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210, Birkhäuser Boston, 2003, pp. 69–93.

[18] B. Kostant Powers of the Euler product and commutative subalgebras of
a complex simple Lie algebra. Invent. Math. 158 (2004), no. 1, 181–226.

[19] S. Kumar, Kac-Moody groups, their flag varieties and representation the-
ory, Progress in Mathematics, vol. 204, Birkhäuser Boston Inc., Boston,
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1 Background

Among the many textbooks, [8], [10] are standard references for finite dimen-
sional and Kac-Moody Lie algebras, respectively. The monograph [1] is an
introduction to both the finite and infinite dimensional theory, with emphasis
on the affine case.

A complete and elementary treatment of Lie algebra cohomology, Clifford
algebras and spin representations can be found in [4]; for the latter topics
see also [7].

A standard reference for real reductive groups is Wallach’s book [24].
Helgason [5] provides a comprehensive treatment of symmetric spaces.

Another useful (though less elementary) reference in Kumar’s book [19]:
the “Laplacian calculation” mentioned in the final lecture is taken from there.

2 Dirac operators and Vogan conjecture

The algebraic version of the Dirac operator has been introduced in [23].
My treatment is based on the first chapters of the monograph [7], which
expand on the paper [6] to provide a treatment accessible to non-experts. I
refer to chapters 1-4 of that book for the missing details in proofs and for
the exercises. The subsequent chapters deal with applications of the Vogan
conjecture to the theory of reductive groups.

3 References for Kostant’s work

• u-cohomology: [13];

• g-module structure of ∧g and commutative subalgebras: [12];

• abelian ideals and Peterson’s theorem:[14];
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• cubic Dirac operator: [15];

• comparison between the module structure of Ker D and Lie algebra
cohomology: [16];

• proofs of old results on ∧g using affine u-cohomology: [18];

• Vogan conjecture for the cubic Dirac operator: [17].

4 Comments

My treatment of the proof of the old results by Kostants using u-cohomology
follows [21], which for the results covered in the last two lectures is inspired
by [18]. The proof of Peterson’s theorem is borrowed from [3].

There is a kind of graded theory for abelian ideals of Borel subalgebras:
Kostant’s results from [12] were generalized to this setting by Panuyshev
[22], whereas Peterson’s encoding was extended in [2]. The treatment in [21]
covers Panyushev’s (and other people’s) results using u-cohomology in affine
setting.

An affine analog of the cubic Dirac operator was introduced in [9]. It has
been used in [20] to obtain a multiplet decomposition in certain affine cases
and thoroughly investigated in [11] (in the framework of vertex algebras), in
order to establish an analog of the Vogan conjecture in affine setting.
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