Skip to content →

Author: lievenlb

mathematics for 2008 (and beyond)

Via the n-category cafe (and just now also the Arcadian functor ) I learned that Benjamin Mann of DARPA has constructed a list of 23 challenges for mathematics for this century.

DARPA is the “Defense Advanced Research Projects Agency” and is an agency of the United States Department of Defense ‘responsible for the development of new technology for use by the military’.

Bejamin Mann is someone in their subdivision DSO, that is, the “Defense Sciences Office” that ‘vigorously pursues the most promising technologies within a broad spectrum of the science and engineering research communities and develops those technologies into important, radically new military capabilities’.

I’m not the greatest fan of the US military, but the proposed list of 23 mathematical challenges is actually quite original and interesting.

What follows is my personal selection of what I consider the top 5 challenges from the list (please disagree) :

1. The Mathematics of Quantum Computing, Algorithms, and Entanglement (DARPA 15) : “In the last century we learned how quantum phenomena shape
our world. In the coming century we need to develop the
mathematics required to control the quantum world.”

2. Settle the Riemann Hypothesis (DARPA 19) : “The Holy Grail of number theory.”

3. Geometric Langlands and Quantum Physics (DARPA 17) : “How does the Langlands program, which originated in number
theory and representation theory, explain the fundamental
symmetries of physics? And vice versa?”

4. The Geometry of Genome Space (DARPA 15) : “What notion of distance is needed to incorporate biological utility?”

5. Algorithmic Origami and Biology (DARPA 10) : “Build a stronger mathematical theory for isometric and rigid
embedding that can give insight into protein folding.”

All of this will have to wait a bit, for now

HAPPY & HEALTHY 2008

5 Comments

top iTouch hacks

So, you did jailbreak your iTouch and did install some fun or useful stuff via the Install.app … but then, suddenly, the next program on your wish-list fails to install ??!! I know you hate to do drastic things to your iTouch, but sooner or later you’ll have to do it, so why not NOW?

Move the Applications Folder

The problem is that there are two disk partitions (a small one, meant only to host the apple-software and a large one to contain all your music, videos and stuff) and Install.app installs programs in the /Apllications folder on the smaller partition. So, we want to move it to the other partition using a symbolic link trick (as in the wiki-hack post). Here a walkthrough, more details can be found on Koos Kasper’s site.

  • Have BSDsubsystem and OpenSSH installed, so that you can ssh into the iTouch.
  • verify that the second line of the /etc/fstab file reads as below (or edit it if necessary, in my case it was already ok, perhaps this is done during jailbreak?) and reboot the iTouch (if you had to change it)

/dev/disk0s2 /private/var hfs rw 0 2

  • ssh into the iTouch and type in the following commands (to move the folder and make the symbolic link)

cd /
cp -pr Applications /var/root
mv Applications Applications.old
ln -s private/var/root/Applications /Applications

  • reboot the iTouch, ssh into it and remove the old Application-folder to free space

cd /
rm -rf Applications.old

From now on, all (most) new programs are installed on the larger partition. If you reinstall the OpenSSH application (as suggested) make sure to remove on your computer the old key for iTouch.

Stream your Music!

I use the iTouch to read my mail, to read RSS feeds, to administer this blog, to VNC to the home-server and when needed to ssh into the computer at work (running this blog) to restart the apache server. Unless I have to write a lot, there is no need to fire up a computer… But, when someone has a Mac running, I would like to be able to stream the music on my iTouch to hear it loudly. Here’s the procedure, via Rupert Gee’s blog :

  • Have the Auto-Lock set to “Never” in Settings/General
  • Install the UIctl applications (under Utilities)
  • Add a source to Install.app (click on Sources-button lower-right, Edit upper-right and then Add upper-left) http://home.mike.tl/iphone
  • Relaunch Install.app and install FireFlyMediaServer (under Multimedia).
  • Write down the address given during installation to change your password and monitor the Firefly-server (the default root password is ‘dottie’ and so the address should be

http://root:dottie@127.0.0.1:3689

  • Open up UIctl and scoll down to a line saying “org.fireflymediaserver.mt-daapd” and tap on it. Tap on “load-w” and then on “Do It”
  • Now, at the Mac your iTouch should be vusible under Shared in iTunes, click on it and give the password and your music is available!

2 Comments

mini-sudokube

Via the Arcadian functor I learned of the existence of the Sudokube (picture on the left).

Sudokube is a variation on a Rubik’s Cube in which each face resembles one-ninth of a Sudoku grid: the numbers from one to nine. This makes solving the cube slightly more difficult than a conventional Rubik’s Cube because each number must be in the right place and the centre cubies must also be in the correct orientation.

A much more interesting Sudoku-variation of the cube was invented two weeks ago by one of my freshmen-grouptheory students and was dubbed the mini-sudokube by him. Here’s the story.

At the end of my grouptheory course I let the students write a paper to check whether they have research potential. This year the assignment was to read through the paper mini-sudokus and groups by Carlos Arcos, Gary Brookfield and Mike Krebs, and do something original with it.

Mini-Sudoku is the baby $2 \times 2 $ version of Sudoku. Below a trivial problem and its solution

Of course most of them took the safe road and explained in more detail a result of the paper. Two of them were more original. One used the mini-sudoku solutions to find solutions for 4×4 sudokus, but the most original contribution came from Ibrahim Belkadi who wanted to count all mini-sudokubes. A mini-sudokube is a cube with a mini-sudoku solution on all 6 of its sides BUT NUMBERS CARRY OVER CUBE-EDGES. That is, if we have as the mini-sudoku given by the central square below on the top-face of the cube, then on the 4 side-faces we have already one row filled in.

The problem then is to find out how many compatible solutions there are. It is pretty easy to see that top- and bottom-faces determine all squares of the cube, but clearly not all choices are permitted. For example, with the above top-face fixed there are exactly 4 solutions. Let ${ a,b } = { 1,4 } $ and ${ c,d } = { 2,3 } $ then these four solutions are given below

Putting one of these solutions (or any other) on a $4 \times 4 $-Rubik cube would make a more interesting puzzle, I think. I’ve excused Ibrahim from having to take examination on condition that he writes down what he can prove on his mini-sudokubes by that time. Looking forward to it!

One Comment