Skip to content →

Category: featured

Galois and the Brauer group

Last time we have seen that in order to classify all
non-commutative $l$-points one needs to control the finite
dimensional simple algebras having as their center a finite
dimensional field-extension of $l$. We have seen that the equivalence
classes of simple algebras with the same center $L$ form an Abelian
group, the
Brauer group. The calculation of Brauer groups
is best done using
Galois-cohomology. As an aside :
Evariste Galois was one of the more tragic figures in the history of
mathematics, he died at the age of 20 as a result of a duel. There is
a whole site the Evariste Galois archive dedicated to his
work.

But let us return to a simple algebra $T$ over the
field $L$ which we have seen to be of the form $M(k,S)$, full
matrices over a division algebra $S$. We know that the dimension of
$S$ over $L$ is a square, say $n^2$, and it can be shown that all
maximal commutative subfields of $S$ have dimension n over $L$.
In this way one can view a simple algebra as a bag containing all
sorts of degree n extensions of its center. All these maximal
subfields are also splitting fields for $S$, meaning that
if you tensor $S$ with one of them, say $M$, one obtains full nxn
matrices $M(n,M)$. Among this collection there is at least one
separable field but for a long time it was an open question
whether the collection of all maximal commutative subfields also
contains a Galois-extension of $L$. If this is the case, then
one could describe the division algebra $S$ as a crossed
product
. It was known for some time that there is always a simple
algebra $S’$ equivalent to $S$ which is a crossed product (usually
corresponding to a different number n’), that is, all elements of
the Brauer group can be represented by crossed products. It came as a
surprise when S.A. Amitsur in 1972 came up with examples of
non-crossed product division algebras, that is, division algebras $D$
such that none of its maximal commutative subfields is a Galois
extension of the center. His examples were generic
division algebras
$D(n)$. To define $D(n)$ take two generic
nxn matrices
, that is, nxn matrices A and B such that all its
entries are algebraically independent over $L$ and consider the
$L$-subalgebra generated by A and B in the full nxn matrixring over the
field $F$ generated by all entries of A and B. Somewhat surprisingly,
one can show that this subalgebra is a domain and inverting all its
central elements (which, again, is somewhat of a surprise that
there are lots of them apart from elements of $L$, the so called
central polynomials) one obtains the division algebra $D(n)$ with
center $F(n)$ which has trancendence degree n^2 1 over $L$. By the
way, it is still unknown (apart from some low n cases) whether $F(n)$
is purely trancendental over $L$. Now, utilising the generic
nature of $D(n)$, Amitsur was able to prove that when $L=Q$, the
field of rational numbers, $D(n)$ cannot be a crossed product unless
$n=2^s p_1…p_k$ with the p_i prime numbers and s at most 2. So, for
example $D(8)$ is not a crossed product.

One can then
ask whether any division algebra $S$, of dimension n^2 over $L$, is a
crossed whenever n is squarefree. Even teh simplest case, when n is a
prime number is not known unless p=2 or 3. This shows how little we do
know about finite dimensional division algebras : nobody knows
whether a division algebra of dimension 25 contains a maximal
cyclic subfield (the main problem in deciding this type of
problems is that we know so few methods to construct division
algebras; either they are constructed quite explicitly as a crossed
product or otherwise they are constructed by some generic construction
but then it is very hard to make explicit calculations with
them).

Leave a Comment

connected component coalgebra


Never thought that I would ever consider Galois descent of semigroup
coalgebras
but in preparing for my talks for the master-class it
came about naturally. Let A be a formally smooth algebra
(sometimes called a quasi-free algebra, I prefer the terminology
noncommutative curve) over an arbitrary base-field k. What, if
anything, can be said about the connected components of the affine
k-schemes rep(n,A) of n-dimensional representations
of A? If k is algebraically closed, then one can put a
commutative semigroup structure on the connected components induced by
the sum map

rep(n,A) x rep(m,A) -> rep(n + m,A)   :  (M,N)
-> M + N

as introduced and studied by Kent
Morrison
a long while ago. So what would be a natural substitute for
this if k is arbitrary? Well, define pi(n) to be the
maximal unramified sub k-algebra of k(rep(n,A)),
the coordinate ring of rep(n,A), then corresponding to the
sum-map above is a map

pi(n + m) -> pi(n) \\otimes
pi(m)

and these maps define on the graded
space

Pi(A) = pi(0) + pi(1) + pi(2) + ...

the
structure of a graded commutative k-coalgebra with
comultiplication

pi(n) -> sum(a + b=n) pi(a) \\otimes
pi(b)

The relevance of Pi(A) is that if we consider it
over the algebraic closure K of k we get the semigroup
coalgebra

K G  with  g -> sum(h.h\' = g) h \\otimes
h\'

where G is Morrison\’s connected component
semigroup. That is, Pi(A) is a k-form of this semigroup
coalgebra. Perhaps it is a good project for one of the students to work
this out in detail (and correct possible mistakes I made) and give some
concrete examples for formally smooth algebras A. If you know of
a reference on this, please let me know.

Leave a Comment

Brauer’s forgotten group

Non-commutative geometry seems pretty trivial compared
to commutative geometry : there are just two types of manifolds,
points and curves. However, nobody knows how to start classifying
these non-commutative curves. I do have a conjecture that any
non-commutative curve can (up to non-commutative birationality) be
constructed from hereditary orders over commutative curves
by universal methods but I’ll try to explain that another
time.

On the other hand, non-commutative points
have been classified (at least in principle) for at least 50
years over an arbitrary basefield $l$. non-commutative
$l$-points $P$ is an $l$-algebra such that its double
$d(P) = P \\otimes P^o$ ( where $P^o$ is the opposite algebra,
that is with the reverse multiplication) has an element$c=\\sum_i
a_i \\otimes b_i with \\sum_i a_ib_i = 1 (in $P$)$ and such that for
all p in $P$ we have that $(1 \\otimes a).c = (a \\otimes 1).c$ For
people of my generation, c is called a separability idempotent
and $P$ itself is called a separable $l$-algebra.
Examples of $l$-points include direct sums of full matrixrings
(of varying sizes) over $l$ or group-algebras $lG$ for $G$ a
finite group of n elements where n is invertible in $l$. Hence, in
particular, the group-algebra $lG$ of a p-group $G$ over a field $l$
of characteristic p is a non-commutative singular point and
modular representation theory (a theory build almost single
handed by
Richard Brauer) can be viewed as
the methods needed to resolve this singularity. Brauer’s name is
still mentioned a lot in modular representation theory, but another
of his inventions, the Brauer group, seems to be hardly known
among youngsters.

Still, it is a crucial tool
in classifying all non-commutative $l$-points. The algebraic
structure of an $l$-point $P$ is as follows : $$P = S_1 + S_2 + …
+ S_k$$ where each S_i is a simple algebra (that is, it
contains no proper twosided ideals), finite dimensional over
its center $l_i$ which is in its turn a finite dimensional
separable field extension of $l$. So we need to know all
simple algebras $S$, finite dimensional over their center $L$ which
is any finite dimensional separable field extension of $l$. The
algebraic structure of such an $S$ is of the form$$S = M(a,D)$$ that
is, full axa matrices with entries in $D$ where $D$ is a
skew-field (or some say, a division algebra) with
center $L$. The $L$-dimension of such a $D$ is always a square,
say b^2, so that the $L$-dimension of $S$ itself is also a square
a^2b^2. There are usually plenty such division algebras, the simplest
examples being quaternion algebras. Let p and q be two
non-zero elements of $L$ such that the conic $C : X^2-pY^2-bZ^2 =
0$ has no $L$-points in the projective $L$-plane, then the
algebra$D=(p,q)_2 = L.1 + L.i + L.j + L.ij where i^2=p, j^2=q and
ji=-ij$ is a four-dimensional skew-field over $L$. Brauer’s idea to
classify all simple $L$-algebras was to associate a group to them,
the Brauer group, $Br(L)$. Its elements are equivalence
classes
of simple algebras where two simple algebras $S$ and
$S’$ are equivalent if and only if$M(m,S) = M(n,S’)$ for some sizes
m and n. Multiplication on these classes in induced by
the tensor-product (over $L$) as $S_1 \\otimes S_2$ is again a simple
$L$-algebra if $S_1$ and $S_2$ are. The Brauer group $Br(L)$ is an
Abelian torsion group and if we know its structure we know all
$L$-simple algebras so if we know $Br(L)$ for all finite dimensional
separable extensions $L$ of $l$ we have a full classification of
all non-commutative $l$-points.

Here are some examples
of Brauer groups : if $L$ is algebraically closed (or separable
closed), then $Br(L)=0$ so in particular, if $l$ is algebraically
closed, then the only non-commutative points are sums of matrix rings.
If $R$ is the field of real numbers, then $Br(R) = Z/2Z$ generated by
the Hamilton quaternion algebra (-1,-1)_2. If $L$ is a complete
valued number field, then $Br(L)=Q/Z$ which allows to describe also
the Brauer group of a number field in terms of its places. Brauer groups
of function fields of (commutative) varieties over an algebraically
closed basefield is usually huge but there is one noteworthy
exception $Tsen’s theorem$ which states that $Br(L)=0$ if $L$ is the
function field of a curve C over an algebraically closed field. In 1982
Merkurjev and Suslin proved a marvelous result about generators of
$Br(L)$ whenever $L$ is large enough to contain all primitive roots
of unity. They showed, in present day lingo, that $Br(L)$
is generated by non-commutative points of the quantum-planes
over $L$ at roots of unity. That is, it is generated by cyclic
algebras
of the form$(p,q)_n = L
\\< X,Y>/(X^n=p,Y^n=q,YX=zXY)$where z is an n-th primitive root of
unity. Next time we will recall some basic results on the relation
between the Brauer group and Galois cohomology.

2 Comments

COLgo

COL is a map-coloring game invented by Colin Vout.
Two players Left (bLack) and Right (white) take turns in coloring the
map subject to the rule that no two neighboring regions may be colored
the same. The last player to be able to move wins the game. For my talk
on combinatorial game theory in two weeks, I choose for a simplified
version of COL, namely COLgo which is played with go-stoned on a
(partial) go-board. Each spot has 4 neighbors (North, East, South and
West). For example, the picture on the left is a legal COLgo-position on
a 5×5 board. COL is a simple game to illustrate some of the key features
of game theory. In sharp contrast to other games, one has a general
result on the possible values of a COL-position : each position has
value $z$ or $z+\\bigstar$ where $z$ is a (Conway)-number (that is, a
dyadic integer) and where $\\bigstar$ is the fuzzy game {0|0}. In
the talk I will give a proof of this result (there are not so many
results in combinatorial game theory one can prove from scratch in 50
minutes but this is one of them). Of course, to illustrate the result I
had to find positions which have counter-intuitive values such as 1/2.
The picture on the left is an example of such a position on a 5×5 board
but surely one must be able to find 1/2-positions on a 4×4 board
(perhaps even on a 3×3?). If you have an example, please tell me.

On a slightly different matter : I used the psgo.sty package in LaTeX to print the (partial)
go-boards and positions. If I ever write out the notes I’ll post them
here but they will be in Dutch.

Leave a Comment

NOG master class update


Yesterday I made a preliminary program for the first two months
of the masterclass non-commutative geometry. It is likely that
the program will still undergo changes as at the moment I included only
the mini-courses given by Bernhard
Keller
and Markus Reineke but several other people have
already agreed to come and give a talk. For example, Jacques Alev (Reims),
Tom Lenagan (Edinburgh),
Shahn Majid (London),
Giovanna Carnovale (Padua) among others. And in
may, Fred assures me, Maxim Kontsevich will give a couple of talks.

As for the contents of the two courses I will be
teaching I changed my mind slightly. The course non-commutative
geometry
I teach jointly with Markus Reineke and making the program
I realized that I have to teach the full 22 hours before he will start
his mini-course in the week of March 15-19 to explain the few
things
he needs, like :

To derive all the
counting of points formulas, I only need from your course:

the definition of formally smooth algebras basic properties, like
being
hereditary
– the definition of the component
semigroup
– the fact that dim Hom-dim Ext is constant along
components. This I need
even over finite fields $F_q$, but I
went through your proof in “One quiver”,
and it works. The
key fact is that even over $F_q$, the infinitesimal lifting
property implies smoothness in the sense Dimension of variety =
dimension of
(schematic) tangent space in any $F_q$-valued
point. But I think it’s fine for
the students if you do all
this over C, and I’ll only sketch the (few)
modifications for
algebras over $F_q$.

So my plan is to do all of
this first and leave the (to me) interesting problem of trying to
classify formally smooth algebras birationally to the second
course projects in non-commutative geometry which fits the title
as a lot of things still need to be done. The previous idea to give in
that course applications of non-commutative orders to the resolution of
singularities (in particular of quotient singularities) as very roughly
explained in my three talks on non-commutative geometry@n I now
propose to relegate to the friday afternoon seminar. I’ll be
happy to give more explanations on all this (in particular more
background on central simple algebras and the theory of (maximal)
orders) if other people work through the main part of the paper in the
seminar. In fact, all (other) suggestions for seminar-talks are welcome
: just tell me in person or post a comment to this post.

Leave a Comment

NOG master class


Yesterday I made reservations for lecture rooms to run the
master class on non-commutative geometry sponsored by the ESF-NOG project. We have a lecture room on
monday- and wednesday afternoon and friday the whole day which should be
enough. I will run two courses in the program : non-commutative
geometry
and projects in non-commutative geometry both 30
hours. I hope that Raf Bocklandt will do most of the work on the
Geometric invariant theory course so that my contribution to it
can be minimal. Here are the first ideas of topics I want to cover in my
courses. As always, all suggestions are wellcome (just add a
comment).

non-commutative geometry : As
I am running this course jointly with Markus Reineke and as Markus will give a
mini-course on his work on non-commutative Hilbert schemes, I will explain
the theory of formally smooth algebras. I will cover most of the
paper by Joachim Cuntz and Daniel Quillen “Algebra extensions and
nonsingularity”, Journal of AMS, v.8, no. 2, 1995, 251?289. Further,
I’ll do the first section of the paper by Alexander Rosenberg and Maxim Kontsevich,
Noncommutative smooth spaces“. Then, I will
explain some of my own work including the “One
quiver to rule them all
” paper and my recent attempts to classify
all formally smooth algebras up to non-commutative birational
equivalence. When dealing with the last topic I will explain some of Aidan Schofield‘s paper
Birational classification of moduli spaces of representations of quivers“.

projects in
non-commutative geometry
: This is one of the two courses (the other
being “projects in non-commutative algebra” run by Fred Van Oystaeyen)
for which the students have to write a paper so I will take as the topic
of my talks the application of non-commutative geometry (in particular
the theory of orders in central simple algebras) to the resolution of
commutative singularities and ask the students to carry out the detailed
analysis for one of the following important classes of examples :
quantum groups at roots of unity, deformed preprojective algebras or
symplectic reflexion algebras. I will explain in much more detail three talks I gave on the subject last fall in
Luminy. But I will begin with more background material on central simple
algebras and orders.

Leave a Comment

antwerp sprouts

The
game of sprouts is a two-person game invented by John Conway and Michael Paterson in 1967 (for some
historical comments visit the encyclopedia). You just need pen and paper to
play it. Here are the rules : Two players, Left and Right, alternate
moves until no more moves are possible. In the normal game, the last
person to move is the winner. In misere play, the last person to move is
the loser. The starting position is some number of small circles called
“spots”. A move consists of drawing a new spot g and then drawing two
lines, in the loose sense, each terminating at one end at spot g and at
the other end at some other spot. (The two lines can go to different
spots or the same spot, subject to the following conditions.) The lines
drawn cannot touch or cross any line or spot along the way. Also, no
more than three lines can terminate at any spot. A spot with three lines
attached is said to be “dead”, since it cannot facilitate any further
action.

You can play sprouts online using this Java applet.
There is also an ongoing discussion about sprouts on the geometry math forum. Probably the most complete
information can be found at the world game
of sprouts association
. The analysis of the game involves some nice
topology (the Euler number) and as the options for Left and Right are
the same at each position it is an impartial game and the outcome
depends on counting arguments. There is also a (joke) variation on the
game called Brussels sprouts (although some people seem to miss the point
entirely).

Some years ago I invented some variations
on sprouts making it into a partizan game (that is, at a given
position, Left and Right have different legal moves). Here are the rules
:

Cold Antwerp Sprouts : We start with n White
dots. Left is allowed to connect two White dots or a White and bLue dot
or two bLue dots and must draw an additional Red dot on the connecting
line. Right is allowed to connect two White dots, a Red and a White dot
or two Red dots and must draw an additional bLue dot on the connecting
line.

Hot Antwerp Sprouts : We start with n
White dots. Left is allowed to connect two White dots or a White and
bLue dot or two bLue dots and must draw an additional bLue dot on the
connecting line. Right is allowed to connect two White dots, a Red and a
White dot or two Red dots and must draw an additional Red dot on the
connecting line.

Although the rules look pretty
similar, the analysis of these two games in entirely different. On
february 11th I’ll give a talk on this as an example in
Combinatorial Game Theory. I will show that Cold Antwerp Sprouts
is very similar to the game of COL, whereas Hot Antwerp Sprouts resembles SNORT.

Leave a Comment