RH and the Ishango bone

“She simply walked into the pond in Kensington Gardens Sunday morning and drowned herself in three feet of water.”

This is the opening sentence of The Ishango Bone, a novel by Paul Hastings Wilson. It (re)tells the story of a young mathematician at Cambridge, Amiele, who (dis)proves the Riemann Hypothesis at the age of 26, is denied the Fields medal, and commits suicide.

In his review of the novel on MathFiction, Alex Kasman casts he story in the 1970ties, based on the admission of the first female students to Trinity.

More likely, the correct time frame is in the first decade of this century. On page 121 Amiele meets Alain Connes, said to be a “past winner of the Crafoord Prize”, which Alain obtained in 2001. In fact, noncommutative geometry and its interaction with quantum physics plays a crucial role in her ‘proof’.

The Ishango artefact only appears in the Coda to the book. There are a number of theories on the nature and grouping of the scorings on the bone. In one column some people recognise the numbers 11, 13, 17 and 19 (the primes between 10 and 20).

In the book, Amiele remarks that the total number of lines scored on the bone (168) “happened to be the exact total of all the primes between 1 and 1000” and “if she multiplied 60, the total number of lines in one side column, by 168, the grand total of lines, she’d get 10080,…,not such a far guess from 9592, the actual total of primes between 1 and 100000.” (page 139-140)

The bone is believed to be more than 20000 years old, prime numbers were probably not understood until about 500 BC…

More interesting than these speculations on the nature of the Ishango bone is the description of the tools Amiele thinks to need to tackle the Riemann Hypothesis:

“These included algebraic geometry (which combines commutative algebra with the language and problems of geometry); noncommutative geometry (concerned with the geometric approach to associative algebras, in which multiplication is not commutative, that is, for which $x$ times $y$ does not always equal $y$ times $x$); quantum field theory on noncommutative spacetime, and mathematical aspects of quantum models of consciousness, to name a few.” (page 115)

The breakthrough came two years later when Amiele was giving a lecture on Grothendieck’s dessins d’enfant.

“Dessin d’enfant, or ‘child’s drawing’, which Amiele had discovered in Grothendieck’s work, is a type of graph drawing that seemed technically simple, but had a very strong impression on her, partly due to the familiar nature of the objects considered. (…) Amiele found subtle arithmetic invariants associated with these dessins, which were completely transformed, again, as soon as another stroke was added.” (page 116)

Amiele’s ‘disproof’ of RH is outlined on pages 122-124 of “The Ishango Bone” and is a mixture of recognisable concepts and ill-defined terms.

“Her final result proved that Riemann’s Hypothesis was false, a zero must fall to the east of Riemann’s critical line whenever the zeta function of point $q$ with momentum $p$ approached the aelotropic state-vector (this is a simplification, of course).” (page 123)

More details are given in a footnote:

“(…) a zero must fall to the east of Riemann’s critical line whenever:

\zeta(q_p) = \frac{( | \uparrow \rangle + \Psi) + \frac{1}{2}(1+cos(\Theta))\frac{\hbar}{\pi}}{\int(\Delta_p)} \]

(…) The intrepid are invited to try the equation for themselves.” (page 124)

Wilson’s “The Ishango Bone” was published in 2012. A fair number of topics covered (the Ishango bone, dessin d’enfant, Riemann hypothesis, quantum theory) also play a prominent role in the 2015 paper/story by Michel Planat “A moonshine dialogue in mathematical physics”, but this time with additional story-line: monstrous moonshine

Such a paper surely deserves a separate post.

Closing in on Gabriel’s topos?

‘Gabriel’s topos’ (see here) is the conjectural, but still elusive topos from which the validity of the Riemann hypothesis would follow.

It is the latest attempt in Alain Connes’ 20 year long quest to tackle the RH (before, he tried the tools of noncommutative geometry and later those offered by the field with one element).

For the last 5 years he hopes that topos theory might provide the missing ingredient. Together with Katia Consani he introduced and studied the geometry of the Arithmetic site, and later the geometry of the scaling site.

If you look at the points of these toposes you get horribly complicated ‘non-commutative’ spaces, such as the finite adele classes $\mathbb{Q}^*_+ \backslash \mathbb{A}^f_{\mathbb{Q}} / \widehat{\mathbb{Z}}^{\ast}$ (in case of the arithmetic site) and the full adele classes $\mathbb{Q}^*_+ \backslash \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^{\ast}$ (for the scaling site).

In Vienna, Connes gave a nice introduction to the arithmetic site in two lectures. The first part of the talk below also gives an historic overview of his work on the RH

The second lecture can be watched here.

However, not everyone is as optimistic about the topos-approach as he seems to be. Here’s an insightful answer on MathOverflow by Will Sawin to the question “What is precisely still missing in Connes’ approach to RH?”.

Other interesting MathOverflow threads related to the RH-approach via the field with one element are Approaches to Riemann hypothesis using methods outside number theory and Riemann hypothesis via absolute geometry.

About a month ago, from May 10th till 14th Alain Connes gave a series of lectures at Ohio State University with title “The Riemann-Roch strategy, quantizing the Scaling Site”.

The accompanying paper has now been arXived: The Riemann-Roch strategy, Complex lift of the Scaling Site (joint with K. Consani).

Especially interesting is section 2 “The geometry behind the zeros of $\zeta$” in which they explain how looking at the zeros locus inevitably leads to the space of adele classes and why one has to study this space with the tools from noncommutative geometry.

Perhaps further developments will be disclosed in a few weeks time when Connes is one of the speakers at Toposes in Como.

From the Da Vinci code to Habiro

The Fibonacci sequence reappears a bit later in Dan Brown’s book ‘The Da Vinci Code’ where it is used to login to the bank account of Jacques Sauniere at the fictitious Parisian branch of the Depository Bank of Zurich.

Last time we saw that the Hankel matrix of the Fibonacci series $F=(1,1,2,3,5,\dots)$ is invertible over $\mathbb{Z}$
H(F) = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \in SL_2(\mathbb{Z}) \]
and we can use the rule for the co-multiplication $\Delta$ on $\Re(\mathbb{Q})$, the algebra of rational linear recursive sequences, to determine $\Delta(F)$.

For a general integral linear recursive sequence the corresponding Hankel matrix is invertible over $\mathbb{Q}$, but rarely over $\mathbb{Z}$. So we need another approach to compute the co-multiplication on $\Re(\mathbb{Z})$.

Any integral sequence $a = (a_0,a_1,a_2,\dots)$ can be seen as defining a $\mathbb{Z}$-linear map $\lambda_a$ from the integral polynomial ring $\mathbb{Z}[x]$ to $\mathbb{Z}$ itself via the rule $\lambda_a(x^n) = a_n$.

If $a \in \Re(\mathbb{Z})$, then there is a monic polynomial with integral coefficients of a certain degree $n$

f(x) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + \dots + b_{n-1} x + b_n \]

such that for every integer $m$ we have that

a_{m+n} + b_1 a_{m+n-1} + b_2 a_{m+n-2} + \dots + b_{n-1} a_{m+1} + a_m = 0 \]

Alternatively, we can look at $a$ as defining a $\mathbb{Z}$-linear map $\lambda_a$ from the quotient ring $\mathbb{Z}[x]/(f(x))$ to $\mathbb{Z}$.

The multiplicative structure on $\mathbb{Z}[x]/(f(x))$ dualizes to a co-multiplication $\Delta_f$ on the set of all such linear maps $(\mathbb{Z}[x]/(f(x)))^{\ast}$ and we can compute $\Delta_f(a)$.

We see that the set of all integral linear recursive sequences can be identified with the direct limit
\Re(\mathbb{Z}) = \underset{\underset{f|g}{\rightarrow}}{lim}~(\frac{\mathbb{Z}[x]}{(f(x))})^{\ast} \]
(where the directed system is ordered via division of monic integral polynomials) and so is equipped with a co-multiplication $\Delta = \underset{\rightarrow}{lim}~\Delta_f$.

Btw. the ring structure on $\Re(\mathbb{Z}) \subset (\mathbb{Z}[x])^{\ast}$ comes from restricting to $\Re(\mathbb{Z})$ the dual structures of the co-ring structure on $\mathbb{Z}[x]$ given by
\Delta(x) = x \otimes x \quad \text{and} \quad \epsilon(x) = 1 \]

From this description it is clear that you need to know a hell of a lot number theory to describe this co-multiplication explicitly.

As most of us prefer to work with rings rather than co-rings it is a good idea to begin to study this co-multiplication $\Delta$ by looking at the dual ring structure of
\Re(\mathbb{Z})^{\ast} = \underset{\underset{ f | g}{\leftarrow}}{lim}~\frac{\mathbb{Z}[x]}{(f(x))} \]
This is the completion of $\mathbb{Z}[x]$ at the multiplicative set of all monic integral polynomials.

This is a horrible ring and very little is known about it. Some general remarks were proved by Kazuo Habiro in his paper Cyclotomic completions of polynomial rings.

In fact, Habiro got interested is a certain subring of $\Re(\mathbb{Z})^{\ast}$ which we now know as the Habiro ring and which seems to be a red herring is all stuff about the field with one element, $\mathbb{F}_1$ (more on this another time). Habiro’s ring is

\widehat{\mathbb{Z}[q]} = \underset{\underset{n|m}{\leftarrow}}{lim}~\frac{\mathbb{Z}[q]}{(q^n-1)} \]

and its elements are all formal power series of the form
a_0 + a_1 (q-1) + a_2 (q^2-1)(q-1) + \dots + a_n (q^n-1)(q^{n-1}-1) \dots (q-1) + \dots \]
with all coefficients $a_n \in \mathbb{Z}$.

Here’s a funny property of such series. If you evaluate them at $q \in \mathbb{C}$ these series are likely to diverge almost everywhere, but they do converge in all roots of unity!

Some people say that these functions are ‘leaking out of the roots of unity’.

If the ring $\Re(\mathbb{Z})^{\ast}$ is controlled by the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, then Habiro’s ring is controlled by the abelianzation $Gal(\overline{\mathbb{Q}}/\mathbb{Q})^{ab} \simeq \hat{\mathbb{Z}}^{\ast}$.

The Langlands program and non-commutative geometry

The Bulletin of the AMS just made this paper by Julia Mueller available online: “On the genesis of Robert P. Langlands’ conjectures and his letter to Andre Weil” (hat tip +ChandanDalawat and +DavidRoberts on Google+).

It recounts the story of the early years of Langlands and the first years of his mathematical career (1960-1966)leading up to his letter to Andre Weil in which he outlines his conjectures, which would become known as the Langlands program.

Langlands letter to Weil is available from the IAS.

The Langlands program is a vast net of conjectures. For example, it conjectures that there is a correspondence between

– $n$-dimensional representations of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, and

– specific data coming from an adelic quotient-space $GL_n(\mathbb{A}_{\mathbb{Q}})/GL_n(\mathbb{Q})$.

For $n=1$ this is essentially class field theory with the correspondence given by Artin’s reciprocity law.

Here we have on the one hand the characters of the abelianised absolute Galois group

Gal(\overline{\mathbb{Q}}/\mathbb{Q})^{ab} \simeq Gal(\mathbb{Q}(\pmb{\mu}_{\infty})/\mathbb{Q}) \simeq \widehat{\mathbb{Z}}^{\ast} \]

and on the other hand the connected components of the idele class space

GL_1(\mathbb{A}_{\mathbb{Q}})/GL_1(\mathbb{Q}) = \mathbb{A}_{\mathbb{Q}}^{\ast} / \mathbb{Q}^{\ast} = \mathbb{R}_+^{\ast} \times \widehat{\mathbb{Z}}^{\ast} \]

For $n=2$ it involves the study of Galois representations coming from elliptic curves. A gentle introduction to the general case is Mark Kisin’s paper What is … a Galois representation?.

One way to look at some of the quantum statistical systems studied via non-commutative geometry is that they try to understand the “bad” boundary of the Langlands space $GL_n(\mathbb{A}_{\mathbb{Q}})/GL_n(\mathbb{Q})$.

Here, the Bost-Connes system corresponds to the $n=1$ case, the Connes-Marcolli system to the $n=2$ case.

If $\mathbb{A}’_{\mathbb{Q}}$ is the subset of all adeles having almost all of its terms in $\widehat{\mathbb{Z}}_p^{\ast}$, then there is a well-defined map

\pi~:~\mathbb{A}’_{\mathbb{Q}}/\mathbb{Q}^{\ast} \rightarrow \mathbb{R}_+ \qquad (x_{\infty},x_2,x_2,\dots) \mapsto | x_{\infty} | \prod_p | x_p |_p \]

The inverse image of $\pi$ over $\mathbb{R}_+^{\ast}$ are exactly the idele classes $\mathbb{A}_{\mathbb{Q}}^{\ast}/\mathbb{Q}^{\ast}$, so we can view them as the nice locus of the horrible complicated quotient of adele-classes $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}^*$. And we can view the adele-classes as a ‘closure’ of the idele classes.

But, the fiber $\pi^{-1}(0)$ has horrible topological properties because $\mathbb{Q}^*$ acts ergodically on it due to the fact that $log(p)/log(q)$ is irrational for distinct primes $p$ and $q$.

This is why it is better to view the adele-classes not as an ordinary space (one with bad topological properties), but rather as a ‘non-commutative’ space because it is controlled by a non-commutative algebra, the Bost-Connes algebra.

For $n=2$ there’s a similar story with a ‘bad’ quotient $M_2(\mathbb{A}_{\mathbb{Q}})/GL_2(\mathbb{Q})$, being the closure of an ‘open’ nice piece which is the Langlands quotient space $GL_2(\mathbb{A}_{\mathbb{Q}})/GL_2(\mathbb{Q})$.

From the Da Vinci code to Galois

In The Da Vinci Code, Dan Brown feels he need to bring in a French cryptologist, Sophie Neveu, to explain the mystery behind this series of numbers:

13 – 3 – 2 – 21 – 1 – 1 – 8 – 5

The Fibonacci sequence, 1-1-2-3-5-8-13-21-34-55-89-144-… is such that any number in it is the sum of the two previous numbers.

It is the most famous of all integral linear recursive sequences, that is, a sequence of integers

a = (a_0,a_1,a_2,a_3,\dots) \]

such that there is a monic polynomial with integral coefficients of a certain degree $n$

f(x) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + \dots + b_{n-1} x + b_n \]

such that for every integer $m$ we have that

a_{m+n} + b_1 a_{m+n-1} + b_2 a_{m+n-2} + \dots + b_{n-1} a_{m+1} + a_m = 0 \]

For the Fibonacci series $F=(F_0,F_1,F_2,\dots)$, this polynomial can be taken to be $x^2-x-1$ because
F_{m+2} = F_{m+1}+F_m \]

The set of all integral linear recursive sequences, let’s call it $\Re(\mathbb{Z})$, is a beautiful object of great complexity.

For starters, it is a ring. That is, we can add and multiply such sequences. If

a=(a_0,a_1,a_2,\dots),~\quad \text{and}~\quad a’=(a’_0,a’_1,a’_2,\dots)~\quad \in \Re(\mathbb{Z}) \]

then the sequences

a+a’ = (a_0+a’_0,a_1+a’_1,a_2+a’_2,\dots) \quad \text{and} \quad a \times a’ = (a_0.a’_0,a_1.a’_1,a_2.a’_2,\dots) \]

are again linear recursive. The zero and unit in this ring are the constant sequences $0=(0,0,\dots)$ and $1=(1,1,\dots)$.

So far, nothing terribly difficult or exciting.

It follows that $\Re(\mathbb{Z})$ has a co-unit, that is, a ring morphism

\epsilon~:~\Re(\mathbb{Z}) \rightarrow \mathbb{Z} \]

sending a sequence $a = (a_0,a_1,\dots)$ to its first entry $a_0$.

It’s a bit more difficult to see that $\Re(\mathbb{Z})$ also has a co-multiplication

\Delta~:~\Re(\mathbb{Z}) \rightarrow \Re(\mathbb{Z}) \otimes_{\mathbb{Z}} \Re(\mathbb{Z}) \]
with properties dual to those of usual multiplication.

To describe this co-multiplication in general will have to await another post. For now, we will describe it on the easier ring $\Re(\mathbb{Q})$ of all rational linear recursive sequences.

For such a sequence $q = (q_0,q_1,q_2,\dots) \in \Re(\mathbb{Q})$ we consider its Hankel matrix. From the sequence $q$ we can form symmetric $k \times k$ matrices such that the opposite $i+1$-th diagonal consists of entries all equal to $q_i$
H_k(q) = \begin{bmatrix} q_0 & q_1 & q_2 & \dots & q_{k-1} \\
q_1 & q_2 & & & q_k \\
q_2 & & & & q_{k+1} \\
\vdots & & & & \vdots \\
q_{k-1} & q_k & q_{k+1} & \dots & q_{2k-2} \end{bmatrix} \]
The Hankel matrix of $q$, $H(q)$ is $H_k(q)$ where $k$ is maximal such that $det~H_k(q) \not= 0$, that is, $H_k(q) \in GL_k(\mathbb{Q})$.

Let $S(q)=(s_{ij})$ be the inverse of $H(q)$, then the co-multiplication map
\Delta~:~\Re(\mathbb{Q}) \rightarrow \Re(\mathbb{Q}) \otimes \Re(\mathbb{Q}) \]
sends the sequence $q = (q_0,q_1,\dots)$ to
\Delta(q) = \sum_{i,j=0}^{k-1} s_{ij} (D^i q) \otimes (D^j q) \]
where $D$ is the shift operator on sequence
D(a_0,a_1,a_2,\dots) = (a_1,a_2,\dots) \]

If $a \in \Re(\mathbb{Z})$ is such that $H(a) \in GL_k(\mathbb{Z})$ then the same formula gives $\Delta(a)$ in $\Re(\mathbb{Z})$.

For the Fibonacci sequences $F$ the Hankel matrix is
H(F) = \begin{bmatrix} 1 & 1 \\ 1& 2 \end{bmatrix} \in GL_2(\mathbb{Z}) \quad \text{with inverse} \quad S(F) = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \]
and therefore
\Delta(F) = 2 F \otimes ~F – DF \otimes F – F \otimes DF + DF \otimes DF \]
There’s a lot of number theoretic and Galois-information encoded into the co-multiplication on $\Re(\mathbb{Q})$.

To see this we will describe the co-multiplication on $\Re(\overline{\mathbb{Q}})$ where $\overline{\mathbb{Q}}$ is the field of all algebraic numbers. One can show that

\Re(\overline{\mathbb{Q}}) \simeq (\overline{\mathbb{Q}}[ \overline{\mathbb{Q}}_{\times}^{\ast}] \otimes \overline{\mathbb{Q}}[d]) \oplus \sum_{i=0}^{\infty} \overline{\mathbb{Q}} S_i \]

Here, $\overline{\mathbb{Q}}[ \overline{\mathbb{Q}}_{\times}^{\ast}]$ is the group-algebra of the multiplicative group of non-zero elements $x \in \overline{\mathbb{Q}}^{\ast}_{\times}$ and each $x$, which corresponds to the geometric sequence $x=(1,x,x^2,x^3,\dots)$, is a group-like element
\Delta(x) = x \otimes x \quad \text{and} \quad \epsilon(x) = 1 \]

$\overline{\mathbb{Q}}[d]$ is the universal Lie algebra of the $1$-dimensional Lie algebra on the primitive element $d = (0,1,2,3,\dots)$, that is
\Delta(d) = d \otimes 1 + 1 \otimes d \quad \text{and} \quad \epsilon(d) = 0 \]

Finally, the co-algebra maps on the elements $S_i$ are given by
\Delta(S_i) = \sum_{j=0}^i S_j \otimes S_{i-j} \quad \text{and} \quad \epsilon(S_i) = \delta_{0i} \]

That is, the co-multiplication on $\Re(\overline{\mathbb{Q}})$ is completely known. To deduce from it the co-multiplication on $\Re(\mathbb{Q})$ we have to consider the invariants under the action of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ as
\Re(\overline{\mathbb{Q}})^{Gal(\overline{\mathbb{Q}}/\mathbb{Q})} \simeq \Re(\mathbb{Q}) \]

Unlike the Fibonacci sequence, not every integral linear recursive sequence has an Hankel matrix with determinant $\pm 1$, so to determine the co-multiplication on $\Re(\mathbb{Z})$ is even a lot harder, as we will see another time.

Reference: Richard G. Larson, Earl J. Taft, ‘The algebraic structure of linearly recursive sequences under Hadamard product’