Skip to content →

Category: featured

Modular quilts and cuboid tree diagrams

Conjugacy classes of finite index subgroups of the modular group $\Gamma = PSL_2(\mathbb{Z}) $ are determined by a combinatorial gadget : a modular quilt. By this we mean a finite connected graph drawn on a Riemann surface such that its vertices are either black or white. Moreover, every edge in the graph connects a black to a white vertex and the valency (that is, the number of edges incodent to a vertex) of a black vertex is either 1 or 2, that of a white vertex is either 1 or 3. Finally, for every white vertex of valency 3, there is a prescribed cyclic order on the edges incident to it.

On the left a modular quilt consisting of 18 numbered edges (some vertices and edges re-appear) which gives a honeycomb tiling on a torus. All white vertices have valency 3 and the order of the edges is given by walking around a point in counterclockwise direction. For example, the order of the edges at the top left vertex (which re-appears at the middle right vertex) can be represented by the 3-cycle (6,11,14), that around the central vertex gives the 3-cycle (2,7,16).

4 Comments

The Mathieu groupoid (1)

Conway’s puzzle M(13) is a variation on the 15-puzzle played with the 13 points in the projective plane $\mathbb{P}^2(\mathbb{F}_3) $. The desired position is given on the left where all the counters are placed at at the points having that label (the point corresponding to the hole in the drawing has label 0). A typical move consists in choosing a line in the plane going through the point where the hole is, choose one of the three remaining points on this line and interchange the counter on it for the hole while at the same time interchanging the counters on the other two points. In the drawing on the left, lines correspond to the little-strokes on the circle and edges describe which points lie on which lines. For example, if we want to move counter 5 to the hole we notice that both of them lie on the line represented by the stroke just to the right of the hole and this line contains also the two points with counters 1 and 11, so we have to replace these two counters too in making a move. Today we will describe the groupoid corresponding to this slide-puzzle so if you want to read on, it is best to play a bit with Sebastian Egner’s M(13) Java Applet to see the puzzle in action (and to use it to verify the claims made below). Clicking on a counter performs the move taking the counter to the hole.

2 Comments

The 15-puzzle groupoid (2)

In the 15-puzzle groupoid 1 we have seen that the legal positions of the classical 15-puzzle are the objects of a category in which every morphism is an isomorphism (a groupoid ). Today, we will show that there are exactly 10461394944000 objects (legal positions) in this groupoid. The crucial fact is that positions with the hole in a fixed place can be identified with the elements of the alternating group $A_{15} $, a fact first proved by William Edward Story in 1879 in a note published in the American Journal of Mathematics.

Recall from last time that the positions reachable from the initial position can be encoded as $\boxed{\tau} $ where $\tau $ is the permutation on 16 elements (the 15 numbered squares and 16 for the hole) such that $\tau(i) $ tells what number in the position lies on square $i $ of the initial position. The set of all reachable positions are the objects of our category. A morphism $\boxed{\tau} \rightarrow \boxed{\sigma} $ is a legal sequence of slide-moves starting from position $\boxed{\tau} $ and ending at position $\boxed{\sigma} $. That is,

$\boxed{\sigma} = (16,i_k)(16,i_{k-1}) \cdots (16,i_2)(16,i_1) \boxed{\tau} $

Leave a Comment

Hexagonal Moonshine (1)

Over at the Arcadian Functor, Kea is continuing her series of blog posts on M-theory (the M is supposed to mean either Monad or Motif). A recurrent motif in them is the hexagon and now I notice hexagons popping up everywhere. I will explain some of these observations here in detail, hoping that someone, more in tune with recent technology, may have a use for them.

The three string braid group $B_3 $ is expected to play a crucial role in understanding monstrous moonshine so we should know more about it, for example about its finite dimensional representations. Now, _M geometry_ is pretty good at classifying finite dimensional representations provided the algebra is “smooth” which imples that for every natural number n the variety $\mathbf{rep}_n~A $ of n-dimensional representations of A is a manifold. Unfortunately, the group algebra $A=\mathbb{C} B_3 $ of the three string braid group is singular as we will see in a moment and the hunt for singularities in low dimensional representation varieties will reveal hexagons.

One Comment

The 15-puzzle groupoid (1)

Before we go deeper into Conway’s M(13) puzzle, let us consider a more commonly known sliding puzzle: the 15-puzzle. A heated discussion went on a couple of years ago at sci-physics-research, starting with this message. Lubos Motl argued that group-theory is sufficient to analyze the problem and that there is no reason to resort to groupoids (‘The human(oids) who like groupoids…’ and other goodies, in pre-blog but vintage Motl-speak) whereas ‘Jason’ defended his viewpoint that a groupoid is the natural symmetry for this puzzle.

I’m mostly with Lubos on this. All relevant calculations are done in the symmetric group $S_{16} $ and (easy) grouptheoretic results such as the distinction between even and odd permutations or the generation of the alternating groups really crack the puzzle. At the same time, if one wants to present this example in class, one has to be pretty careful to avoid confusion between permutations encoding positions and those corresponding to slide-moves. In making such a careful analysis, one is bound to come up with a structure which isn’t a group, but is precisely what some people prefer to call a groupoid (if not a 2-group…).

One Comment

Conway’s puzzle M(13)

Recently, I’ve been playing with the idea of writing a book for the general public. Its title is still unclear to me (though an idea might be “The disposable science”, better suggestions are of course wellcome) but I’ve fixed the subtitle as “Mathematics’ puzzling fall from grace”. The book’s concept is simple : I would consider the mathematical puzzles creating an hype over the last three centuries : the 14-15 puzzle for the 19th century, Rubik’s cube for the 20th century and, of course, Sudoku for the present century.

For each puzzle, I would describe its origin, the mathematics involved and how it can be used to solve the puzzle and, finally, what the differing quality of these puzzles tells us about mathematics’ changing standing in society over the period. Needless to say, the subtitle already gives away my point of view. The final part of the book would then be more optimistic. What kind of puzzles should we promote for mathematical thinking to have a fighting chance to survive in the near future?

Leave a Comment