matilde Marcolli arXived their paper
Modular shadows and the Levy-Mellin infinity-adic transform which is a
follow-up of their previous paper Continued fractions, modular symbols, and non-commutative geometry.
They motivate the title of the recent paper by :

[MaMar2](, these and similar
results were put in connection with the so called “holography”
principle in modern theoretical physics. According to this principle,
quantum field theory on a space may be faithfully reflected by an
appropriate theory on the boundary of this space. When this boundary,
rather than the interior, is interpreted as our observable
space‚Äìtime, one can proclaim that the ancient Plato’s cave metaphor
is resuscitated in this sophisticated guise. This metaphor motivated
the title of the present paper.

Here’s a layout of
Plato’s cave

Imagine prisoners, who have been chained since childhood deep inside an
cave: not only are their limbs immobilized by the chains; their heads
are chained as well, so that their gaze is fixed on a wall.
the prisoners is an enormous fire, and between the fire and the
prisoners is a raised walkway, along which statues of various animals,
plants, and other things are carried by people. The statues cast shadows
on the wall, and the prisoners watch these shadows. When one of the
statue-carriers speaks, an echo against the wall causes the prisoners to
believe that the words come from the shadows.
The prisoners
engage in what appears to us to be a game: naming the shapes as they
come by. This, however, is the only reality that they know, even though
they are seeing merely shadows of images. They are thus conditioned to
judge the quality of one another by their skill in quickly naming the
shapes and dislike those who begin to play poorly.
Suppose a
prisoner is released and compelled to stand up and turn around. At that
moment his eyes will be blinded by the firelight, and the shapes passing
will appear less real than their shadows.

Right, now how
does the Manin-Marcolli cave look? My best guess is : like this
picture, taken from Curt McMullen’s Gallery

this as the top view of a spherical cave. M&M are imprisoned in the
cave, their heads chained preventing them from looking up and see the
ceiling (where $PSL_2(\mathbb{Z}) $ (or a cofinite subgroup of
it) is acting on the upper-half plane via
Moebius-transformations ). All they can see is the circular exit of the
cave. They want to understand the complex picture going on over their
heads from the only things they can observe, that is the action of
(subgroups of) the modular group on the cave-exit
$\mathbb{P}^1(\mathbb{R}) $. Now, the part of it consisting
of orbits of cusps
$\mathbb{P}^1(\mathbb{Q}) $ has a nice algebraic geometric
description, but orbits of irrational points cannot be handled by
algebraic geometry as the action of $PSL_2(\mathbb{Z}) $ is
highly non-discrete as illustrated by another picture from McMullen’s

depicting the ill behaved topology of the action on the bottom real
axis. Still, noncommutative _differential_ geometry is pretty good at
handling such ill behaved quotient spaces and it turns out that as a
noncommutative space, this quotient
$\mathbb{P}^1(\mathbb{R})/PSL_2(\mathbb{Z}) $ is rich enough
to recover many important aspects of the classical theory of modular
curves. Hence, they reverse the usual NCG-picture of interpreting
commutative objects as shadows of noncommutative ones. They study the
_noncommutative shadow_
$\mathbb{P}^1(\mathbb{R})/PSL_2(\mathbb{Z}) $ of a classical
commutative object, the quotient of the action of the modular group (or
a cofinite subgroup of it) on the upper half-plane.

In our
noncommutative geometry course we have already
seen this noncommutative shadow in action (though at a very basic
level). Remember that we first described the group-structure of the
modular group $PSL_2(\mathbb{Z}) = C_2 \ast C_3 $ via the
classical method of groups acting on trees. In particular, we
considered the tree

calculated the stabilizers of the end points of its fundamental domain
(the thick circular edge). But
later we were able to give a
much shorter proof (due to Roger Alperin) by looking only at the action
of $PSL_2(\mathbb{Z}) $ on the irrational real numbers (the
noncommutative shadow). Needless to say that the results obtained by
Manin and Marcolli from staring at their noncommutative shadow are a lot
more intriguing…

One Comment

noncommutative bookmarks

last, some excitement about noncommutative geometry in the blogosphere.

From what I deduce from reading the first posts, Arup Pal set up a new blog
called Noncommutative
and subsequently handed it over to Masoud Khalkhali who then
got Alain Connes to post on it who, in turn, is asking people to submit
posts, such as todays post by David Goss.

Somehow, most people refer to the Noncommutative Geometry blog as
“Alain Connes’ blog” (for example Doctor Gero, Not Even
, the n-category cafe and
possibly many others).

David Corfield over at the n-category cafe stops
short of suggesting to rename (by analogy) NeverEndingBooks into
Kontsevich’s blog

A new blog Noncommutative Geometry
has begun, which appears to be of the Connesian variety. (Connes himself
has already commented there.) We mentioned a couple of weeks ago that
there are different flavours of noncommutative geometry. The
Kontsevichian variety, nongeometry, finds its blog voice in Lieven Le
Bruyn’s NeverEndingBooks. It would be interesting to see some

I don’t think I will opt for a dialectic
response to the Noncommutative Geometry Blog, although I realize this would result
in more enjoyable reading for some of you…

For starters,
I’ve signed up to another flagship of noncommutative
_differential_ geometry :, though it is unclear to me what action (if any) is
going on over there.

Further, I plan to move my talks at the master class
noncommutative geometry
to the virtual lecture room of this blog,
hoping to get the desired interaction. We’ll start later this week and
the pace will be pretty easy going. A tentative title might be
“Anabelian versus Noncommutative Geometry”.

Leave a Comment


an appeal to the few people working in Cuntz-Quillen-Kontsevich-whoever
noncommutative geometry (the one where smooth affine varieties
correspond to quasi-free or formally smooth algebras) : let’s rename our
topic and call it non-geometry. I didn’t come up with
this term, I heard in from Maxim Kontsevich in a talk he gave a couple
of years ago in Antwerp. There are some good reasons for this name

The term _non-commutative geometry_ is already taken by
much more popular subjects such as _Connes-style noncommutative
differential geometry_ and _Artin-style noncommutative algebraic
geometry_. Renaming our topic we no longer have to include footnotes
(such as the one in the recent Kontsevich-Soibelman
) :

We use “formal” non-commutative geometry
in tensor categories, which is different from the non-commutative
geometry in the sense of Alain Connes.

or to make a
distinction between _noncommutative geometry in the small_ (which is
Artin-style) and _noncommutative geometry in the large_ (which in
non-geometry) as in the Ginzburg notes.

Besides, the stress in _non-commutative geometry_ (both in Connes-
and Artin-style) in on _commutative_. Connes-style might also be called
‘K-theory of $C^*$-algebras’ and they use the topological
information of K-theoretic terms in the commutative case as guidance to
speak about geometrical terms in the nocommutative case. Similarly,
Artin-style might be called ‘graded homological algebra’ and they
use Serre’s homological interpretation of commutative geometry to define
similar concepts for noncommutative algebras. Hence, non-commutative
geometry is that sort of non-geometry which is almost

But the main point of naming our subject
non-geometry is to remind us not to rely too heavily on our
(commutative) geometric intuition. For example, we would expect a
manifold to have a fixed dimension. One way to define the dimension is
as the trancendence degree of the functionfield. However, from the work
of Paul Cohn (I learned about it through Aidan Schofield) we know that
quasi-free algebras usually do’nt have a specific function ring of
fractions, rather they have infinitely many good candidates for it and
these candidates may look pretty unrelated. So, at best we can define a
_local dimension_ of a noncommutative manifold at a point, say given by
a simple representation. It follows from the Cunz-Quillen tubular
neighborhood result that the local ring in such a point is of the

$M_n(\mathbb{C} \langle \langle z_1,\ldots,z_m \rangle
\rangle) $

(this s a noncommutative version of the classical fact
than the local ring in a point of a d-dimensional manifold is formal
power series $\mathbb{C} [[ z_1,\ldots,z_d ]] $) but in non-geometry both
m (the _local_ dimension) and n (the dimension of the simple
representation) vary from point to point. Still, one can attach to the
quasi-free algebra A a finite amount of data (in fact, a _finite_ quiver
and dimension vector) containing enough information to compute the (n,m)
couples for _all_ simple points (follows from the one quiver to rule them
all paper
or see this for more

In fact, one can even extend this to points
corresponding to semi-simple representations in which case one has to
replace the matrix-ring above by a ring Morita equivalent to the
completion of the path algebra of a finite quiver, the _local quiver_ at
the point (which can also be computer from the one-quiver of A. The
local coalgebras of distributions at such points of
Kontsevich&Soibelman are just the dual coalgebras of these local
algebras (in math.RA/0606241 they
merely deal with the n=1 case but no doubt the general case will appear
in the second part of their paper).

The case of the semi-simple
point illustrates another major difference between commutative geometry
and non-geometry, whereas commutative simples only have self-extensions
(so the distribution coalgebra is just the direct sum of all the local
distributions) noncommutative simples usually have plenty of
non-isomorphic simples with which they have extensions, so to get at the
global distribution coalgebra of A one cannot simply add the locals but
have to embed them in more involved coalgebras.

The way to do it
is somewhat concealed in the
third version of my neverending book
(the version that most people
found incomprehensible). Here is the idea : construct a huge uncountable
quiver by taking as its vertices the isomorphism classes of all simple
A-representations and with as many arrows between the simple vertices S
and T as the dimension of the ext-group between these simples (and
again, these dimensions follow from the knowledge of the one-quiver of
A). Then, the global coalgebra of distributions of A is the limit over
all cotensor coalgebras corresponding to finite subquivers). Maybe I’ll
revamp this old material in connection with the Kontsevich&Soibelman
paper(s) for the mini-course I’m supposed to give in september.

Leave a Comment


to Andrei Sobolevskii for his comment
pointing me to a wonderful initiative : CiteULike.

What is CiteULike?
CiteULike is a
free service to help academics to share, store, and organise the
academic papers they are reading. When you see a paper on the web that
interests you, you can click one button and have it added to your
personal library. CiteULike automatically extracts the citation details,
so there’s no need to type them in yourself. It all works from
within your web browser. There’s no need to install any special
Because your library is stored on the server, you
can access it from any computer. You can share you library with others,
and find out who is reading the same papers as you. In turn, this can
help you discover literature which is relevant to your field but you may
not have known about.
When it comes to writing up your
results in a paper, you can export your library to either BibTeX or
Endnote to build it in to your bibliography. CiteULike has a flexible
filing system, so you actually stand a chance of being able to find that
article that you stored a few months ago when you need

If all this seems too abstract, here is an excellent practical
(also suggested by Andrei). This text focusses on
articles from AnthroSource but if you’re a mathematician, do the
same things when you are at the abstract page of a paper on the arXiv or a paper description from MathSciNet. The really nice
thing is that you virtually have to do no typing at all (apart from the
tags you want to add to classify the paper where you want it or, if you
want, to add a note about the paper). Another exciting feature
is that you can upload your personal copy of the paper. A typical
situation : most of us can get the PDF-file of a published paper at work
(because the university has a contract with the publisher) but not at
home, on the road or on vacation. So, while at work, download the PDF,
upload it as your personal copy to citeUlike and you can read that paper
wherever you have internet access! But there is more : you can
export the BibTeX-data of your whole library and use it in your next
paper, every library has its separate RSS-feed so you can feed it to a
news-aggregator (or to bloglines) to find out whether someone with
similar interests added a new paper to his/her library, you can create
Groups that is collections of Libraries of people interested in the same
topic, so that others can help you finding stuff of value (and again,
such Group-libraries have there own RSS-feed so….), all libraries
have all tags used by the Library-owner in a graphical format, the
larger the tag-text the more it is used in the Library, so just by
looking at the right-sidebar you get a good idea what the person’s
interests are, etc. etc. etc. I’m just two days into
citeUlike and there will be tons of features I still have to discover
and I’ll report on this later. At the moment I just added a few
papers to my Library but I will extend this drasticly in the weeks
ahead. If you want to check on my progress here is lieven’s Library
or the citeIlike link in the header of this blog (between the
‘about me’ and the ’search’ link) and I hope
that many of you will add similar buttons on your homepages.
Finally, if you are interested in Noncommutative algebraic and/or
differential geometry, I’ve set up a Group-Library
. At the moment it’s just identical to
my own Library, but please register to citeUlike, set up your own
Library and if you’re into NOG join this group!

One Comment


Unlike the
cooler people out there, I haven’t received my
_pre-ordered_ copy (via AppleStore) of Tiger yet. Partly my own fault
because I couldn’t resist the temptation to bundle up with a
personalized iPod Photo!
The good news is that it buys me more time to follow the
housecleaning tips
. First, my idea was to make a CarbonCopyClooner
image of my iBook and put it on the _iMac_ upstairs which I
rarely use these days, do a clean
Tiger install
on the iBook and gradually copy over the essential
programs and files I need (and only those!). But reading the
macdev-article, I think it is better to keep my iBook running Panther
and experiment with Tiger on the redundant iMac. (Btw. unless you want
to have a copy of my Mac-installation there will be hardly a point
checking this blog the next couple of weeks as I intend to write down
all details of the Panther/Tiger switch here.)

Last week-end I
started a _Paper-rescue_ operation, that is, to find among the
multiple copies of books/papers/courses, the ones that contain all the
required material to re-TeX them and unfortunately my _archive_
is in a bad state. There is hardly a source-file left of a paper prior
to 1999 when I started putting all my papers on the arXiv.

On the other hand, I do
have saved most of my undergraduate courses. Most of them were still
using postscript-crap like _epsfig_ etc. so I had to convert all
the graphics to PDFs (merely using Preview ) and
modify the epsfig-command to _includegraphics_. So far, I
converted all my undergraduate _differential geometry_ courses
from 1998 to this year and made them available in a uniform
screen-friendly viewing format at TheLibrary/undergraduate.

There are two
ways to read the changes in these courses over the years. (1) as a shift
from _differential_ geometry to more _algebraic_ geometry
and (2) as a shift towards realism wrt.the level of our undegraduate
students. In 1998 I was still thinking
that I could teach them an easy way into Connes non-commutative standard
model but didn’t go further than the Lie group sections (maybe one day
I’ll rewrite this course as a graduate course when I ever get
reinterested in the Connes’ approach). In 1999 I had the illusion that
it might be a good idea to introduce manifolds-by-examples coming from
operads! In 2000 I gave in to the fact
that most of the students which had to follow this course were applied
mathematicians so perhaps it was a good idea to introduce them to
dynamical systems (quod non!). The 2001 course is probably the
most realistic one while still doing standard differential geometry. In
2002 I used the conifold
singularity and conifold transitions (deformations and blow-ups) as
motivation but it was clear that the students did have difficulties with
the blow-up part as they didn’t have enough experience in
_algebraic_ geometry. So the last two years I’m giving an
introduction to algebraic geometry culminating in blow-ups and some
non-commutative geometry.

Leave a Comment


expect to be writing a lot in the coming months. To start, after having
given the course once I noticed that I included a lot of new material
during the talks (mainly concerning the component coalgebra and some
extras on non-commutative differential forms and symplectic forms) so
I\’d better update the Granada notes
soon as they will also be the basis of the master course I\’ll start
next week. Besides, I have to revise the Qurves and
-paper and to start drafting the new bachelor courses for
next academic year (a course on representation theory of finite groups,
another on Riemann surfaces and an upgrade of the geometry-101 course).

So, I\’d better try to optimize my LaTeX-workflow and learn
something about the pdfsync package.
Here is what it is supposed to do :

pdfsync is
an acronym for synchronization between a pdf file and the TeX or so
source file used in the production process. As TeX system is not a
WYSIWYG editor, you cannot modify the output directly, instead, you must
edit a source file then run the production process. The pdfsync helps
you finding what part of the output corresponds to what line of the
source file, and conversely what line of the source file corresponds to
a location of a given page in the ouput. This feature is achieved with
the help of an auxiliary file: foo.pdfsync corresponding to a foo.pdf.

All you have to do is to put the pdfsync.sty file
in the directory _~/Library/texmf/tex/latex/pdfsync.sty_ and to
include the pdfsync-package in the preamble of the LaTeX-document. Under
my default iTex-front-end TeXShop it
works well to go from a spot in the PDF-file to the corresponding place
in the source-code, but in the other direction it only shows the
appropriate page rather than indicate the precise place with a red dot
as it does in the alternative front-end iTeXMac.

A major
drawback for me is that pdfsync doesn\’t live in harmony with my
favorite package for drawing commutative diagrams diagrams.sty. For example, the 75 pages of the current
version of the Granada notes become blown-up to 96 pages because each
commutative diagram explodes to nearly page size! So I will also have to
translate everything to xymatrix&#

One Comment