Skip to content →

smooth Brauer-Severis

Around the
same time Michel Van den Bergh introduced his Brauer-Severi schemes,
[Claudio Procesi][1] (extending earlier work of [Bill Schelter][2])
introduced smooth orders as those orders $A$ in a central simple algebra
$\Sigma$ (of dimension $n^2$) such that their representation variety
$\mathbf{trep}_n~A$ is a smooth variety. Many interesting orders are smooth
: hereditary orders, trace rings of generic matrices and more generally
size n approximations of formally smooth algebras (that is,
non-commutative manifolds). As in the commutative case, every order has
a Zariski open subset where it is a smooth order. The relevance of
this notion to the study of Brauer-Severi varieties is that $X_A$ is a
smooth variety whenever $A$ is a smooth order. Indeed, the Brauer-Severi
scheme was the orbit space of the principal $GL_n$-fibration on the
Brauer-stable representations (see [last time][3]) which form a Zariski
open subset of the smooth variety $\mathbf{trep}_n~A \times k^n$. In fact,
in most cases the reverse implication will also hold, that is, if $X_A$
is smooth then usually A is a smooth order. However, for low n,
there are some counterexamples. Consider the so called quantum plane
$A_q=k_q[x,y]~:~yx=qxy$ with $~q$ an $n$-th root of unity then one
can easily prove (using the fact that the smooth order locus of $A_q$ is
everything but the origin in the central variety $~\mathbb{A}^2$) that
the singularities of the Brauer-Severi scheme $X_A$ are the orbits
corresponding to those nilpotent representations $~\phi : A \rightarrow
M_n(k)$ which are at the same time singular points in $\mathbf{trep}_n~A$
and have a cyclic vector. As there are singular points among the
nilpotent representations, the Brauer-Severi scheme will also be
singular except perhaps for small values of $n$. For example, if
$~n=2$ the defining relation is $~xy+yx=0$ and any trace preserving
representation has a matrix-description $~x \rightarrow
\begin{bmatrix} a & b \\ c & -a \end{bmatrix}~y \rightarrow
\begin{bmatrix} d & e \\ f & -d \end{bmatrix}$ such that
$~2ad+bf+ec = 0$. That is, $~\mathbf{trep}_2~A = \mathbb{V}(2ad+bf+ec)
\subset \mathbb{A}^6$ which is an hypersurface with a unique
singular point (the origin). As this point corresponds to the
zero-representation (which does not have a cyclic vector) the
Brauer-Severi scheme will be smooth in this case. [Colin
Ingalls][4] extended this calculation to show that the Brauer-Severi
scheme is equally smooth when $~n=3$ but has a unique (!) singular point
when $~n=4$. So probably all Brauer-Severi schemes for $n \geq 4$ are
indeed singular. I conjecture that this is a general feature for
Brauer-Severi schemes of families (depending on the p.i.-degree $n$) of
non-smooth orders.

[1]: http://venere.mat.uniroma1.it/people/procesi/
[2]: http://www.fact-index.com/b/bi/bill_schelter.html
[3]: http://www.neverendingbooks.org/index.php?p=341
[4]: http://kappa.math.unb.ca/~colin/

Similar Posts:

Published in featured

One Comment

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.