Skip to content →

Category: stories

Vacation reading

Im in the process of writing/revising/extending the course notes for next year and will therefore pack more math-books than normal.

These are for a 3rd year Bachelor course on Algebraic Geometry and a 1st year Master course on Algebraic and Differential Geometry. The bachelor course was based this year partly on Miles Reid’s Undergraduate Algebraic Geometry and partly on David Mumford’s Red Book, but this turned out to be too heavy going. Next year I’ll be happy if they know enough on algebraic curves. The backbone of these two courses will be Fulton’s old but excellent Algebraic curves. It’s self contained (unlike Hartshorne’s book that assumes a prior course on commutative algebra), contains a lot of exercises and goes on to the Brill-Noether proof of Riemann-Roch. Still, Id like to extend it with the introductory chapter and the chapters on Riemann surfaces from Complex Algebraic Curves by Frances Kirwan, a bit on elliptic and modular functions from Elliptic curves by Henry McKean and Victor Moll and the adelic proof of Riemann-Roch and applications of it to the construction of algebraic codes from Algebraic curves over finite fields by Carlos Moreno. If time allows Id love to include also the chapter on zeta functions but I fear this will be difficult.

These are to spice up a 2nd year Bachelor course on Representations of Finite Groups with a tiny bit of Galois representations, both as motivation and to wet their appetite for elliptic curves and algebraic geometry. Ive received Fearless Symmetry by Avner Ash and Robert Gross only yesterday and find it hard to stop reading. It attempts to explain Galois representations and generalized reciprocity laws to a general audience and from what I read so far, they really do a terrific job. Another excellent elementary introduction to elliptic curves and Galois representations is in Invitation to the Mathematics of Fermat-Wiles by Yves Hellegouarch. On a gossipy note, the appendix “The origin of the elliptic approach to Fermat’s last theorem” is fun reading. Finally, Ill also take Introduction to Fermat’s Last Theorem by Alf van der Poorten along simply because I love his writing style.

These are included just for fun. The Poincare Conjecture by Donal O’Shea because I know far too little about it, Letters to a Young Mathematician by Ian Stewart because I like the concept of the book and finally The sensual (quadratic) form by John Conway because I need to have at all times at least one Conway-book nearby.

4 Comments

Shameless Self-Promotion

It looks like I’m off the hook and can relax (after a few months of rewriting/correcting/learning LaTeX-quirks). To all of you NeverEndingBooks readers : the bookproject has ended and will appear sometime this fall. It will be around 600 pages thick and cost just under 100$. This is about 4 times the amount NeverEndingBook-ers paid over at Lulu.com. To all (?!) those who did : treasure the two volumes, they will become (extremely rare) collectors’ items, one fine day. Here is the final cover-design :

Compare it to the covers produced two years ago by the NeverEndingBooks-design department (thanks again Jan and the rest of the crew).

The final fight was over the promotional material. The copywriters did include the captivating sentence “A Novel Approach to Difficult Cases in Mathematics and Physics”… Here’s my reply

I realize Im a difficult (some say hopeless) case, but there is little point advertising this. Here a few alternatives that may require spicing-up

“A gentle introduction to one of mathematics’ (and even physics’) hottest topics”
“A novel approach to noncommutative geometry”
“Get rid of singularities by going noncommutative!”
“The first readable text on an over-hyped topic…”
etc. etc.

I can do better if I have to, so please tell me and I’ll open up a bottle of wine.
Whatever you do, please remove the difficult cases-sentence from all material.

atb+apologies :: lieven.

UPDATE (august 1st) : if you want to order the book for your university-library, have a look at the promo flyer. All my suggestions (apart from the last one) are included…

One final comment about all of this. The project started as a bookproject with the AMS in 1999 and was abandoned (for a variety of reasons, all of them only relevant to myself) sometime early 2002.

Here’s the one thing that will hurt for some time to come. I wanted to dedicate the book to “the women in my life : my mother, Ann, Gitte&Bente”. Unfortunately, my mother will never see the book. The current dedication is :

This book is dedicated to the women in my life
Simonne Stevens (1926-2004), Ann, Gitte&Bente

10 Comments

The miracle of 163

On page 227 of Symmetry and the Monster, Mark Ronan tells the story of Conway and Norton computing the number of independent _mini j-functions_ (McKay-Thompson series) arising from the Moonshine module. There are 194 distinct characters of the monster (btw. see the background picture for the first page of the character table as given in the Atlas), but some of them give the same series reducing the number of series to 171. But, these are not all linearly independent. Mark Ronan writes :

“Conway recalls that, ‘As we went down into the 160s, I said let’s guess what number we will reach.’ They guessed it would be 163 – which has a very special property in number theory – and it was!
There is no explanation for this. We don’t know whether it is merely a coincidence, or something more. The special property of 163 in number theory has intruiging consequences, among which is the fact that
$e^{\pi \sqrt{163}} = 262537412640768743.99999999999925… $
is very close to being a whole number.”

10 Comments