Skip to content →

Category: art

Designer Maths

This fall, I’ll be teaching ‘Mathematics for Designers’ to first year students in Architecture.

The past few weeks I’ve been looking around for topics to be included in such as course, relevant to architects/artists (not necessarily to engineers/mathematicians).

One of the best texts I’ve found on this (perhaps in need of a slight update) is the 1986-paper by Jay Kappraff: A course in the mathematics of design. He suggests the following list of topics:

  • graph theory
  • polyhedra
  • tilings of the plane
  • three dimensional packings
  • proportion and the golden mean
  • transformations
  • symmetry
  • vectors

We all know that an awful lot of math and computation is needed to design a building, but today all of the hardcore use of vectors, equations and transformations is conveniently hidden from the architect’s view by digital design platforms and CAD-programs.

These computational tools offer new creative possibilities, as illustrated in the beautiful book The new mathematics of architecture by Jane Burry and Mark Burry, also available in Dutch with a cover picture of the Möbius bridge in Bristol



In this book, about 50 recent architectural projects are clustered around these topics:

  • mathematical surfaces and seriality
  • chaos, complexity, emergence
  • packings and tilings
  • optimization
  • topology
  • datascapes and multi-dimensionality

In the description of the projects, cool math-topics are (sadly only) touched, including

It will take me some time to find a balance between these two approaches. Common themes clearly are

  • Shapes : what is possible/impossible in 2D and 3D, and how can mathematics help us to find new exciting shapes (think minimal and Seifert surfaces, knot complements, etc.)
  • Symmetry : what is possible/impossible in 2D and 3D, and what can mathematics tell us about new symmetries (think emerging symmetries from aperiodic tilings and quasicrystals)

Over the coming months I’ll be writing the course notes and may post about it here. For this reason I’ve included a new category DesignerMaths.

If you have suggestions, please let me know.

2 Comments

Escher’s stairs

Stairways feature prominently in several drawings by Maurits Cornelis (“Mauk”) Escher, for example in this lithograph print Relativity from 1953.



Relativity (M. C. Escher) – Photo Credit

From its Wikipedia page:

In the world of ‘Relativity’, there are three sources of gravity, each being orthogonal to the two others.
Each inhabitant lives in one of the gravity wells, where normal physical laws apply.
There are sixteen characters, spread between each gravity source, six in one and five each in the other two.
The apparent confusion of the lithograph print comes from the fact that the three gravity sources are depicted in the same space.
The structure has seven stairways, and each stairway can be used by people who belong to two different gravity sources.

Escher’s inspiration for “Relativity” (h/t Gerard Westendorp on Twitter) were his recollections of the staircases in his old secondary school in Arnhem, the Lorentz HBS.
The name comes from the Dutch physicist and Nobel prize winner Hendrik Antoon Lorentz who attended from 1866 to 1869, the “Hogere Burger School” in Arnhem, then at a different location (Willemsplein).



Stairways Lorentz HBS in Arnhem – Photo Credit

Between 1912 and 1918 Mauk Escher attended the Arnhem HBS, located in the Schoolstraat and build in 1904-05 by the architect Gerrit Versteeg. The school building is constructed around a monumental central stairway.



Arnhem HBS – G. Versteeg 1904-05 – Photo Credit



Plan HBS-Arnhem by G. Versteeg – Photo Credit

If you flip the picture below in the vertical direction, the two side-stairways become accessible to figures living in an opposite gravitation field.



Central staircase HBS Arnhem – Photo Credit

There’s an excellent post on the Arnhem-years of Mauk Escher by Pieter van der Kuil. Unfortunately (for most of you) in Dutch, but perhaps Google translate can do its magic here.

Leave a Comment

Lockdown reading : Bacon

In this series I’ll mention some books I found entertaining, stimulating or comforting during these Corona times. Read them at your own risk.



In an attempt to raise the level of this series, I tried to get through the latest hype in high-brow literature: The Death of Francis Bacon by Max Porter.

It’s an extremely thin book, just 43 pages long, hardly a novella. My Kindle said I should be able to read it in less than an hour.

Boy, did that turn out differently. I’m a week into this book, and still struggling.



Chapter 4(?) :Three Studies for a Self-Portrait, (Francis Bacon, 1979)

A few minutes into the book I realised I didn’t know the first thing about Bacon’s death, and that the book was not going to offer me that setting. Fortunately, there’s always Wikipedia:

While holidaying in Madrid in 1992, Bacon was admitted to the Handmaids of Maria, a private clinic, where he was cared for by Sister Mercedes. His chronic asthma, which had plagued him all his life, had developed into a more severe respiratory condition and he could not talk or breathe very well.

Fine, at least I now knew where “Darling mama, sister oh Dios, Mercedes” (p.7) came from, and why every chapter ended with “Intenta descansar” (try to rest).

While I’m somewhat familiar with Bacon’s paintings, I did know too little about his life to follow the clues sprinkled throughout the book. Fortunately, there’s this excellent documentary about his life: “Francis Bacon: A Brush with Violence” (2017)

Okay, now I could place many of the characters visiting Bacon, either physically sitting on the chair he offers at the start of each chapter (“Take a seat why don’t you”), or merely as memories playing around in his head. It’s a bit unclear to me.

Then, there’s the structure of the book. Each of the seven chapters has as title the dimensions of a painting:

  • One: Oil on canvas, 60 x 46 1/2 in.
  • Two: Oil on canvas, 65 1/2 x 56 in.
  • Three: Oil on canvas, 65 x 56 in.
  • Four: Oil on canvas, 14 x 12 in.
  • Five: Oil on canvas, 78 x 58 in.
  • Six: Oil on canvas, 37 x 29 in.
  • Seven: Oil on canvas, 77 x 52 in.

Being the person I am, I hoped that if I could track down the corresponding Bacon paintings, I might begin to understand the corresponding chapter. Fortunately, Wikipedia provides a List of paintings by Francis Bacon.

Many of Bacon’s paintings are triptychs, and the dimensions refer to those of a single panel. So, even if I found the correct triptych I still had to figure out which of the three panels corresponds to the chapter.

And often, there are several possible candidates. The 14 x 12 in. panel-format Bacon often used for studies for larger works. So, chapter 4 might as well refer to his studies for a self portrait (see above), or to the three studies for a portrait of Henrietta Moraes:



Chapter 4(?) : Three studies for portrait of Henrietta Moraes (1963)

Here are some of my best guesses:



Chapter 3(?): Portrait of Henrietta Moraes (1963)



Chapter 6(?): Three Studies for Figures at the Base of a Crucifixion (1944)



Chapter 5(?): Triptych Inspired by the Oresteia of Aeschylus (1981)

No doubt, I’m just on a wild goose chase here. Probably, Max Porter is merely using existing dimensions of Bacon paintings for blank canvases to smear his words on, as explained in this erudite ArtReview What Does It Mean To Write a Painting?.

Here’s the writer Max Porter himself, explaining his book.

Leave a Comment

the mathematician of cubism

“Pythagorean Crimes” by Tefcros Michaelides is a murder mystery set at the beginning of the 20th century. It starts with Hilbert’s address at the 1900 ICM in Paris (in which he gives his list of problems, such as the 2nd, his program for a finitistic proof of the consistency of the axioms of arithmetic) and ends in the early 1930ties (perhaps you can by now already guess which theorem will play a crucial role in the plot?).

It depicts beautifully daily (or better, nightly) life in mathematical and artistic circles, especially in Paris between 1900 and 1906.

Bricard, Caratheodory, Dedekind, Dehn, De la Vallee-Poussin, Frege, Godel, Hadamard, Hamel, Hatzidakis, Hermite, Hilbert, Klein, Lindemann, Minkowski, Peano, Poincare, Reynaud, Russell and Whitehead all make a brief appearance, as do Appollinaire, Casagemas, Cezanne, Degas, Derain, Max Jacob, Jacobides, Lumiere, Matisse, Melies, Pallares, Picasso, Renoir, Salmon, Toulouse-Lautrec, Utrillo, Zola.



Both lists contain names I had never heard of. But the biggest surprise, to me, was to discover the name of Maurice Princet, “le mathématicien du cubisme”.

Princet (1875-1973) was a mathematician who frequented the group around Pablo Picasso at the Bateau-Lavoir in Montmartre (at least until 1907 when his wife left him for the painter Derain).

Princet introduced the group to the works of Poincare and the concept of the 4-th dimension. He gave Picasso the book “Traité élémentaire de géométrie à quatre dimensions” by Jouffret, describing hyper-cubes and other polyhedra in 4 dimensions and ways to project them dowm to the 2 dimensions of the canvas.



This book appears to have been influential in the genesis of Picasso’s Les Demoiselles d’Avignon (the painting also appears, in an unfinished state, in “Pythagorean Crimes”).



Some other painters tried to capture movement with projections from the 4-th dimension. A nice example is Nude descending a staircase by Marcel Duchamp (mostly known for his urinoir…).



Maurice Princet loved to get the artists interested in the new views on space. Duchamp told Pierre Cabanne, “We weren’t mathematicians at all, but we really did believe in Princet”.

I don’t know whether Duchamp liked Princet’s own attempts at painting. Here’s a cubistic work by Maurice Princet himself.



Leave a Comment

Grothendieck, at the theatre

A few days ago, the theatre production “Rêves et Motifs” (Dreams and Motives) was put on stage in Argenteuil by la Compagnie Les Rémouleurs.

The stage director Anne Bitran only discovered Grothendieck’s life by reading the front pages of French newspapers, the day after Grothendieck passed away, in November 2014.

« Rêves et Motifs » is a piece inspired by Récoltes et Semailles.

Anne Bitran: ” In Récoltes et semailles we meet a scientist who has his feet on the ground and shares our curiosity about the world around us, with a strong political engagement. This is what I wanted to share with this piece.”

Some of Grothendieck’s dessins d’enfant make their appearance. Is that one Monsieur Mathieu in the center? And part of the Hexenkuche top left? (no, see Vimeo below)

And, does this looks like the sculpture ‘Grothendieck as Shepherd’ by Nina Douglas?

More information about the production can be found at the Les Remouleurs website (in French).


RÊVES ET MOTIFS from Les Rémouleurs on Vimeo.

In case you are interested, make sure to be in Lunéville, November 29th or 30th.

Leave a Comment

Coxeter on Escher’s Circle Limits

Conway’s orbifold notation gives a uniform notation for all discrete groups of isometries of the sphere, the Euclidian plane as well as the hyperbolic plane.

This includes the groups of symmetries of Escher’s Circle Limit drawings. Here’s Circle Limit III

And ‘Angels and Devils’ aka Circle Limit IV:

If one crawls along a mirror of this pattern until one hits another mirror and then turns right along this mirror and continues like this, you get a quadrilateral path with four corners $\frac{\pi}{3}$, whose center seems to be a $4$-fold gyration point. So, it appears to have symmetry $4 \ast 3$.


(image credit: MathCryst)

However, looking more closely, every fourth figure (either devil or angel) is facing away rather than towards us, so there’s no gyration point, and the group drops to $\ast 3333$.

Harold S. M. Coxeter met Escher in Amsterdam at the ICM 1954.

The interaction between the two led to Escher’s construction of the Circle Limits, see How did Escher do it?

Here’s an old lecture by Coxeter on the symmetry of the Circle Limits:



Leave a Comment

Penrose tiles in Helsinki


(image credit: Steve’s travels & stuff)

A central street in Helsinki has been paved with Penrose tiles.


(image credit: Sattuman soittoa)

From a Finnish paper:

“The street could also be an object to mathematical awe. The stone under one’s feet is embroidered with some profound geometry, namely, Penrose tiling.

In 1974, a British mathematician Roger Penrose realised a plane could be fully covered with a few simple rules such that the pattern constantly changes. These kind of discontinuous patterns are interesting to mathematicians since the patterns can be used to solve other geometrical problems. Together, the tiles can randomly form patterns reminding a star or the Sun but they do not regularly recur in the tiling.

Similar features are found in the old Arabic ornaments. The tiling of the Central Street prom was selected by Yrjö Rossi.

If your kid stays put to stare at the tiling, they might have what they need in order to become a mathematician.”

(via Reddit/m)

Leave a Comment

the monstrous moonshine picture – 1

We’re slowly closing in on the elusive moonshine picture, which is the subgraph of Conway’s Big Picture needed to describe all 171 moonshine groups.

About nine years ago I had a first go at it, drawing a tiny fraction of it, just enough to understand the 9 moonshine groups appearing in Duncan’s realization of McKay’s E(8)-observation.

Over the last weeks I’ve made enough doodles to feel confident that the full picture is within reach and is less unwieldy than I once feared it might be.

The moonshine picture only involves about 212 lattices and there are about 97 snakes crawling into it, the dimension of the largest cell being 3.

I write ‘about’ on purpose as I may have forgotten a few, or counted some twice as is likely to happen in all projects involving a few hundreds of things. I’ll come back to it later.

For now, I can only show you the monstrous moonshine painting, which is a work by the Chilean artist Magdalena Atria.

Here’s a close up:

It is a large scale painting made with plasticine, directly attached to the wall of the Alejandra Von Hartz gallery where it was exhibited in 2010.

What does it have to do with monstrous moonshine?

From the press release:

“In mathematics ‘monstrous moonshine’ is a term devised by John H. Conway and Simon P. Norton in 1979, used to describe the (then totally unexpected) connection between the monster group M and modular functions.

The term ‘monstrous moonshine’ was picked to convey the feelings from the bizarre relations between seemingly unrelated structures. The same spirit of connecting apparently unrelated situations, at times revealing deeper links and at times constructing them, permeates through Atria’s work in this exhibition.”

I was impressed by the first sentence until I read the Wikipedia article on monstrous moonshine which starts off with:

“In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The term was coined by John Conway and Simon P. Norton in 1979.”

It appears that curators of art-exhibitions, and the intended public of their writings, are familiar with modular forms and functions, but fail to grasp the $j$-function.

When they speak about ‘modular forms’, I fear they’re thinking of something entirely different.

One Comment