Skip to content →

Author: lievenlb

working archive plugin, please!

Over the last two weeks Ive ported all old neverendingbooks-post from the last 4 years to a nearly readable format. Some tiny problems remain : a few TeX-heavy old posts are still in $…$ format rather than LaTeXrender-compatible (but Ill fix this soon), a few links may turn out to be dead (still have to check out those), TheLibrary-project links do not exist at the moment (have to decide whether to revive the project or to start a similar idea afresh), some other techie-things such as FoaF-stuff will be updated/expanded soon, et. etc. (and still have to port some 20 odd posts).

Anyway, the good news being that we went from about 40 posts since last july to over 310 posts, all open to the internal Search engine. Having all this stuff online is only useful if one can browse through it easily, so I wanted to install a proper up-to-date archive-plugin…

The current theme Redoable has build-in support for the Extended Live Archives v0.10beta-r18 plugin which would be ideal if I could get it installed… Im not the total newbie in installing WordPress-plugins and Ive read all the documentation and the support-forum and chmodded whathever I felt like chmodding, but still no success… If you know how to kick it into caching the necessary files, please drop a comment!

The next alternative Ive tried was the AWSOM Archive Version 1.2.3 plugin which gave me a pull-down menu just under the title-bar but not much seems to happen when using bloody Safari (Flock was OK though). Maybe Ill give it another go…

UPDATE (jan. 9th) : The AWSOM Archive seems to be working fine with the Redoable theme when custom installed in the footer. So, there is now a pulldown-menu at the bottom of the page.

**UPDATE (jan. 12th) : Ive installed the new version 1.3 of AWSOM Archive and it works from the default position **

At a loss I opted in the end for the simplest (though not the most aesthetic) plugin : Justin Blanton’s Smart Archives. This provides a year-month scheme at the top followed by a reverse ordered list of all months and titles of posts and is available as the arXiv neverendingbooks link available also from the sidebar (up, second link). I hope it will help you not to get too lost on this site…

Suggestions for a working-from-the-box WordPress Archive plugin, anyone???

4 Comments

A cat called CEILIDH

We will see later that the cyclic subgroup $T_6 \subset \mathbb{F}_{p^6}^* $ is a 2-dimensional torus.

Take a finite set of polynomials $f_i(x_1,\ldots,x_k) \in \mathbb{F}_p[x_1,\ldots,x_k] $ and consider for every fieldextension $\mathbb{F}_p \subset \mathbb{F}_q $ the set of all k-tuples satisfying all these polynomials and call this set

$X(\mathbb{F}_q) = { (a_1,\ldots,a_k) \in \mathbb{F}_q^k~:~f_i(a_1,\ldots,a_k) = 0~\forall i } $

Then, $T_6 $ being a 2-dimensional torus roughly means that we can find a system of polynomials such that
$T_6 = X(\mathbb{F}_p) $ and over the algebraic closure $\overline{\mathbb{F}}_p $ we have $X(\overline{\mathbb{F}}_p) = \overline{\mathbb{F}}_p^* \times \overline{\mathbb{F}}_p^* $ and $T_6 $ is a subgroup of this product group.

It is known that all 2-dimensional tori are rational. In particular, this means that we can write down maps defined by rational functions (fractions of polynomials) $f~:~T_6 \rightarrow \mathbb{F}_p \times \mathbb{F}_p $ and $j~:~\mathbb{F}_p \times \mathbb{F}_p \rightarrow T_6 $ which define a bijection between the points where f and j are defined (that is, possibly excluding zeroes of polynomials appearing in denumerators in the definition of the maps f or j). But then, we can use to map f to represent ‘most’ elements of $T_6 $ by just 2 pits, exactly as in the XTR-system.

Making the rational maps f and j explicit and checking where they are ill-defined is precisely what Karl Rubin and Alice Silverberg did in their CEILIDH-system. The acronym CEILIDH (which they like us to pronounce as ‘cayley’) stands for Compact Efficient Improves on LUC, Improves on Diffie-Hellman

A Cailidh is a Scots Gaelic word meaning ‘visit’ and stands for a ‘traditional Scottish gathering’.

Between 1997 and 2001 the Scottish ceilidh grew in popularity again amongst youths. Since then a subculture in some Scottish cities has evolved where some people attend ceilidhs on a regular basis and at the ceilidh they find out from the other dancers when and where the next ceilidh will be.
Privately organised ceilidhs are now extremely common, where bands are hired, usually for evening entertainment for a wedding, birthday party or other celebratory event. These bands vary in size, although are commonly made up of between 2 and 6 players. The appeal of the Scottish ceilidh is by no means limited to the younger generation, and dances vary in speed and complexity in order to accommodate most age groups and levels of ability.

Anyway, let us give the details of the Rubin-Silverberg approach. Take a large prime number p congruent to 2,6,7 or 11 modulo 13 and such that $\Phi_6(p)=p^2-p+1 $ is again a prime number. Then, if $\zeta $ is a 13-th root of unity we have that $\mathbb{F}_{p^{12}} = \mathbb{F}_p(\zeta) $. Consider the elements

$\begin{cases} z = \zeta + \zeta^{-1} \\ y = \zeta+\zeta^{-1}+\zeta^5+\zeta^{-5} \end{cases} $

Then, for every $~(u,v) \in \mathbb{F}_p \times \mathbb{F}_p $ define the map $j $ to $T_6 $ by

$j(u,v) = \frac{r-s \sqrt{13}}{r+s \sqrt{13}} \in T_6 $

and one can verify that this is indeed an element of $T_6 $ provided we take

$\begin{cases} r = (3(u^2+v^2)+7uv+34u+18v+40)y^2+26uy-(21u(3+v)+9(u^2+v^2)+28v+42) \\
s = 3(u^2+v^2)+7uv+21u+18v+14 \end{cases} $

Conversely, for $t \in T_6 $ write $t=a + b \sqrt{13} $ using the basis $\mathbb{F}_{p^6} = \mathbb{F}_{p^3}1 \oplus \mathbb{F}_{p^3} \sqrt{13} $, so $a,b \in \mathbb{F}_{p^3} $ and consequently write

$\frac{1+a}{b} = w y^2 + u (y + \frac{y^2}{2}) + v $

with $u,v,w \in \mathbb{F}_p $ using the basis ${ y^2.y+\frac{y^2}{2},1 } $ of $\mathbb{F}_{p^3}/\mathbb{F}_p $. Okay, then the invers of $j $ iis the map $f~:~T_6 \rightarrow \mathbb{F}_p \times \mathbb{F}_p $ given by

$f(t) = (\frac{u}{w+1},\frac{v-3}{w+1}) $

and it takes some effort to show that f and j are indeed each other inverses, that j is defined on all points of $\mathbb{F}_p \times \mathbb{F}_p $ and that f is defined everywhere except at the two points
${ 1,-2z^5+6z^3-4z-1 } \subset T_6 $. Therefore, as long as we avoid these two points in our Diffie-Hellman key exchange, we can perform it using just $2=\phi(6) $ pits : I will send you $f(g^a) $ allowing you to compute our shared key $f(g^{ab}) $ or $g^{ab} $ from my data and your secret number b.

But, where’s the cat in all of this? Unfortunately, the cat is dead…

One Comment

sobering-up

Kea’s post reminded me to have a look at my search terms (the things people type into search engines to get redirected here). Quite a sobering experience…

Via Google Analytics I learn that 49,51% of traffic comes from Search Engines (compared to 26,17% from Referring Sites and 24,32% from direct hits) so I should take Search Terms more seriously! Above you can find the top-25.

On 1. there is neverendingbooks. Well, some people seem to remember the blog-name, but require google to remember the URL (neverendingbooks.org)…, okay, fair enough. But from then on… all search terms are iTouch related! The first ‘other’ term is puzzle m at 24. and believe me things do not improve afterwards. Here the only non-Touch related search terms in the top 100 :

  • neverendingbooks.org (40)
  • “puzzle m” (42)
  • moonshine mathematics (79)
  • necklace algebra (80)
  • “calabi-yau algebra (90)
  • “dessin d enfant” (91)
  • “lieven le bruyn” (95)
  • Mathieu group + M(13) (97)
  • 13 points 5 lines puzzle (98)
  • 15 itouch sliding puzzle (99)

the last one is really touching (sic). Is there anybody out there still interested in the mathematics, or should I turn this blog into a yaib (yet another iTouch blog) ???

4 Comments