Skip to content →

A for aggregates

Let us
begin with a simple enough question : what are the points of a
non-commutative variety? Anyone? Probably you\’d say something like :
standard algebra-geometry yoga tells us that we should associate to a
non-commutative algebra $A$ on object, say $X_A$ and an arbitrary
variety is then build from \’gluing\’ such things together. Ok, but what
is $X_A$? Commutative tradition whispers $X_A=\mathbf{spec}~A$ the
[prime spectrum][1] of $A$, that is, the set of all twosided prime
ideals $P$ (that is, if $aAb \subset P$ then either $a \in P$ or $b \in
P$) and \’points\’ of $\mathbf{spec}~A$ would then correspond to
_maximal_ twosided ideals. The good news is that in this set-up, the
point-set comes equipped with a natural topology, the [Zariski
topology][2]. The bad news is that the prime spectrum is rarely
functorial in the noncommutative world. That is, if $\phi~:~A
\rightarrow B$ is an algebra morphism then $\phi^{-1}(P)$ for $P \in
\mathbf{spec}~B$ is not always a prime ideal of $A$. For example, take
$\phi$ the inclusion map $\begin{bmatrix} C[x] & C[x] \\ (x) & C[x]
\end{bmatrix} \subset \begin{bmatrix} C[x] & C[x] \\ C[x] & C[x]
\end{bmatrix}$ and $P$ the prime ideal $\begin{bmatrix} (x) & (x) \\ (x)
& (x) \end{bmatrix}$ then $P Cap \begin{bmatrix} C[x] & C[x] \\ (x) &
C[x] \end{bmatrix} = P$ but the corresponding quotient is
$\begin{bmatrix} C & C \\ 0 & C \end{bmatrix}$ which is not a prime
algebra so $\phi^{-1}(P)$ is not a prime ideal of the smaller algebra.
Failing this, let us take for $X_A$ something which obviously is
functorial and worry about topologies later. Take $X_A = \mathbf{rep}~A$
the set of all finite dimensional representations of $A$, that is
$\mathbf{rep}~A = \bigsqcup_n \mathbf{rep}_n~A$ where $\mathbf{rep}_n~A
= \{ Chi~:~A \rightarrow M_n(C)~\}$ with $Chi$ an algebra morphism. Now,
for any algebra morphism $\phi~:~A \rightarrow B$ there is an obvious
map $\mathbf{rep}~B \rightarrow \mathbf{rep}~A$ sending $Chi \mapsto Chi
Circ \phi$. Alernatively, $\mathbf{rep}_n~A$ is the set of all
$n$-dimensional left $A$-modules $M_{Chi} = C^n_{Chi}$ with $a.m =
Chi(m)m$. As such, $\mathbf{rep}~A$ is not merely a set but a
$C$-_category_, that is, all objects are $C$-vectorspaces and all
morphisms $Hom(M,N)$ are $C$-vectorspaces (the left $A$-module
morphisms). Moreover, it is an _additive_ category, that is if
$Chi,\psi$ are representations then we also have a direct sum
representation $Chi \oplus \psi$ defined by $a \mapsto \begin{bmatrix}
Chi(a) & 0 \\ 0 & \psi(a) \end{bmatrix}$. Returning at the task at
hand let us declare a _non-commutative variety_ $X$ to be (1) _an
additive_ $C$-_category_ which \’locally\’ looks like $\mathbf{rep}~A$
for some non-commutative algebra $A$ (even if we do not know at the
momemt what we mean by locally as we do not have defined a topology,
yet). Let is call objects of teh category $X$ the \’points\’ of our
variety and $X$ being additive allows us to speak of _indecomposable_
points (that is, those objects that cannot be written as a direct sum of
non-zero objects). By the local description of $X$ an indecomposable
point corresponds to an indecomposable representation of a
non-commutative algebra and as such has a local endomorphism algebra
(that is, all non-invertible endomorphisms form a twosided ideal). But
if we have this property for all indecomposable points,our category $X$
will be a Krull-Schmidt category so it is natural to impose also the
condition (2) : every point of $X$ can be decomposed uniquely into a
finite direct sum of indecomposable points. Further, as the space of
left $A$-module morphisms between two finite dimensional modules is
clearly finite dimensional we have also the following strong finiteness
condition (3) : For all points $x,y \in X$ the space of morphisms
$Hom(x,y)$ is a finite dimensional $C$-vectorspace. In their book
[Representations of finite-dimensional algebras][3], Peter Gabriel and
Andrei V. Roiter call an additive category such that all endomorphism
algebras of indecomposable objects are local algebras and such that all
morphism spaces are finite dimensional an _aggregate_. So, we have a
first tentative answer to our question **the points of a
non-commutative variety are the objects of an aggregate** Clearly, as
$\mathbf{rep}~A$ has stronger properties like being an _Abelian
category_ (that is, morphisms allow kernels and cokernels) it might also
be natural to replace \’aggregate\’ by \’Abelian Krull-Schmidt category
with finite dimensional homs\’ but if Mr. Abelian Category himself finds
the generalization to aggregates useful I\’m not going to argue about
this. Are all aggregates of the form $\mathbf{rep}~A$ or are there
other interesting examples? A motivating commutative example is : the
category of all coherent modules $Coh(Y)$ on a _projective_ variety $Y$
form an aggegate giving us a mental picture of what we might expect of a
non-commutative variety. Clearly, the above tentative answer cannot be
the full story as we haven\’t included the topological condition of
being locally of the form $\mathbf{rep}~A$ yet, but we will do that in
the next episode _B for Bricks_. [1]: [2]: [3]:


Published in featured


Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.