Week 1

Conjugacy classes.

Throughout, C will be the field of complex numbers. Recall that C is al-
gebraically closed and is equipped with a norm | a |= aa (here, @ is the
complex conjugate of the complex number a) making C into a topological
space.

Let V be a finite dimensional C-vectorspace, say of dimension d, then
after choosing a basis we can identify V with the space of d-tuples C<.
As such we can equip V with the analytic topology induced by the metric
d(v,w) =| v — w | coming from the norm

| v |=max | v |

for any v = (vy,...,v4) € V = C¢ In this chapter we will be primarily
interested in the analytic topology induced on closed subsets of some V.

With GL, we denote the group of all invertible n x n matrices GL,,(C)
with coefficients in C. As an n x n matrix A € M, (C) is invertible if and
only if its determinant det(A) is non-zero, we see that GL,, is a dense open
subset of the n*-dimensional vectorspace M, = M, (C).

la. Conjugacy classes of matrices.

An n x n matrix A € M, is by left multiplication a linear operator on the
n-dimensional vectorspace V,, = C" of column vectors. If ¢ € GL, is the
matrix describing the base change from the canonical basis of V,, to a new
basis, then the linear operator expressed in this new basis is represented
by the matrix gAg—!. For a given matrix A we want to find an adapted basis
such that the conjugated matrix gAg—' has a simple form.

That is, we consider the linear action of GL,, on the n?-dimensional vec-
torspace M, of n x n matrices determined by

GL, x M,, — M, (9,A) — g.A=gAg™ .




1 Conjugacy classes.

The orbit O, of A under this action, that is the set of all matrices of the
form gAg~! for some g € GL,, is called the conjugacy class of A. We look
for a particularly nice representant in a given conjugacy class. That is, we
want to solve the following orbit space problem.

Problem 1. I

‘ Classify the conjugacy classes of n x n matrices.

With 1, we denote the identity matrix in M, and with e;; the matrix
whose unique non-zero entry is 1 at entry (4, j). Recall that the group GL,
is generated by the following three classes of matrices :

e the permutation matrices p;; =1, + e;; + e;; — e;; — ej; for all i # 7,
e the addition matrices a;;(\) =T, + Ae;; for all i # j and 0 # A, and
e the multiplication matrices m;(\) =1, + (A — 1)e; for all i and 0 # .

Conjugation by these matrices determine the three types of Jordan moves
on n x n matrices, where the altered rows and columns are dashed :
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Therefore, it suffices to consider sequences of these moves on a given n x n
matrix A € M,. The characteristic polynomial of A is defined to be the
polynomial of degree n in the variable ¢

xa(t) = det(A —t1,) € Clt].

As C is algebraically closed, x 4(¢) decomposes as a product of linear terms
[T5_,(t — X\i)% where the {\,..., \.} are called the eigenvalues of the matrix
A. Observe that )\; is an eigenvalue of A if and only if there is a non-zero
eigenvector v € V,, = C" with eigenvalue )\;, that is, A.v = \,v. In particular,
the rank r; of the matrix A, = \;1, — A satisfiesn — d;, < r; < n.
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1la. Conjugacy classes of matrices.

We will apply the following reduction step to the matrices A;. Let B be
a n x n matrix of rank r. Then, applying type p and type a Jordan moves
we can conjugate B to the following block form

Onfr topl _ T
0 bOtl -

where white blocks denote zero matrices, hence the rank of the (black) right
hand side is equal to ». We separate two cases. First, assume that the
square r X r bottom right matrix has rank r (is invertible). Then, the rows
of the upper right block are linear combinations of its rows. Then, we apply
type a Jordan moves (which do not spoil the zero blocks) and conjugate the

matrix to the block form

—

Op—r _
bOtl -

The top left zero block of size n — r splits off and we stop the reduction. In
the second case, assume the square r x » matrix has rank s < r (hence the
upper right block has rank » — s < n —r). Repeating the above reduction to

the r x r block we obtain the situations

The two bottom right blocks together have rank s, whence all rows of the
two upper right blocks are linear combinations of them. Using type a
Jordan moves (which preserve the zero blocks) we arrive at the middle
block decomposition. Here, the two middle black blocks together have rank
r — s. Using type p and type m Jordan moves (which preserve the other
zero blocks) we can conjugate to obtain the rightmost block decomposition,
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4 1 Conjugacy classes.

where the T-block is the identity matrix 1,_, € M,_,. That is, we obtain a
matrix of block form
On+s—2r
Or—s /Ur—s
Or—s Or—s t0p2
bOtQ

and the top left zero block of size n + s — 2r splits off. If the bottom block
bot, has rank s we can conjugate to make top, a zero block in which case
also the Kronecker product block

_ O 1 _ 07‘78 /[]'I“fS
J2 ®’U’r‘78 - |:O 0:| ®/ﬂ’r‘78 — |:07~_S Or_s:|

splits off and we stop the reduction. Otherwise, the square s x s block bot,
has rank ¢ < s and we repeat the above reduction

On+s—2’r
On_r tOpl s moves Or—s /UT_S
{0 bot, ] Or—s 0,5 top, st
0 b0t2 t

to the new top/bottom block (the tiny integers give the ranks of the top; and
bot; blocks). This gives us the following block matrix

On+s-2r

Oios 0 Twwas O
0 O 0 T
T U
0 O 0 O T
0.t O, tops
0 bots|

which after some permutation Jordan moves can be brought into the form

On+s-2r
0r+t»2s /ﬂr+t-25

0r+t»2s Or+t-2s

Oce e Ou

Oe Oue Ty

Ost Oer Oy tops tu
0 bOtg u |

Hence, the block J; ® 1,,; o, splits off and if bots is of rank ¢, so does the
newly created Kronecker product

J3 0%y /ﬂs—t -

o O O
o O =

0
1 0y ﬂs—t
0
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1la. Conjugacy classes of matrices.

at which stage we stop the reduction. If the rank of bot; is u < ¢, then after
the next cycle we will be able to split off the Kronecker product J; @ Uy, o
and create a new ’almost’-split Kronecker product J, ® 1;_,,.

It is now clear that after a finite number of cycles of this reduction pro-
cess we will conjugate our n x n matrix B to a matrix in diagonal block
form

<J1 ®/Un+s-2r> @ (J2 ® /ﬂr+t-25) @ (J3 ® /Us+u-2t> @ LR @ (Jm ®/Uy-z) @ botm+1

with bot,, | invertible or of size zero. Here, J, is the Jordan block matrix
of size k with zeroes everywhere except ones on the next to main diagonal.

Finally, again by permutation moves we can conjugate B to the block
diagonal matrix

bot

Here, the bottom right corner bot is invertible, hence has all its eigenvalues
{141, p12, . . .} nonzero, and all the diagonal blocks in the upper left d x d corner
are Jordan blocks J, (there are n + s — 2r blocks J;, r +t — 2s blocks J; etc.).
The integer d is determined as the maximal power such that ¢¢ divides the
characteristic polynomial y 5(¢). Hence, the sizes of these Jordan blocks

p=(m,....m,....3,...,3,2,...,2,1,...,1)

y-z s+u-2t r+t-2s n+s-2r

form a partition of d.

Recall that a partition p = (ay,az,...,a;) of d is a decompositions in
natural numbers

d:a1+a2+...+ak with &12a22...2ak21
It is traditional to assign to a partition p = (ay,...,a;) a Young diagram
with a; boxes in the i-th row, the rows of boxes lined up to the left.

The dual partition p* = (aj,...,a’) to p is defined by interchanging rows

) r

and columns in the Young diagram of p. For example, to the partition p =
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1 Conjugacy classes.

(3,2,1,1) of 7 we assign the Young diagram

b= p =

with dual partition p* = (4,2, 1).

1b. The Jordan-Weierstrass theorem.

Let us return to an arbitrary n x n matrix A with characteristic polynomial
xa(t) = TTi_,(t — \)%. Apply the above reduction to the matrix B = A; =
A:1— A. Then, A itself is conjugated to a block diagonal matrix of the form

B

bot

with all the blocks in the d; x d; upper left corner Jordan blocks with eigen-
value )\;, that is of the form

and the remaining block bot has eigenvalues {\;,..., \;,..., A\.}. Repeating
this procedure for the other eigenvalues we obtain the Jordan-Weierstrass
theorem.

Theorem 1.1. Let A € M,(C) with characteristic polynomial x4(t) =
[T5_,(t = \;))%. Then, A determines unique partitions

pi:(ailaai%--waimi) of d;
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1b. The Jordan-Weierstrass theorem.

for 1 < i < esuch that Ais conjugated to a unique (up to permutation of the
blocks) block-diagonal matrix

By

By,

with m = my + ... + m. and exactly one block B; of the form J, (\;) for all
1<i<eand1<j<m,

Remains only to prove the unicity of the partitions p; of d; corresponding
to the eigenvalue )\; of A. Assume A is conjugated to another Jordan block
matrix J, . ..), necessarily with partitions ¢; = (b1, .. ., bim;) of d;. To begin,
observe that for a Jordan block of size & we have that

rk Jy(0)) =k —1 foralll <kandifu#0then rk Ji(u)' =k

for all I. As J;,

..........

..........

Now, take A = )\; then only on the Jordan blocks with eigenvalue )\; are
important in the calculation and one obtains for the ranks

I I
n— Z #{j | a;; > h} respectively n — Z #{j | bij > h}. (1.1)

h=1 h=1

Now, for any partition p = (cy,...,c,) and any natural number h we see
that the number z = #{j | ¢; > h}

cq l
co ]

Cz+1

is the number of blocks in the h-th row of the dual partition p*. Therefore,
the above rank equality implies that p; = ¢ and hence that p; = ¢;. As we

eqrank
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1 Conjugacy classes.

can repeat this argument for the other eigenvalues we have the required
unicity.

This completes the classification of the conjugacy classes of n x n matri-
ces, or equivalently, the GL,-orbits in M, which (for later reference) corre-
sponds to the pattern :

We see that the classification consists of two parts : a discrete part choosing
e a partition p = (d;,ds, ..., d.) of n, and for each d,,
e a partition p; = (a;1, a2, . . ., aim,) of d;,

determining the sizes of the Jordan blocks and a continuous part choosing
e an e-tuple of distinct complex numbers (A, A, ..., \.).

fixing the eigenvalues. Moreover, this e-tuple (A4, ..., )\.) is determined only
up to permutations of the subgroup G of all permutations S, on ¢ letters
where

G={m€S,|pi=pmu foralll <i<e}
Whereas this gives a satisfactory set-theoretic description of the orbits, one

might ask for a topological orbit space C,, the points of which are in one-to-
one correspondence with the conjugacy classes, and a continuous surjection

Mn — Cn

which is constant along GG L,,-orbits and sends a matrix A to the point of C,
corresponding to the orbit O,. If we require that this space C,, has at least
the separation property that its points should be closed, then continuity of
c implies that for any matrix A its conjugacy class O, should be a closed
subset of M,,.

However, this cannot be the case whenever n > 2. Consider the matrices

A 1 A0
A:_O /\} and B:[O /\}

which by theorem belong to distinct orbits. For any € # 0 we have that

A IR A

belongs to the orbit of A. Hence if ¢ — 0, we see that B lies in the closure
of O, whence O, cannot be a closed orbit in M;. As any matrix in O, has
trace 2\, the orbit is contained in the 3-dimensional subspace

{)\%—x Y

z )\—x} My
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1b. The Jordan-Weierstrass theorem. 9

In this space, the orbit-closure O, is the set of points satisfying 2> + yz = 0
(the determinant has to be \?), which is a cone having the origin as its top :

The orbit Op is the top of the cone and the orbit O, is the complement.
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Week 2

The quotient space.

Last week we have seen that there is no Hausdorff topological space whose
points are in one-to-one correspondence with the conjugacy classes of ma-
trices. Still, we can try to solve :

Problem 2. I

Construct the best continuous approximation to the orbit space.

First, we construct a supply of complex valued continuous functions on
M, that are constant along orbits.

2a. Invariant polynomial functions.

If two matrices are conjugated A ~ B, then A and B have the same un-
ordered n-tuple of eigenvalues {},...,,} (occurring with multiplicities).
Hence any symmetric function in the \; will have the same values in A as
in B. In particular this is the case for the elementary symmetric functions
aj

0'[()\1,...,)\1): Z )\21)\22)\“

11 <12 <...<1;

Observe that for every A € M,, with eigenvalues {};,...,),} we have

n

H(t —X;) = xa(t) =det(tt, — A) =1"+ zn:(—l)idi(/—l)t”_i

i=1

Developing the determinant det(¢1, — A) we see that each of the coefficients
oi(A) is in fact a polynomial function in the entries of A. A fortiori, o;(A)
is a complex valued continuous function on M,. The above equality also




2 The quotient space.

implies that the functions o; : M,, —— C are constant along orbits. We now
construct the continuous map

M,

sending a matrix A € M, to the point (oy(A),...,0,(A4)) in C*. Clearly, if
A ~ B then they map to the same point in C". We claim that = is surjective.
Take any point (a4, ...,a,) € C* and consider the matrix A € M,

0 a,
—1 0 Ap—1

A= : 2.1)

—1 aq

then we will show that 7(A) = (a4,...,a,), that is,
det(tl, — A) = 1" — a;t" '+ apt"? — ...+ (=1)"a,.

Indeed, developing the determinant of {1, — A along the first column we
obtain

@55555()555555550555555-:::-55-:555555();5555%5&51;;555 t 0 0 0 —a,
1 t 0 0 —anl @EEEEEffEEEEEEEOEEEEEEEEEEEEEEEEEEOEEEEE%E@HE;
0 1 t 0 _anz 0 1 t 0 _anZ
0 0 1 ¢t —a, 0 0 1 ¢ —a,
0 0 1 t—a, 0 0 1 t—a,

Here, the second determinant is equal to (—1)""'a, and by induction on n
the first determinant is equal to ¢.(¢"~' — ayt" >+ ...+ (—1)""'a,_,), proving
the claim.

Next, we will determine which » x n matrices can be conjugated to a
matrix in the canonical form A as above. We call a matrix B € M, cyclic
if there is a (column) vector v € C* such that C" is spanned by the vectors
{v, B.v,B*v,...,B"'.v}. Let g € GL, be the basechange transforming the
standard basis to the ordered basis

(v,~B.v, B*v,—Bv,...,(=1)""'B" ).
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2a. Invariant polynomial functions. 3
In this new basis, the linear map determined by B (or equivalently, g. B.g~!)
is equal to the matrix in canonical form

o b

-1 0 br_1
-1 0 by

i -1 b |
where B”.v has coordinates (b,, ..., by, b;) in the new basis.

Prove that a matrix B € M, can be conjugated to one in standard form
as above if and only if B is a cyclic matrix.

We claim that the set of all cyclic matrices in M, is a dense open subset,
that is, its closure is the whole of M,,. To see this take v = (z4,...,2,)" € C
and compute the determinant of the n x n matrix

v Bv Bn—lv
This gives a polynomial of total degree n in the x; with all its coefficients
polynomial functions ¢; in the entries by of B. Now, B is a cyclic matrix
if and only if at least one of these coefficients is non-zero. That is, the
set of non-cyclic matrices is exactly the intersection of the finitely many
hypersurfaces

‘/]' = {B = (bkl)k,l e M, | C]‘(bn,blg, .. ,bnn) = 0}

in the vectorspace M,. The claim follows because the complement of the
hypersurface V, is a dense open subset (being equal to the inverse image
of the dense open set C — {0} in C under the continuous surjection ¢; :
M, — Q).
Theorem 2.1. The best continuous approximation to the orbit space is
given by the surjection

M, ——— "
mapping a matrix A € M, (C) to the n-tuple (0,(A),...,0,(A)).
lieven le bruyn uia 1999



4 2 The quotient space.

Let f : M, —— C be a continuous function which is constant along
conjugacy classes. We will show that f factors through =, that is, f is really
a continuous function in the o,(A). Consider the diagram

M, —'—.C

s m ..'..f’:fos

Cn
where s is the section of = (that is, 7 0 s = idc») determined by sending
a point (ay,...,a,) to the cyclic matrix in canonical form A as in equa-

tion (2.1). Clearly, s is continuous, hence sois f’ = fos. The approximation
property follows if we prove that f = [’ o 7. By continuity, it suffices to
check equality on the dense open set of cyclic matrices in M,,.

There it is a consequence of the following three facts we have proved
before : (1) : any cyclic matrix lies in the same orbit as one in standard
form, (2) : s is a section of 7 and (3) : f is constant along orbits.

2b. Some examples.

‘ Miniature 1. Orbits in M.

A 2 x 2 matrix A can be conjugated to an upper triangular matrix with diagonal entries
the eigenvalues A\, A; of A. As the trace and determinant of both matrices are equal we
have

o1(A) = tr(A) and o2(A) = det(A).
The best approximation to the orbitspace is therefore given by the surjective map

Ky

~2 a b .
My —» C [c dj|r—>(a—|—d,ad be)

The matrix A has two equal eigenvalues if and only if the discriminant of the characteristic
polynomial #? — o1 (A)t + o4(A) is zero, that is when ¢(A)? — 402(A) = 0. This condition
determines a closed curve ' in C? where

C={(z,y) €C? | 2? — 4y = 0}.

C
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2b. Some examples.

Observe that C is a smooth 1-dimensional submanifold of C?. We will describe the fibers
(that is, the inverse images of points) of the surjective map = .

If p = (z,y) € C* — C, then 71 (p) consists of precisely one orbit (which is then neces-
sarily closed in M-) namely that of the diagonal matrix

—r 4 /2 —4y

A 0
2

0 )\2] where X, =

If p = (z,y) € C then 7' (p) consists of two orbits,

O \ 1 and O A0
I 5
where )\ = %a: We have seen that the second orbit lies in the closure of the first. Observe
that the second orbit reduces to one point in M, and hence is closed. Hence, also 7~ (p)
contains a unique closed orbit.
To describe the fibers of = as closed subsets of M5 it is convenient to write any matrix
A as a linear combination

A= u(4) [% g]+v(A) [é O%]+w(A) [8 (1)]+z(A) [? 8]

Expressed in the coordinate functions u, v, w and z the fibers 7~ (p) of a point p = (z,y) €
C? are the common zeroes of

The first equation determines a three dimensional affine subspace of M, in which the
second equation determines a quadric.

*?

If p ¢ C this quadric is non-degenerate and thus 7—!(p) is a smooth 2-dimensional sub-
manifold of M. If p € C, the quadric is a cone with top lying in the point £1. Under
the G Ls-action, the unique singular point of the cone must be clearly fixed giving us the
closed orbit of dimension 0 corresponding to the diagonal matrix. The other orbit is the
complement of the top and hence is a smooth 2-dimensional (non-closed) submanifold of
Ms. The graphs represent the orbit-closures and the dimensions of the orbits.
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2 The quotient space.

Miniature 2. Orbits in M.

We will describe the fibers of the surjective map Ms — - C3. If a 3 x 3 matrix has
multiple eigenvalues then the discriminant d = (A — X2)?(A2 — A3)? (A3 — A1)? is zero.
Clearly, d is a symmetric polynomial and hence can be expressed in terms of o1, o5 and 3.
More precisely,

d = 40303 + 4035 + 2703 — 0202 — 18010203

The set of points in C3 where d vanishes is a surface S with singularities.

These singularities are the common zeroes of the g’—i for 1 < i < 3. One computes that

these singularities form a twisted cubic curve C in C3, that is,

C ={(3¢,3¢% ¢ | c € C}.

The description of the fibers 7=*(p) for p = (z,y, z) € C? is as follows. When p ¢ S, then
7~ !(p) consists of a unique orbit (which is therefore closed in M3), the conjugacy class of a
matrix with pairwise distinct eigenvalues. If p € S — C, then 7~ (p) consists of the orbits

of
A0 O
0 X 0
0 0 u

Finally, if p € C, then the matrices in the fiber 7~'(p) have a single eigenvalue A = 1z and
the fiber consists of the orbits of the matrices

A1 0 A1 0 A0 0
Bi=10 X 1| By=1]0 X 0 Bs={(0 X 0
0 0 A 0 0 X 0 0 A
We observe that the strata with distinct fiber behavior (that is, C* — S, S — C and C) are
all submanifolds of C3.
The dimension of an orbit @4 in M, is computed as follows. Let C'4 be the subspace of
all matrices in M,, commuting with A. Then, the stabilizer subgroup of A is a dense open
subset of C'y whence the dimension of 04 is equal to n? — dim C.

A1 0
Air=10 X 0| and A; =
0 0 u

uia 1999
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2b. Some examples.

Performing these calculations for the matrices given above, we obtain the following
graphs representing orbit-closures and the dimensions of orbits

6 Oa, #6 Og, *6
Oa, 04 O, ¢4
Op, ¢0

-5 S-C C
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Week 3

The orbit closures.

This week we will prove the Gerstenhaber-Hesselink theorem which gives

an answer to :
Problem 3. I

Describe the orbit-closures for general n. ‘

Consider the quotient map M, —>- C" and a point = = (z,,...,x,) € C".
All matrices A in the fiber 7—!(z) have the same eigenvalues {)\,...,\.}
and multiplicities {d;,...,d.} because

LI = A% = xa(t) =" — 2"+ aot™> — 4 (=1) 2.

=1

We have seen in example ?? that the orbit corresponding to the diagonal
matrix with these eigenvalues and multiplicities is contained in the closure
of O, for any A € 7—!(z). Moreover, for any \ € C, the linear automorphism

M, -2+ M,  definedby A A— M,

commutes with the action of GL,,. Hence, in studying the fibers 7—!(z) we
may assume that one of the eigenvalues \; is zero. An important subprob-
lem is therefore to study the orbit-closures in the nullcone, N = 7=1(0), that
is the set of all nilpotent n x n matrices. We recall that a matrix A is said
to be nilpotent if A* = 0 for some power k. Clearly, A € M, is nilpotent if
and only if A" = 0.

A nilpotent matrix A has 0 as its unique eigenvalue (occurring with mul-
tiplicity n). Therefore, by theorem ?? the orbits of nilpotent matrices are
in one-to-one correspondence with partitions of n. We will first introduce a
dominance ordering on all partitions of n and consequently show that this
ordering determines the orbit closures of nilpotent matrices.




2 3 The orbit closures.

3a. The Gerstenhaber-Hesselink theorem.

It is sometimes convenient to relax our definition of partitions to include ze-
roes at its tail. That is, a partition p of n is an integral n-tuple (a4, as, ..., a,)
with a; > ay > ... > a, > 0 with }_!"  a; = n. As before, we represent a
partition by a Young diagram by omitting rows corresponding to zeroes.

If ¢ = (by,...,b,) is another partition of n we say that p dominates ¢ and
write

p>q if and only if ZaiZZbi foralll1 <r <n.
=1 1=1

For example, the partitions of 4 are ordered as indicated below
(L1 > F > EH > @j > E

Note however that the dominance relation is not a total ordering whenever
n > 6. For example, the following two partition of 6

_II\ %

are not comparable. The dominance order is induced by the Young move
of throwing a row-ending box down the diagram. Indeed, let p and ¢ be
partitions of n such that p > ¢ and assume there is no partition » such that
p > r and r > ¢. Let i be the minimal number such that a; > b;. Then by
the assumption a; = b; + 1. Let j > ¢ be minimal such that a; # b;, then we
have b; = a; + 1 because p dominates ¢. But then, the remaining rows of p
and ¢ must be equal. That is, a Young move can be depicted as

] |

p= U — q¢= U

For example, the Young moves between the partitions of 4 given above are

as indicated
(I — — (L] — —
mEE LS o E
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3a. The Gerstenhaber-Hesselink theorem.

A Young p-tableau is the Young diagram of p with the boxes labeled
by integers from {1,2,...,s} for some s such that each label appears at
least ones. A Young p-tableau is said to be of type ¢ for some partition
q= (bi,...,b,) of nif the following conditions are met :

e the labels are non-decreasing along rows,
e the labels are strictly increasing along columns, and
e the label i appears exactly b; times.

For example, if p = (3,2,1,1) and ¢ = (2, 2,2, 1) then the p-tableau below

3

1
2
3
4

is of type ¢ (observe that p > ¢ and even p — ¢). In general, let
p=(ai,...,a,)and g = (by,...,b,) be partitions of n and assume that p — q.
Then, there is a Young p-tableau of type ¢. For, fill the Young diagram of ¢
by putting 1’s in the first row, 2’s in the second and so on. Then, upgrade
the fallen box together with its label to get a Young p-tableau of type ¢. In
the example above

=W N =
)
W N =

Conversely, assume there is a Young p-tableau of type q. The number of
boxes labeled with a number < i is equal to b; + ... + b;. Further, any
box with label < i must lie in the first i rows (because the labels strictly
increase along a column). There are a; + ... + a; boxes available in the first
1 rows whence

Zbi SZai forall 1<i<n

j=1 j=1
and therefore p > ¢. After these preliminaries on partitions, let us return
to nilpotent matrices.

Let A be a nilpotent matrix of type p = (a4, ..., a,), that is, conjugated to
a matrix with Jordan blocks (all with eigenvalue zero) of sizes a;. It follows
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3 The orbit closures.

from equation ?? that the subspace V] of column vectors v € C™ such that
Al.v = 0 has dimension

l l
Yo #ila=hy=> q
h=1 h=1

where p* = (a],...,a}) is the dual partition of p. Choose a basis {vy,...,v,}

of C" such that for all [ the first a] + ...+ a; base vectors span the subspace
V. For example, if A is in Jordan normal form of type p = (3,2,1,1)

o O O

1
0
0

O = O

o O
O =

0

then p* = (4,2,1) and we can choose the standard base vectors ordered as
follows
{61, €4, €6, €7, €9, €5, €3 }
Y Y

Take a partition ¢ = (b,...,b,) with p — ¢ (in particular, p > ¢), then for
the dual partitions we have ¢* — p* (and thus ¢* > p*). But then there is
a Young ¢*-tableau of type p*. In the example with ¢ = (2,2,2,1) we have
¢* = (4,3) and p* = (4,2,1) and we can take the Young ¢*-tableau of type p*

111111
21213

Now label the boxes of this tableau by the base vectors {vi,...,v,} such
that the boxes labeled ¢ in the Young ¢*-tableau of type p* are filled with
the base vectors from V; — V;_;. Call this tableau 7'. In the example, we can
take

€1 [ €| € | €7

T = |ey| e |es

Define a linear operator /' on C" by the rule that F'(v;) = v; if v; is the label
of the box in T just above the box labeled v;. In case v; is a label of a box in
the first row of 7" we take F'(v;) = 0. Obviously, F' is a nilpotent n x n matrix
and by construction we have that

rk F'=n— (b} + ...+ b))
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3a. The Gerstenhaber-Hesselink theorem.

That is, F is nilpotent of type ¢ = (b, ...,b,). Moreover, F satisfies F'(V;) C
V;_; for all i by the way we have labeled the tableau 7" and defined F.

In the example above, we have F'(e;) = ey, F(es) = ey, F(e3) = e and all
other F(¢;) = 0. That is, F' is the matrix
[0 1
0 0

o O
O =

0

which is seen to be of type (2,2, 2, 1) after performing a few Jordan moves.

Returning to the general case, consider for all ¢ € C the n x n matrix :
F.=(1—-¢F +€A.

We claim that for all but finitely many values of ¢ we have F, € O 4. Indeed,
we have seen that F(V;) C V;_; where V; is defined as the subspace such
that A'(V;) = 0. Hence, F(V;) = 0 and therefore

F.(Vi)=(1—¢F +€eA(V;) =0.

Assume by induction that F(V;) = 0 holds for all i < [, then we have that

because A(V;) C V,_; and F(V}) C V,_;. But then we have for all / that

rk F! < dim Vi=n—(a;+ ... +a) =rk A Z .

Then for at least one r; x r; submatrix of F' its determinant considered it
as a polynomial of degree r; in ¢ is not identically zero (as it is nonzero for
¢ = 1). But then this determinant is non-zero for all but finitely many e.
Hence, rk F' = rk A! for all [ for all but finitely many e. As these numbers
determine the dual partition p* of the type of A, F, is a nilpotent n x n
matrix of type p for all but finitely many values of ¢, proving the claim.
But then, I, = F' which we have proved to be a nilpotent matrix of type ¢
belongs to the closure of the orbit O 4. That is, we have proved the difficult
part of the Gerstenhaber-Hesselink theorem.
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6 3 The orbit closures.
Theorem 3.1. Let A be a nilpotent n x n matrix of type p = (a4, . .., a,) and
B nilpotent of type ¢ = (b1, ...,b,). Then, B belongs to the closure of the orbit
Oy, that is,

Be Oy ifandonlyif p>q
in the domination order on partitions of n.

To prove the theorem we only have to observe that if B is contained in
the closure of A, then B! is contained in the closure of A’ and hence 7k A' >
rk B' (because 7k A' < k is equivalent to vanishing of all determinants of
k x k minors which is a closed condition). But then,

! !
LI W
=1 =1
for all [, that is, ¢* > p* and hence p > ¢. The other implication was proved
above if we remember that the domination order was induced by the Young
moves and clearly we have that if B € Oz and C € O, then also B € O4.
3b. Some examples.
‘ Miniature 3. Nilpotent matrices for small n.
We will apply theorem [1] to describe the orbit-closures of nilpotent matrices of 8 x 8
matrices. The following table lists all partitions (and their dual in the other column)

The partitions of 8.

a (8 v (1,1,1,1,1,1,1,1)

b (7,1) u o (2,1,1,1,1,1,1)

c (62 t (221,1,1,1)

d 6L | s (31,1111

e (53 r (22211

f (521 | q 32111

g G111 | p (41,111

h (4,4 0o (2222

i 43D | n (3221

i 422 | m 331D

k (332 |k (332

1 (421D | 1 (4210

The domination order between these partitions can be depicted as follows where all

uia 1999 lieven le bruyn



3b. Some examples. 7
the Young moves are from left to right
Of course, from this graph we can read off the dominance order graphs for partitions of
n < 8. The trick is to identify a partition of n with that of 8 by throwing in a tail of ones
and to look at the relative position of both partitions in the above picture. Using these
conventions we get the following graph for partitions of 7
and for partitions of 6 the dominance order is depicted as follows
O—0e—Q@ @) (® (O—0—®
P () r

We have already mentioned that the dominance order on partitions of n < 5 is a total
ordering.

We will prove later that knowledge of the orbit closures of nilpotent
matrices for m x m matrices for all m < n is enough to understand the orbit
closures in all the fibers 7—!(z) for the quotient map M, —~» C".
lieven le bruyn uia 1999



Week 4

Dynamical systems.

In this section we will consider linear time-invariant dynamical systems.
Whereas this is a gross simplification of actual processes, often one can
reduce to such a situation (as a first approximation), for example near an
equilibrium state of the system. A linear time invariant dynamical system

Y is governed by the following system of differential equations
dx
il Bz + Au 4.1)
Y = (.

Here, u(t) € C™ is the input or control of the system at tome ¢, z(t) € C"
the state of the system and y(¢) € CP the output of the system . Time
invariance of ¥ means that the matrices A € M, ,,(C), B € M,(C) and
C € M,y,(C) are constant. The system ¥ can be represented as a black box

. u(t) - y(t) .

x(t)

which is in a certain state z(¢) that we can try to change by using the input
controls u(t). By reading the output signals y(¢) we can try to determine
the state of the system. We briefly recall how one solves a linear dynamical
system.

4a. Solving linear systems.

Recall that the matrix exponential e of any n x n matrix B is defined by
the infinite series

2 m

B
P =1, 4+B+—=—+... +— +...
21 m)!

diffeq




4 Dynamical systems.

eqcontrol

Observe that this series converges to a matrix in ), (C) as the norm | B™ |
is bounded by | B |™ for any m. The importance of this construction is
clear from the fact that e?! is the fundamental matrix for the homogeneous
differential equation % = Bz. That is, the columns of e”* are a basis for
the n-dimensional space of solutions of the equation ‘fl—f = Buz.

Motivated by this, let us look for a solution to equation (4.1) as the form
z(t) = eBlg(t) for some function g(¢). Substitution gives the condition

dg

= e B'Au  whence ¢(7) = g(7) +/ e B Au(t)dt.

70

Observe that x(7y) = e%™g(7) and we obtain the solution of the linear dy-
namical system ¥ = (A, B,C) :

x(r) = elTTBy (1) + f; eT=08 Ay (t)dt
y(r) = CePrmlg(rg) + [T Celm=95 Au(t)dt.

Differentiating we see that this is indeed a solution and it is the unique one
having a prescribed starting state z(7y). Indeed, given another solution
x1(7) we have that z,(7) — z(7) is a solution to the homogeneous system
4 — Bt, but then

7B 77’03(

(1) = 2(1) + e 7€ x1(710) — 2(70))-

4b. Observable and controllable systems.

We will recall some important system-theoretic notions describing the level
of control or observation a given system allows.

We call the system X completely controllable if we can steer any starting
state z(7y) to the zero state by some control function u(¢) in a finite time
span |7, 7]. That is, the equation

0=x(r) + / e0=0B Ay (t)dt

70

has a solution in 7 and u(¢). As the system is time-invariant we may always
assume that 7, = 0 and have to satisfy the equation

0=uxg +/ eBAu(t)dt for every x, € C" (4.2)
0

Consider the control matrix ¢(X) which is the n x mn matrix

c(X)=| A ||BA||B2A| - Br1A

uia 1999
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4b. Observable and controllable systems.

Assume that rk ¢(X) < n then there is a non-zero state s € C" such that
s'"¢(X) = 0, where s denotes the transpose (row column) of s. Because B
satisfies the characteristic polynomial y5(¢), B" and all higher powers B™
are linear combinations of {1,, B, B%,..., B"'}. Hence, s"B™A = 0 for all
m. Writing out the power series expansion of ¢'? in equation this leads
to the contradiction that 0 = s7x, for all z, € C". Hence, if 7k ¢(X) < n, then
Y is not completely controllable.

Conversely, let rk ¢(X) = n and assume that ¥ is not completely control-
lable. That is, the space of all states

s(t,u) = /OT et Au(t)dt

is a proper subspace of C". But then, there is a non-zero state s € C" such
that s"s(7,u) = 0 for all 7 and all functions u(t). Differentiating this with
respect to 7 we obtain

s"e ™ Au(t) =0 whence s"e ™A =0 (4.3)

for any 7 as u(7) can take on any vector. For 7 = 0 this gives s"A = 0. If we
differentiate (4.3) with respect to 7 we get s"Be""2A = 0 for all 7 and for
7 = 0 this gives s"" BA = 0. Iterating this process we show that s""B™A = 0
for any m, whence

s"[A BA B*A ... B"'A] =0
contradicting the assumption that rk ¢(X) = n. That is, we have proved :

Proposition 4.1. A linear time-invariant dynamical system Y. determined
by the matrices (A, B,C') is completely controllable if and only if rk c(X) is
maximal.

CB

CB2

CBn-l

eqll
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4 Dynamical systems.

Next, we turn to the problem to what degree we can obtain information
about the system by reading off its output displays. We say that a state
x(7) at time 7 is unobservable if Ce™ 8z (7) = 0 for all ¢. Intuitively this
means that the state z(7) cannot be detected uniquely from the output of
the system Y. Again, if we differentiate this condition a number of times
and evaluate at ¢t = 7 we obtain the conditions

Cx(t) = CBx(t) = ... = CB" '2(1) = 0.

We say that ¥ is completely observable if the zero state is the only un-
observable state at any time 7. Consider the observation matrix o(X) of the
system X which is the pn x n matrix

o(x) = [C" (CB)r ... (B Y)r]"
An analogous argument as in the proof of proposition gives us :

Proposition 4.2. A linear time-invariant dynamical system Y. determined
by the matrices (A, B,C) is completely observable if and only if rk o(X) is
maximal.

4c. Some examples.

‘ Miniature 4. A physical dynamical system.

We consider a simple magnetic-ball suspension system. The objective of the system
is to control the position of the steel ball by adjusting the current in the electromagnet
through the input voltage e(t).

@
The differential equations determining this system are :

Pyt) P

T O

. di(t)
e(t) =Ri(t)+ L o

M
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4c. Some examples. 5
Here, y(t) is the distance of teh ball from the magnet, M the mass of the ball and g the
gravitational constant. The electromagnet has winding inductance L, winding resistance
R and i(t) is the winding current. If we want to approximate this system by a linear
system we have to solve two problems : (1) to replace the higher order differential term
in the left hand side by first order terms, and (2) to linearize the non-linear terms in teh
right hand side.
The first problem is solved by teh standard trick that a single n-th order differential
equation
dny dn—ly
dtin-i-mW—l—...—i—any:u(t)
is equivalent to a linear system
d—x =Fx+u
dt
where we take © = (x1,...,2,) with z; = y, z; = ‘f]fy for + > 2 and where F is then x n
matrix
0O 0 ... 0 —ap
1 0 0 —Ap—1
F = 0 1 0 —Aan—2
0 0 1 —aq
Hence, in the above suspension system we take as state vaiables 1 (t) = y(t), z2(t) = %
and x3(t) = i(t). Then, the defining equations of teh system become
dr
a7
dey _ _1a3
it 9 M
dos R 1
7 A
To remove the non-linear terms in teh right hand side we consider an equilibrium state
with yo(¢) = a is constant. Then, % = 0 and usbstitution in the differential equations
gives that the equilibrium state determined by « is
xO(t) = (CL,O7 V Mgll)
Expanding the nonlinear terms into Taylor series about z¢(t) and neglecting higher order
d !
terms we can approximate the system by the linear time-invariant system X : d—i =
Bz’ + A where 2}(t) = z;(t) — z0;(t) and
o o
B=|q © "2\3q| and a=|"
R -
0 O ——
7 L
The control matrix ¢(X) is teh 3 x 3 matrix
0 0 2
2 2R F
247 _ 2 )9 L9
[A,BA,B?A] = | 0 Ve 2V
1 _R i
L L2 L3
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4 Dynamical systems.

which is of rank 3 hence ¥ is completely controllable. Observability of the system depends
on which variable we define as the output. First, assume that the output signal is the
distance z; from teh ball to the magnet, that is, C = [170,0]. Then, teh observation
matrix o(Y) is equal to

1 0 0
C
L
C?B = 24/ —
a 0 Ma

and the system is completely controllable. Similarly, if the output is teh speed x5 of the
ball then one verifies complete controllability. However, if our output signal is the current
i, that is, C' = [0,0, 1] then the controllability matrix is

0 0 1
C R
CB | = L
C?B R | g
ey
00 L\ Ma

Thus, the system is not completely controllable. That is, observing only the current i(t) we
are not always able to reconstruct the state of teh system. If however, we would observe

d
the distance y(t) (or the speed d—zt/) we are able to reconstruct the state of the system.

uia 1999
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Week 5

The orbit space.

Usually, a system is a black box, that is, its inner workings are unknown
to us and we can only detect its input/output behavior. Let us restrict to
linear time-invariant dynamical systems which are both completely con-
trollable and completely observable and call such systems Schurian. Of
fundamental importance in system theory is the solution to :

Problem 4. I

Classify Schurian dynamical systems with the same input/output
behavior.

First, we will reduce this problem to the study of GL,-orbits in an open
subset of a certain vectorspace. Assume we have two systems ¥ and Y,
determined by matrix triples from Sys = M, 4, (C) x M, (C) x My, (C)

(A,B,0)

u(t) y(t)

u(t) y(t)

(A,B,C)
producing the same output y(¢) when given the same input u(¢), for all

possible input functions u(¢). We recall that the output function y for a
system X = (A, B, () is determined by

y(1) = CeBU)z (1) +/ Cel™ 98 Au(t)dt.
70
Differentiating this a number of times and evaluating at = = 7y as in the
proof of proposition ?? equality of input/output for ¥ and ¥’ gives the con-
ditions ' '
CB'A=C'B"A’" forall i.




5 The orbit space.

5a. The Kalman code.

As a consequence the systems X and >’ have the same Hankel matrix which
by definition is the product of the observation matrix with the control ma-
trix of the system :

CA‘CBA

C

CBA |[cB2

OB
HE)=| . |[A BA ... B"lA]=

Canl

cB2n2)

Alternatively, we can express this condition in terms of linear maps. Con-
sider the two compositions

Cmn (%) - (Cn - o(¥) (Cpn
cmn c(X') » C" c o(X) (0L

Here, the control maps are onto by complete controllability and the obser-
vation maps are into by complete observability. Equality of input/output
implies equality of the Hankel matrices and so the composed linear maps
Cm™ —— CP™ are equal.

But then, we have for any v € C™" that ¢(X)(v) = 0 < ¢(X')(v) and we
can decompose C"" = V @ W such that the restriction of ¢(X) and ¢(X') to
V' are the zero map and the restrictions to W give isomorphisms with C".
Hence, there is an invertible matrix g € GL,, such that ¢(3) = ge¢(X) and
from the commutative diagram

) o(%)

(Cmn

- C"C ce

(X)) o(X)

(Cmn
we obtain that also o(X') = o(X)g ™.
Consider the system >; = (A, By, C}) equivalent with 3 under the base-
change matrix g. That is, 3, = ¢.3 = (gA, gBg~',Cg™!). Then,

o ce

(A1, BiAy, ..., B 4] = ge(X) = (X)) = [A,B'A,...,B" 1 4]

and so A, = A’. Further, as Bi*'A;, = B'"*'A’ we have by induction on
i that the restriction of B; on the subspace of BIm(4’) is equal to the
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5a. The Kalman code.

restriction of B’ on this space. Moreover, as >/ B /Im(A’) = C" it follows
that B; = B’. Because o(Y') = o(X)g ! we also have C; = C’. This finishes
the proof of :

Proposition 5.1. Let > = (A, B,C) and ¥/ = (A, B', (") be two Schurian
dynamical systems. The following are equivalent

1. The input/output behavior of ¥ and Y are equal.

2. The systems Y. and Y/ are equivalent, that is, there exists an invertible
matrix g € GL,, such that

A'=gA, B ' =¢gBg' and C' =Cg "
This proposition reduces the system theoretic problem to a fabric set-

ting. We consider the linear action of GL, on the vectorspace of matrix
triples defining linear time-invariant dynamical systems

Sys = My (C) X My(C) X Mysn(C)
defined for all g € GL,, by
9.(A,B,C) = (9A,gBg~",Cg ™).

For later reference we depict this action by the pattern

&

® g -®

By definition, a dynamical system ¥ = (A, B, C) is Schurian if (and only if)
the determinant of at least one n x n minor of ¢(X) and o(X) is non-zero.
That is, the subset Sys® of Schurian dynamical systems is open in Sys and
is stable under the G L, -action. Our next job is to classify the orbits under
this action.

We introduce a combinatorial gadget : the Kalman code. 1t is an array
consisting of (n + 1) x m boxes each having a position label (i, 7) where
0<i<nandl1l < j < m. These boxes are ordered lexicographically that
is (7, j") < (i,7) if and only if either i/ < i or i’ = i and j' < j. Exactly n of
these boxes are painted black subject to the rule that if box (i, j) is black,
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5 The orbit space.

then so is box (7', j) for all ' < i. That is, a Kalman code looks like

1 m

We assign to a completely controllable system ¥ = (A, B,(C) its Kalman
code K(X) as follows : let A = [A; Ay, ... A,], that is 4; is the i-th
column of A. Paint the box (i, j) black if and only if the column vector B*A;
is linearly independent of the column vectors B* 4, for all (k,[) < (i, ). The
painted array K (X) is indeed a Kalman code. Assume that box (i, j) is black
but box (7', j) white for i’ < i, then

B'A; = Z anB*A; butthen, B'A;= Z a B A,

and all (k + i —4,l) < (i,1), a contradiction. Moreover, K(3) has exactly
n black boxes as there are n linearly independent columns of the control
matrix ¢(X) when 3 is completely controllable.

The Kalman code is a discrete invariant of the orbit Oy, under the action
of GL,. This follows from the fact that B’A; is linearly independent of the
B* A, for all (k,1) < (i,7) if and only if gB’A; is linearly independent of the
gB* A, for any g € GL, and the observation that ¢B*A;, = (gBg~!)k(gA),.
Next, we will clarify the geometric significance of the Kalman code.

As the Kalman code depends only on the input part (A, B) of the system
¥ = (A4, B,C) we consider the linear action of GL, on the vectorspace of
matrixpairs V = M, ,,,(C) x M, (C) defined by g¢.(A4, B) = (gA,gBg™!).

With V., we will denote the open subset of all completely controllable
pairs (A, B) that is, those for which the rank of the n x nm matrix

[A BA B?A ... B"'A]is maximal. We consider the map
V= Mnxm((c> X Mn((c) v Mnx(n+1)m((c)
(4, B) — [A BA B®A ... B"'A BrA]

The matrix (A, B) determines a linear map ¢4 p) : C"*™ —— C" and
(A, B) is a completely controllable pair if and only if the corresponding
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5b. Grassman manifolds.

linear map (4, p) is surjective. Moreover, there is a linear action of G,
on M, x(n+1)m(C) by left multiplication and the map ¢ is GL,-equivariant
meaning that ¢(g.(A, B)) = gy (A, B).

The Kalman code allows us to find a canonical pair in the orbit O p
when (A, B) is a completely controllable pair. There is a natural one-to-
one correspondence between the boxes in the Kalman code array and the
columns of ¢/(A, B) by sending box (7, j) to the j-th column of the submatrix
B'A.

5b. Grassman manifolds.

The Kalman code induces a barcode on (A, B), that is the n x n minor
of Y(A, B) determined by the columns corresponding to black boxes in the
Kalman code.

(A, B)

By construction this minor is an invertible matrix ¢~! € GL,,. The canoni-
cal element in the orbit O, 5) we have in mind is the pair g.(A, B). It has
the characteristic property that the n x n minor of its image under v, deter-
mined by the Kalman code is the identity matrix 1,. The matrix ¢ (g.(A, B))
will be denoted by b(A, B) and is called barcode of the pair (A, B). We now
claim that the barcode determines the orbit uniquely.

In fact, the map ¢ is injective on the open set V, of completely control-
lable pairs. Indeed, if

[A BA ... B"A|=[A" B'A ... B"A]
then A=A’ B | Im(A) = B’ | Im(A) and hence by induction also
B| B'Im(A) = B'| B'Im(A") foralli<n— 1.

But then, B = B’ as both pairs (A, B) and (A, B’) are completely control-
lable, that is, 37" B'Im(A) = C* = .7~ B"Im(A’). Hence, the barcode
b(A, B) determines the orbit O 4 5) and is a point in the Grassman manifold
Gras, (C™+D),

We recall briefly the definition of the Grassman manifolds. Let & < [ be
integers, then the points of Grassman manifold Gras,(C!) are in one-to-one
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5 The orbit space.

correspondence with k-dimensional subspaces of C'. For example, if k£ = 1
then Gras,(C') is the projective | — 1-space P'~!. We know that projective
space can be covered by affine spaces defining a manifold structure on it.
Also Grassman manifold admit a cover by affine spaces.

Let W be a k-dimensional subspace of C' then fixing a basis {w;, ..., w}
of W determines an k£ x [ matrix M having as i-th row the coordinates of w;
with respect to the standard basis of C'. Linear independence of the vectors
w; means that there is a barcode design I on M

w1

.

W
i1 in Ce

where I =1 <i; <iy < ... <1, <[ such that the corresponding & x £ minor
M of M is invertible. Observe that M can have several such designs.

Conversely, given a k x [ matrix M of rank k determines a k-dimensional
subspace of | spanned by the transposed rows. Two k& x [ M and M’ matri-
ces of rank k£ determine the same subspace provided there is a basechange
matrix ¢ € GL; such that gM = M’. That is, we can identify Grass;(C')
with the orbit space of the linear action of G, by left multiplication on the
open set M]%"(C) of Mj.;(C) of matrices of maximal rank. Let I be a bar-
code design and consider the subset of Grass;(C')(I) of subspaces having a
matrix representation M having [ as barcode design. Multiplying on the
left with M, ! the G L;-orbit O,; has a unique representant N with N; = 1.
Conversely, any matrix N with N; = 1, determines a point in Grass;(C')([).
Thus, Grass;,(C')(I) depends on k(I — k) free parameters (the entries of the
negative of the barcode)

=

ik

wi

7,'1 i2 “ e ik

I

and we have an identification Grass;(C!) —— C*!~%, For a different bar-
code design I’ the image 7;(Grass,(C')(I)NGrass,(C)(I')) is an open subset
of C*U=%) (one extra nonsingular minor condition) and 7 o 7r; ! is a diffeo-
morphism on this set. That is, the maps 7; provide us with an atlas and
determine a manifold structure on Grass;(C').

Applying the foregoing construction, the barcode b(A, B) determined by
the Kalman code determines a unique point in Grass,(C™"*1), We have
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5b. Grassman manifolds.

the following diagram

(]

Ve ——— M55 011 (C)

\/

Grass,(C™n1)

where 1 is a GL,-equivariant embedding and x the orbit map. Observe
that both ¢ and 'chi are clearly continuous maps, hence so is the orbit map
b. Observe that the barcode matrix b(A, B) shows that the stabilizer of
(A, B) is trivial. Indeed, the minor of ¢.b(A, B) determined by the Kalman
code is equal to g. Moreover, continuity of b implies that the orbit O, p) is
closed in V..

Our final aim is to prove that ¢ is a diffeomorphism to a locally closed
submanifold of M, ,,(n+1)(C). To prove this we have to consider the differ-
ential of 1. We recall briefly the definition of a differential. Consider a
map

f= ) . CF—C
with all the f; differentiable complex valued maps in the coordinate func-
tions z; of C*. For a point p € C* the differential of f at p is a linear map

df, : T, C* ~ C" — C' = Ty, C'
between the tangent space to C* in p and the tangent space to C' in the

image f(p). This linear map is determined by the matrix

Oh gy .. 9y,

0xy oxy,

€ My k(C)
ofi ofi
9, P ()
When all the f; are polynomials in the variables z; we can compute the
differential map by the e-method : compute f;(p + ev) bearing in mind that
€2 = 0, then one has

f(p+ev) = f(p) +edf,(v) forallveT,C"

If df, is injective, then the implicit function theorem implies that the image
of f is locally around f(p) a closed submanifold of dimension n in C'.

All the coordinate functions of ) are polynomials in the coordinates of
W. For all (A, B) € W and (X,Y) € T(4,5(W) ~ W we have
-1
(B+eY)Y(A+eX)=B"A+¢(B"X + ) BYB"!'A).
i=0
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5 The orbit space.

Therefore the differential of ¢ in (A, B) € W, diy(4,5)(X,Y) is equal to
[X BX+YA B)X+BYA+YBA ... B"X +Y. "/ BlYB"1-4].

Assume di)(4 p)(X,Y) is the zero matrix, then X = 0 and substituting in
the next term also YA = 0. Substituting in the third gives Y BA = 0, then
in the fourth Y B2A = 0 and so on until Y B""' A = 0. But then,

Y[A BA B*A ... B"'A]=0.

If (A, B) is a completely controllable pair, this implies that Y = 0 and hence
shows that di 4 p) is injective for all (A, B) € V..

By the implicit function theorem, ) induces a GL,-equivariant diffeo-
morphism between the open subset V. of completely controllable pairs and
a locally closed submanifold of M, (,+1)m(C)™**. The image of this subman-
ifold under the orbit map y is again a manifold as all fibers are equal to
GL,. This concludes the difficult part of the Kalman theorem :

Theorem 5.2. The orbit space O. = V,./GL, of equivalence classes of com-
pletely controllable pairs is a locally closed submanifold of dimension m.n

of the Grassman manifold Grass,(C™"tV). In fact V, s 0. is a principal
GL,-bundle.

To prove the dimension statement, consider V.(K) the set of completely
controllable pairs (A, B) having Kalman code K and let O.(K') be the image
under the orbit map. After identifying V.(K) with its image under 1), the

barcode matrix b(A, B) gives a section O,(K) —— V,(K). In fact,
GL, x OC(K) - VC(K)

(9,2) = g.s()

is a GL,-equivariant diffeomorphism because the n x n minor determined
by K of g.b(A, B) is g. Apply the local product decomposition to the generic

Kalman code K
—

uia 1999

lieven le bruyn



5b. Grassman manifolds.

obtained by painting the top boxes black from left to right until one has n
black boxes. Clearly V.(KY) is open in V. and one deduces

dim O, = dim O.(K9) = dim V.(K?) — dim GL, = mn +n® —n* = mn.

The Kalman theorem implies immediately the existence of an or-
bit space for completely controllable and Schurian systems. Indeed, let
¥ = (A, B,C) completely controllable and let ¢ = g5 € GL, be the
uniquely determined basechange such that ¢.(A, B) = b(A, B), then we have
a canonical representant (gA,gBg~',Cg™ ') in the orbit Os. As the stabi-
lizer Stab(A, B) is trivial the orbits of (A, B,C) and (A, B, (") are distinct if
C = ('. That is the natural projection pr;

SySC pr3 . ‘/C

\

Sys./G L, — O,

descends to define an orbit space which is an A, (C)- bundle over O.
and hence is a manifold. The Schurian systems Sys, form a GL,-stable
open subset of Sys. and hence their orbit space is an open submanifold of
Syse/GL,. This concludes the solution to problem []:

Theorem 5.3. Let Sys. (resp. Syss) the the open subset of Sys = M, xm(C) X
M,,(C) x M,«,,(C) determined by the completely controllable (resp. Schurian)
linear dynamical systems.

1. The orbit space for the G L, action on Sys. exists and is a vectorbundle
of rank pn over O..

2. The orbit space for the G L,-action on Sys, exists and is a manifold of
dimension mn?p.
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Week 6

The slice space.

Another important problem in system theory is to determine how a system
can change under small perturbations. That is, given a completely control-
lable pair (A, B) or system > = (A, B, ('), we want to construct a slice giving
unique representants in nearby orbits.

Problem 5. I

Construct a slice for completely controllable systems. ‘

Consider first the case of a controllable pair p = (A, B). By a slice we
mean a submanifold S of V' = M,,,,,(C) x M,,(C) passing through (A, B) and
such that we have a GGL,-equivariant diffeomorphism

GL,xS——V givenby (g,8)+— g.s

in a neighborhood of (A, B). Hence, near (A, B) an orbit intersects S
uniquely. We have the following situation

7




2 6 The slice space.

6a. Slice representation.

In order to determine a good candidate for S let us compute the differential
of the action map

GL, xV —+V definedby (g,(A",B))— (94, gBg™")

in the point (1,,p) where p = (A, B). Because GL,, is an open submanifold of
M, (C) we know that Ty GL, = M,(C) = {1, +em | m € M,(C)}. Similarly,
the tangent space 7, V =V and can be identified with {(A+¢ X,B+¢Y) |
X € M« (C),Y € M,(C)}. By the e-method to compute the differential we
have to expand

((l+em)(A+eX), (,+em)(B+eY)(Tl,—em))
which is equal to
(A,B) + € (X +mA,Y + [m,B]) where [m,B]=mB— Bm.
That is, the differential of the action map in the point (1,, p) is given by
da(/ﬂmp)(mv (Xa Y)) = (X + mA? Y + [ma B])

Likewise, we can compute that the differential of the orbit map GL,, —— V
of O (4, p) defined by g — ¢.(A, B) in the point 1, is given by the linear map

doq (m) = (mA,[m, B]).

Observe that doq is injective. For if mA = 0 and mB = Bm then for all i
we have that mB‘A = B'mA = 0 whence m [A BA ... B"'A] = 0. But
then m = 0 by complete controllability of (A, B).

The tangent space 7, O4,5) in p = (A, B) to the orbit is the subset of
pairs (A4, B) + Im dog = {(A+mA, B+ [m, B]) | m € M,(C)}. Take S to be
the normal space in p to the orbit O, ). Thatis, S = (A, B) + (Im doq )*
where (Im doq )* is subspace of V orthogonal to I'm doq .

TP(O)/> @
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6a. Slice representation. 3
Here, orthogonality is meant with respect to the Hermitian inner product
onV = M,.n(C) x M,(C) defined by

(A1, B1), (A2, B)) = Tr(AA;) + Tr(BiB;)
where T is the trace on n x n matrices and X is the Hermitian transpose,
that is if U = (u;;); ;, then U = (Tij)ji- Now, (Im doq )* is the subspace of
pairs (X,Y) such that for all m € M, (C) we have

0= ((mA,[m,B)]),(X,Y)) =Tr(mAX")+Tr(lm,B]Y")
= Tr(mAX") + Tr(m[B,Y"])
— Tr(m(AX" +[B,Y"]))

where we used that traces of products are the same for cyclic permutations
of the factors. By the non-degeneracy of the trace on 1, (C) (that is, n = 0
if and only if 7'r(mn) = 0 for all m € M,,(C)) we conclude from this that

(Im dog )* = {(X,Y) | AX" +[B,Y"] = 0}.
Theorem 6.1. Let p = (A, B) be a completely controllable pair. Then the
manifold

S={(A+X,B+Y)| AX" +[B,Y"] =0}
is a slice for the action of GL, on V in p = (A, B).

By the implicit function theorem the action map GL, x S — V is a
diffeomorphism in p = (A, B) if and only if the differential
da(/ﬂn,p) : T’Un GL, ® T, S — ,V=V

is a linear isomorphism. We have seen that Ty GL, = M,(C) = Im doq,
and that T, S = (Im dog )* so the dimensions of both left factors add up to
dim V. It therefore suffices to check injectivity of the differential. We have
calculated that

da(’ﬂn,p) (mv (X7 Y)) = (mA + Xv [mv B] + Y)
Assume that X = —mA and Y = —[m, B] then because (X,Y) € (Im doq )*
we have ((X,Y), (X,Y)) = 0 whence X =0 and Y = 0. But then as mA =0
and mB = Bm and (A, B) is completely controllable we also have m = 0
finishing the proof of the slice theorem.
lieven le bruyn uia 1999



6 The slice space.

6b. Control canonical form.

The determination of the slice S is particularly simple in the point (A’, B’)
of the orbit O(4 ) where (A’, B') is in control canonical form. This canonical
form is similar to the Jordan normal form and is determined by the Kalman
code K associated to the completely controllable pair (A, B). Assume K has
the following shape :

J1j2d3 o Jk oo Jt

riIir

1 m

Here, 1 < j; < ... < j; < m form the set J of integers j such that the box
(0, 7) is painted black, hence ¢t = #.J = rank A. For each j, € J define b, to
be the number of painted boxes in the j-th column of K.

With notations as above, prove that there is a base-change matrix g €
GL, such that g.(A, B) = (A’, B’) where the n xn matrix B’ has the following
block form

n 1

by 1

where the nonzero entries are in one of the identity matrix components
Tp,—1 or in the painted stripes which represent one row. The off-diagonal
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6¢c. Another slice result.

block B;; is a b; x b; matrix of one of the following types

b, {
Q
b;
b
2

depending on whether b; < b; or b; < ;. The diagonal block B;; is a b; x b;
matrix of the form

by

3

The n x m matrix A has the following block structure :

m{

‘ =
. =
=

{

6¢c. Another slice result.

Finally, we will generalize the slice construction to dynamical systems > =
(A, B,C) which are completely controllable. We define an Hermitian inner
product on Sys = M« (C) x M,(C) x M,.,(C) by the rule

<(A1, Bl, Cl); (AQ, BQ, CQ>> = T?"(Alz?) + TT(Blggr) + TT(@ZC&)

This time, the differential of the orbit map GL, —— Sys defined by g —
g.(A, B, () is computed by expanding the expression

((tem)(A+eX), (h+em)(B+eY)(l—em), (C+eZ)(T,—em))
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6 The slice space.

and we obtain that the image of the orbit map doq consists of the triples
Im dog = {(mA,[m,B],-Cm) | m € M,(C)}.

Again, using non-degeneracy of the trace map on n x n matrices one can
identify the orthogonal complement of this space as the subspace

(Imdog )" = {(X,Y,2) | AX" +[B,Y"] - Z"C =0}
From this we again construct a slice as in the proof of theorem |6.1.

Theorem 6.2. Let > = (A, B,C) be a completely controllable system. Then
the manifold

S={(A+X,B+Y,C+2) | AX" +[B,Y']-Z"C =0}

is a slice for the G L,-action on Sys in X.
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Week 7

Hilbert schemes.

Consider completely controllable pairs of matrices (A, B) with m = 1. That
is, A = v is a column vector and we must have that

B(v)=[v Bv B* ... B" ']

has rank n, or equivalently, v is a cyclic vector of B. There is only one
Kalman code K (v, B) possible, the generic one. The barcode b(v, B) of the
pair (v, B) is the matrix B(v)~' [B(v) B"v]. That is, we have :

0

n an

K(v,B) = and b(v,B) =

1

Hence, the orbit space O.(1,n) ~ C" and the point (ay,...,a,) € C" corre-
sponding to the orbit of (v, B) is determined by the characteristic polyno-
mial of B :

xB(t) = det(tl, — B) = t" —a,t" ' — ... — ast — ay.

Hence, we can identify the orbit space O.(1,n) with the space of all monic
polynomials in C[t] of degree n. Such polynomials f(¢) are uniquely deter-
mined by their unordered n-tuple of roots {\,...,\,} as

n

F&y=TJt=2) =t"—ant"" — ... —ast —ay

i=1




7 Hilbert schemes.

where a;11 = (=1)"'o,_i(\1, ..., \,) with o; the j-th elementary symmetric
function in the ).

That is, we can also identify O.(1,n) with Hilb,(C"), the Hilbert scheme
of n points in C'. The points of Hilb,(C') parametrize the ideals I < C[t] of
codimension n and as C[t] is a principal ideal domain such ideals have a
unique monic generator of degree n.

The symmetric product S™ C! of n copies of C' is defined to be

S"Cl=C!'x...xC'/S,
—————

n

where the symmetric group on n-letters S, acts on the entries. A point of
S™ C! is represented as a formal sum Y, n;[u;] where n; € Nwith Y .n;, =n
and p; € C'. In this case, the Hilbert-Chow map

Hilb, C' = 5" C!
defined by sending a monic polynomial f(t) of degree n to >, n;[1;] where
the p; are the roots of f(t) occurring with multiplicity n;, is a one-to-one
correspondence. Observe that the numbers n; determine (when ordered) a
partition of n and that the projection

Clx...xCl — s C!
~——— ———

n

is defined by sending an n-tuple (¢i,...,¢,) to (s1,...,s,) where s; =
oi(c, ..., cn). So, we still have another description of the orbit space O.(1,n)
as S C!'. However, all these identifications are particular to dimension 1.

Let us consider :
Problem 6. I

Describe Hilb, C?, the Hilbert scheme of n points in the plane C2. That is,
parametrize all ideals I < C|z, y] of codimension n.

Let I <« C|x,y| be such that V' = Cl. y]

and fix a basis {vy,...,v,} of V. Multiplication by z (resp. y) on C|z,y| in-
duces a linear operator on V' and hence determines a matrix X € M, (C)
(resp. Y € M,(C)). Clearly, [X,Y] = 0 and they generate an n-dimensional

subalgebra C[X, Y] ~ Cle. vl of M, (C). Further, the image of the unit ele-

ment 1 € C[z,y| determines a column vector v € V' = C" with the property
that

is an n-dimensional vectorspace

C[X,Y]v =C".
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7a. An example.

Note however that the triple (v, X,Y) € C" & M, & M, is not uniquely
determined by the ideal I as it depends on the choice of basis of V. If we
choose a different basis {v, ..., v/} with basechange matrix ¢ € GL,,, then
the corresponding triple is

(v, X" Y') = (gv,9Xg ™', gYg ™).
Consider the vectorspace of all triples
H,=C"® M, ® M, withaction g¢.(v,X,Y) = (gv,gXg ', gYg ")

for all ¢ € GL,,. For later reference, we depict this action by the pattern

o

The above discussion shows that the ideal / < C|z, y] of codimension n de-
termines an orbit O; in H,. Conversely, let C¢ be the subset of triples
(v, X,Y) € H, satisfying the additional conditions :

1. The matrix pair commutes : [X,Y] = 0, and
2. v is a cyclic vector for this pair : C[X,Y]v = C".

For (v, X,Y) € C¢ we can define a map C|[z, y] o by sending a polyno-
mial f = f(z,y) to the vector ¢(f) = f(X,Y)v. By the second condition, ¢ is
surjective and therefore, its kernel 7 = {f € C[z,y] | ¢(f) = 0} is an ideal
of codimension n. That is, the Hilbert scheme Hilb, C? of n points in the
plane C? is the orbit space for the G'L,-action on the subset C¢.

7a. An example.

‘ Miniature 5. The Hilbert scheme Hilb, C2.

Let us first consider the Hilbert scheme H3ilb, C? of one point in C? which we expect to
be C2. Indeed, H; = {(v, X,Y) | v, X,Y € C} and any pair (X,Y) is commuting. Moreover,
vis cyclic for (X,Y) if and only if v # 0. That is, C{ = C* x C x C. The group GL; = C* acts
via c.(v, X,Y) = (cv, X,Y) and hence the triples {(1, X,Y)} = C? parametrize the orbits of
Cf, that is, Hilb; C?> = C? and the ideal I of codimension one corresponding to the point
p=(X,Y) € C? is the ideal of polynomials f € C[z,y] vanishing in p, f(X,Y) = 0.

Next, we consider the Hilbert scheme Hilby C? of two points in C2. Let (v, X,Y) € C§
and assume that either X or Y has distinct eigenvalues (type a). As

[[161 ZHZ Z}}:[(VQ—OW)G (Vl_oVQ)b
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4 7 Hilbert schemes.

we have a representant in the orbit of the form

( U1 )\1 0 M1 0 )
(%) ’ 0 )\2 ’ 0 H2
where cyclicity of the column vector implies that v;v, # 0. The stabilizer subgroup of the

matrix-pair is the group of diagonal matrices C* x C* —— GL,, hence the orbit has a
unique representant with v; = v = 1. The corresponding ideal I < Clz, y] is then

I'={f(z,y) € Clz,y] | f(A1, 1) =0 = f(A2, p2)}

hence these orbits in C§ correspond to sets of two distinct points in C2.
The situation is slightly more complicated when X and Y have only one eigenvalue
(type b). If (v, X,Y) € CS then either X or Y is not diagonalizable. But then, as

[ v 1 a b = c d—a
0 v|’|c d|' |0 c
we have a representant in the orbit of the form
( vi| |[A al |p B )
va| [0 A[T|0 w
with [a : 8] € P! and vy # 0. The stabilizer of the matrixpair is the subgroup

{[8 ﬂ|c¢0}L»GL2

and hence we have a unique representant with v; = 0 and v2 = 1. The corresponding ideal
I<«Clz,y] is

I={f(z.y) €Clr.y] | f(\ ) =0 and a%w)m%u,m —0)

as one proves by verification on monomials because

A al® T BY[0] | [kadR=1ul 4+ 18kl
0 A |0 pl| 1] NFpt
Therefore, I corresponds to the set of two points at (\, u) € C? infinitesimally attached to

each other in the direction O‘a% + ﬁa%. For each point in C? there is a P! family of such fat
points. Thus, points of Hilb; C? correspond to either of the following two situations :

c? c?

type a type b

The Hilbert-Chow map Hilbs C2 —— $2 C2 sends a point of type a to the formal sum
[p] + [p'] and a point of type b to 2[p]. Over the complement of (the image of) the diagonal,
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7b. Hilbert stairs.

this map is a one-to-one correspondence. However, over points on the diagonal the fibers
are P!, sor is not a one-to-one correspondence as in the case of Hilb,, C'. The situation is
nicer for C!' because there points can only collide along one direction, whereas in C? they
can approach each other along a P! family of lines leading to different ideals. In fact, the

symmetric power S2 C2 has singularities and the Hilbert-Chow map Hilb, C2 —» §2 C2
is a resolution of singularities.

7b. Hilbert stairs.

For the investigation of the GL,-action on H, and on the subset C¢ we
introduce a combinatorial gadget : the Hilbert n-stair. This is the lower
triangular part of a square n x n array of boxes

filled with go-stones according to the following two rules :
e each row contains exactly one stone, and
e each column contains at most one stone of each color.

For example, the set of all possible Hilbert 3-stairs is given below.

@ @ o [e) O O
ol | o o |e | O J

Let C(z, y) be the free associative algebra on the non-commuting variables
and y. That is, C(z, y) is the vectorspace with basis all words in x and y and
with multiplication induced by concatenation of words. To every Hilbert
stair we will now associate a sequence of words in = and .

At the top of the stairs we place the identity element 1. Then, we de-
scend the stairs according to the following rule. Every go-stone has a top
word T which we may assume we have constructed before and a side word
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6 7 Hilbert schemes.

S and they are related as indicated below

For example, for the Hilbert 3-stairs we have the following sequences of
non-commutative words

1 1 1 1 1 1
® - ® - ® - Ol v Ol v Ol v
O y Q. Ol» | @ x Ol @ v

Let o be a Hilbert n-stair with associated sequence of non-commutative
words W (o) = {1,ws(z,y),...,w,(z,y)}. Let (v,X,Y) € H, then replacing
each occurrence of = in the word w;(z,y) by X and each occurrence of y
by Y we obtain an n x n matrix w;(X,Y) € M,(C) and by left multiplica-
tion a column vector w;(X,Y)v. We call the evaluation of o in (v, X,Y’) the
determinant of the n x n matrix

o(v,X,Y)=det [v wi(X,Y)v wo(X,Y)v ... wu(X,Y)v].

For a fixed Hilbert n-stair ¢ we denote with H,(c) the subset of triples
(v, X,Y) € H, with non-zero evaluation o(v, X,Y) # 0. We claim that
none of the H,(c) is empty. Indeed, let v be the basic column vector
ep=[1 0 ... 0 " and let every black stone in the Hilbert stair o fix a
column of X by the rule that if it lies in box (7, j) the j-th column of X is

the basic column vectore; = [0 ... 0 1 0 ... 0] " (a1 at place i)

1 0

L

n =l X - o

and the same rule applies to white stones determining columns of Y. That
is, one replaces each stone in o by 1 at the same spot in X or Y and fills the
remaining spots in the same column by zeroes. We say that such a triple
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7b. Hilbert stairs.

(v, X,Y) is in o-standard form. With these conventions one easily verifies
by induction that

wi(X,Y)e; =¢; forall2 <i<n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that
o(v,X,Y) # 0 proving the claim. Hence, H,(c) is an open subset of H,
for every Hilbert n-stair o. Further, for every word (monomial) w(z,y) and
every g € GL, we have that

w(gXg' gYg Mgv = guw(X,Y)v

and therefore the open sets H, (o) are stable under the GL,-action on H,.
We will give representants of the orbits in H, (o).

Let W, = {l,z,y,2y,...,y"} be the set of all words in the non-
commuting variables x and y of length < n, ordered lexicographically. For
every triple (v, X,Y) € H,, consider the n x m matrix

Y, X, Y)=[v Xv Yo XYv ... Y™

where m = 2! — 1 and the j-th column is the column vector w(X,Y)v with
w(x,y) the j-th word in W,,. Hence, (v, X,Y) € H,(0) if and only if the n x n
minor of ¢(v, X,Y) determined by the word-sequence {1, ws,...,w,} of o is
invertible. Moreover, as

U(gv,gXg~ ', gYg™") = gu(v, X,Y)
we deduce that the GL,-orbit of (v, X,Y) € H,(0) contains a unique triple
(v, X', Y") such that the corresponding minor of ¢ (v, X', Y’) = 1,. Hence,
each GL,-orbit in H, (o) contains a unique representant in o-standard form.
Therefore, the orbit space O,,(c) of H,(0) is an affine space of dimension the
number of non-forced entries in X and Y. As we fixed n — 1 columns in X
or Y this dimension is equal to

O.(0)=CF with k=2n?—(n—1)n=n+n.

For example, representants for the orbits in Hj3(o) are given by (v, X,Y)
withv=[1 0 0]” and

0 0 ® O] O O
ol | e Ol ° Ol ()
[ bl [0 0 «a i bl [0 bl [a cl [a 0 0]
X | |1 d 1 0 1 d 0 d d e f 0 d
i fl [0 1 i fl 1 fl g h i] |e 1 f]
[0 g Al [d e f (g 0 Rl [0 g R] [0 O 5] [0 g Al
Y0 ¢ j g h i 1 0 g 1 i j 1 0 k 1 i j
1 k j k1 1 1 0 k 1 1 1 ko1
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7 Hilbert schemes.

We define the subset H¢ of cyclic triples, that is those (v, X,Y) € H, such
that there exists no proper subspace W C C" containing v and stable under
the action of X and Y, that is, XWW Cc W and YW C W. If we denote with
C(X,Y) the (not necessarily commutative) C-subalgebra of A, (C) gener-
ated by the matrix-pair (X,Y), then (v, X,Y) is a cyclic triple if and only
if
C(X,Y)v =C"

Hence, clearly H, (o) C HE for any Hilbert n-stair 0. Conversely, we claim
that a cyclic triple (v, X,Y’) € H¢ belongs to at least one of the open subsets
H,(0). Indeed, either Xv ¢ Cv or Yv ¢ Cuv as otherwise the subspace
W = Cv would contradict the cyclicity assumption. Fill the top box of the
stairs with the corresponding stone and define the 2-dimensional subspace
Vo = Cuy + Cuy where v; = v and vy = wy(X,Y)v with w, the corresponding
word (either z or y).

Assume by induction we have been able to fill the first : rows of the
stairs with stones leading to the sequence of words {1, ws(x,y), ..., w;(x,y)}
such that the subspace V; = Cv;+. . .+Cuv; with v; = w;(X, Y)v has dimension
i. Then, either Xv; ¢ V; for some j or Yv; ¢ V; (if not V; would contradict
cyclicity). Then fill the j-th box in the i + 1-th row of the stairs with the
corresponding stone. Then, the top i + 1 rows of the stairs form a Hilbert
i + 1-stair as there can be no stone of the same color lying in the same
column. Define w;1(x,y) = zw;(z,y) (or yw;(z,y)) and v;1; = w1 (X, Y)v.
Then, V;,; = Cv; + ... + Cv;;; has dimension i + 1. Continuing we end up
with a Hilbert n-stair ¢ such that (v, X,Y) € H,(o). This concludes the
proof of the following result.

Theorem 7.1. The orbit space O, for the G L,-action on the open subman-
ifold H¢ of cyclic triples is a manifold of dimension n? + n.
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Week 8

Hilbert manifolds.

Recall that C¢ is the subset of the affine space H,, = C"& M,, & M,, consisting
of those triples (v, X,Y’) such that [ X, Y] = 0 and v is a cyclic vector for the
pair (X,Y). Clearly, C¢ is a subset of the open submanifold of cyclic triples
He.

We aim to show that C° is a manifold of dimension n? + 2n. This is
slightly surprising as the closely related commuting variety

C={(X,Y)e M, M,|[X,Y] =0}

is known to have singularities. In fact, not much is known about this com-
muting variety except that it is connected.

8a. A slice argument.

Consider the vectorspace 0, = C* ® C™ @& M, & M, where C™* denotes the
n-dimensional vectorspace of row vectors. We define a linear action of GL,,
on (), by the rule

g-(v,w, X,Y) = (gv,wg ™", gXg ', 9Yg ")

for all ¢ € GL,,. For later reference, we depict this action by the pattern

Observe that modding out the row vectors gives a surjection Q,, —» H,
which is GL,-equivariant. With Q¢ we will denote the open submanifold




2 8 Hilbert manifolds.
v HQ¢) of eyclic quartets. Consider the map
@n : M,
(v,w, X,Y) — vaw + [X,Y]

The differential dx of this map is computed by expanding (v + ea)(w + €b)
+[(X + €C), (Y 4 €D)] which shows

dX(ww,x,v)(a,b,C,D) =v.b+aw+ [X,D] + [C,Y]

We claim that the differential is surjective whenever (v, w, X,Y) is a cyclic

quartet. Consider the Hermitian inner product (M,N) = Tr(M Ntr) on
M, (C), then the space orthogonal to the image of dx (.. x,v) is equal to

{M € M,(C) | Tr(vbM" + awM" + [X,DIM" +[C,Y]M'") = 0,¥(a,b,C, D)}

Because T'r does not change under cyclic permutation and is non degener-
ate on M, (C), we see that this orthogonal space is equal to

{M € M,(C) | M"v=0 wM =0 [M",X]=0 and [y,M"]=0}.

If (v,w,X,Y) is a cyclic quartet, for such a matrix M we have that the
nullspace Ker M isa proper subspace of C" containing v and stable under
X and Y. By the cyclicity condition this implies that Ker M = C"or
equivalently that M= 0, proving the claim. By the implicit function
theorem this implies that the fiber of any point in the image of x

x~1(0)

QL My

is a submanifold of Q¢ of dimension dim Q,,—dim M, = n*+2n. In particular,
x1(0) is a submanifold of dimension n? + 2n. We will now identify the fiber
x~1(0) with the subset C¢ and hence prove :

Proposition 8.1. The subset C¢ of cyclic triples (v, X,Y ) with [X,Y]| =01is
a submanifold of dimension n? + 2n of H,,.
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8a. A slice argument.

Indeed, let (v, w, X,Y") be a cyclic quartet satisfying v.w + [X,Y] = 0 and
let m(x,y) be any word in the non-commuting variables = and y. We claim
that wm(X,Y)v = 0. We prove this by induction on the length [(m) of the
word m. If [((m) = 0 then m = 1 and we have

wm(X,Y)v =wv =Tr(vaw) =-Tr([X,Y]) =0.

Assume we proved the claim for all words of length < [ and take a word of
the form m(x,y) = my(z, y)yzma(x,y) with [(m;) + [(m2) + 2 = [. Then, we
have
wm(X,Y) = wm(X,Y)Y Xmy(X,Y)
= wm (X, Y)([Y, X] + XY)ma(X,Y)
= (wm(X,Y)v)wmse(X,Y) +wmi(X,Y)XYmy(X,Y)
= wm(X,Y)XYmy(X,Y)

where we used the induction hypotheses in the last equality (the bracketed
term vanishes). Hence we can reorder the terms in m(z,y) if necessary
and have that wm(X,Y) = wX"Y" with [, + I, = [ and [/; the number of
occurrences of x in m(z,y). Hence, we have to prove the claim for XYz,

wXhYbly = Tr(XbYlow)=-Tr(X4Y2[X,Y])
= —Tr(XY%, X]Y) = —Tr(X"[Y, X]Y)
= Y Tr(X Y X]Y ) = — Y (v Xy Y, X
— SR Tr(YETiX Y ivaw = — 32wy i XYy
But we have seen that wY 2~ XY’ = wX"Y" hence the above implies that
wXhYy = —[LbwX"Y"2y. But then wX"' Y2y = 0, proving the claim.
Consequently, wC(X,Y)v = 0 and by the cyclicity condition we have

wC™ = 0 hence w = 0. Finally, as v.w+[X, Y] = 0 this implies that [ X, Y] =0
and we can identify the fiber x ' (0) with C¢ (identifying H, with the closed
submanifold of ),, where w = 0), finishing the proof of proposition (8.1.
Recalling that the Hilbert scheme Hilb, C? is the orbit space of the GL,,-
action on C; we have the situation

¢, ——— H,

Hilb,, C* —— O¢
We will construct a slice for the GL,-action on C¢. First, consider the orbit

map GL, — H,, for a point (v, X,Y) € H: defined by g — ¢.(v, X,Y). The
differential of this map in the point 1, is given by the linear map

doq, : M,(C) — H, where doq (m)= (mv,[m,X],[m,Y])
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8 Hilbert manifolds.

as one verifies as in the previous section. Observe that this differential
is injective whenever (v, X,Y) € H¢. Indeed, if m satisfies mv = 0 and
[m, X] =0 = [m,Y] then the nullspace Ker m is a subspace of C" containing
v and stable under X and Y so must be C* whence m = 0. Define an
Hermitian inner product on the vectorspace H, by the rule

(01, X1, Y1), (v3, Xa, Ya)) = Tr(010 + X, Xy + Y1V ).

The subspace of the tangentspace H, in (v, X,Y’) orthogonal to Im doq is
then the subspace of triples (a, C, D) such that

0 = Tr(mva™)+Tr([m, X]C") + Tr(m,Y]D")
= Tr(m(va" +[X,C"]+[Y,D"])

Again using the non-degeneracy of the trace map on n x n matrices, we
have

(Im dog )" = {(a,C,D) € H, | va" + [X,C"] + [V, D"] = 0}

which is of dimension n? + n (using injectivity of doq ). Reasoning as in the
foregoing section we obtain the slice.

Proposition 8.2. Let (v, X,Y) € HS, then the n*+n-dimensional manifold
S={(v+a,X+CY +D)|va +[X,C"+[Y,D"] =0}
is a slice for the action of GL,, on H, in (v, X,Y).

Now let (v, X,Y) € C¢, that is, assume that [X,Y] = 0. We have seen
that C¢ is a submanifold of dimension n?+2n. Thus, the tangentspace to C¢
in p = (v, X,Y) is of dimension n? + 2n. This is the subspace (a,C, D) € H,
such that [X + ¢C,Y + eD] = 0, that is

Observe that as C} is G'L,-stable the image of doq is contained in the
tangentspace (can be checked immediately using the Jacobi identity and
[X,Y] = 0). Therefore, the orthogonal complement of /m dog in the tan-
gentspace is of dimension n? + 2n — n? = 2n.

Proposition 8.3. Let (v, X,Y) € C, then the 2n-dimensional manifold S’
{(v+a,X+C,Y +D)|va” +[X,C"]+[v,D"] =0and [X,D] + [C,Y] = 0}
is a slice for the GL,-action on C¢.

Because the dimension of the slice is independent of the point in C¢ this
concludes the proof of the following result.

Theorem 8.4. The Hilbert scheme Hilb, C? of n points in C? is a manifold
of dimension 2n.
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8b. The Hilbert game.

8b. The Hilbert game.

The determination of the slice is easier in a triple (v, X,Y) in standard
o- form for a Hilbert n-stair 0. In fact the description of O, () is a slice
for the action of GL,, on H,(c). It is an interesting exercise to determine
the covering of Hilb, C? by the 2n-dimensional submanifolds Hilb, C*(o) =

Hilb, C2N O,(0) of O,(c) = C**". For example, consider Hilb, C2( L) ).

Because
[O al |c d]_ ae —d  af —ac—bd
1 b|'|le f|° |ec+tbe—f d— ae
this subset can be identified with C* using the equalities d = ar and f =
¢ + be. Similarly, one has identifications

O o
Hilby C2(1O] 1) = ¢ = Him, c2(|_|®))

However, for Hilbs C*( ) the description is more complicated. Observe
that some of these intersections may be empty. For example, consider the
Hilbert 5-stair

0
O

o
05 — O ‘

then the associated series of words is {1, z,y, 2y, yz} whence (v, X,Y) =0
whenever [X, Y| = 0. Hence all Hilbert stairs ¢ containing o5 (that is, if we
recover o5 after removing certain rows and columns) satisfy Hilb, C*(0) =

0.

Call a Hilbert n-stair o a forbidden position if Hilb, C?(o) is empty. A
forbidden position of minimal size is called a blocking position. Examples
of blocking positions are o5 above and the Hilbert 6-stairs

O

O

.‘ and O‘

Determine all blocking positions for small n (up to color changes). Con-
sider the following two person game on an n-stair. Left and right take
turns where left places bLack stones and right white stones according to
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8 Hilbert manifolds.

the Hilbert n-stair rules. The person unable to move or forced to move to a
forbidden position is declared the looser. Determine the values of positions
for small n following the rules of combinatorial game theory as explained
in J.H. Conway’s "On Numbers and Games”. For example,

O

Ol [ J=(LIo[ [} LIOLT h=qyo

8c. Connectedness.

We have shown that Hilb, C? is a manifold of dimension 2n. A priori it may
have many connected components (all of dimension 2n). We will now show
that Hilb, C? is connected. As there is clearly a component of Hilb, C? of
which points in general position correspond to n distinct points in C?, this
result implies that any fat n-point of C? can be deformed into n distinct
simple points. In the next section we will show that a similar result does
not hold for Hilb, C™ with m,n sufficiently large.

Recall that the symmetric power S C! parametrizes sets of n-points on
the line C' and can be identified with C". Consider the map

Hilb, C? — S 5™ C!

defined by mapping a cyclic triple (v, X,Y) € C¢ with [X, Y] = 0 in the orbit
corresponding to the point of Hilb, C? to the set {)\;,...,\,} of eigenvalues
of X. Observe that this map does not depend on the point chosen in the
orbit. Let A be the big diagonal in S™ C!, that is, S™ C! — A is the space
of all sets of n distinct points from C!. Clearly, S C! — A is a connected
n-dimensional manifold. We claim that

7S C — A) =~ (S" C! — A) x C"

and hence is connected. Indeed, take a matrix X with n distinct eigenval-
ues {\1,...,\,}. We may diagonalize X. But then, as

A Y1 - Yin (/\1 - >\1)?/11 . ()\1 - )\n)yln
[ ] Pl= : s

we see that also Y must be a diagonal matrix with entries (pq,...,pu,) € C*
where 1; = y;. But then the cyclicity condition implies that all coordinates
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8c. Connectedness.

of v must be non-zero. Now, the stabilizer subgroup of the commuting (diag-
onal) matrix-pair (X,Y') is the maximal torus T,, = C* x ... x C* of diagonal
invertible n x n matrices. Using its action we may assume that all coordi-
nates of v are equal to 1. That is, the points in 7= ({\1, ..., \,}) with \; # )\,
have unique representants of the form

1 )\1 M1

that is 7= '({\1,..., \,} can be identified with C", proving the claim. Next,
we claim that all the fibers of 7 have dimension at most n.

Let {\1,...,\,} € S™ C! then there are only finitely many X in Jordan
normalform with eigenvalues {)\,...,\,}. Fix such an X, then the subset
T(X) of cyclic triples (X,Y.v) € C¢ has dimension at most n + dim C(X)
where C(X) is the centralizer of X in M, (C), taht is, C'(X) = {Y € M,(C) |
XY = Y X}. The stabilizer subgroup Stab(X) = {g € GL, | gXg™' = X}
is an open subset of the vectorspace C'(X) and acts freely on the subset
T(X) because the action of GL, on C¢ has trivial stabilizers. But then,
the orbitspace for the Stab(X)-action on 7'(X) has dimension at most n +
dim C(X) — dim Stab(X) = n. As we only have to consider finitely many X
this proves the claim.

The diagonal A has dimension n — 1 in S® C! and hence by the fore-
going we know that the dimension of 77!(A) is at most 2n — 1. Let H
be the connected component of Hilb, C? containing teh connected subset
718" C' — A). If 77 }(A) were not entirely contained in H, then Hilb, C?
would have a component of dimension less than 2n, which we proved not to
be the case. Thus H = Hilb, C*> and we have proved :

Theorem 8.5. The Hilbert scheme Hilb, C? of n points in C? is a connected
manifold of dimension 2n.

Let (v, X,Y) be a cyclic triple representing a point in h € Hilb, C?, that
is [X,Y] = 0. We claim that X and Y are simultaneously upper triangular-
izable. Let A be an eigenvalue of X and consider the eigenspace V), = {w €
C" | Xw = Aw}. Then, YV, C V) as XYw =Y (Xw) =Y (Aw) = AYw. Let Y,
be the matrix representing the action of Y on V), then up to basechange in
Vy we may assume that Y, is in Jordan normal form, but then X and Y have
at least one common eigenvector w € V) such that Yw = pw. Consider a
new basis {fi,..., fn} with f, = w, then in this basis the matrixpair (X,Y)
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8 Hilbert manifolds.

has blockform

Y L

But then (X1,Y)) is a commuting matrixpair in M,,_;(C) and by induction
we may assume that they are simultaneously upper triangularizable, prov-
ing the claim. Hence, we have a cyclic triple in the orbit of (v, X,Y") of the

X = Y —

w1 )\1 . * M1 ... *
wy, An fon
The Hilbert-Chow map Hilb, C? M, 57 C?is defined by sending the point /

representing the orbit of (v, X, Y) to the set {(A\1, 111), ..., (An,vn)} of n points
in C2. If (\;, i) # (\j, ;) for i < j and consider the 2 x 2 minors of X and Y

o i Tij - | M Yy
XZ_{O Aj} E_{O 14

Assume that \; # A;, conjugating with the matrix g = {

Ai 0 i Yi
0 A 0 py

but then the commutation relation forces y;; = 0. Repeating this argument
and possibly permuting the base vectors we may assume that the commut-
ing matrix pair (X, Y’) can be brought into block form

X = j and Y = j

Here, X; (resp. Y;) is an upper triangular m; x m; matrix with single eigen-
value \; (resp. p;) where p; is the multiplicity with which p; = (\;, ;) ap-
pears in the n-set of points. The image under the Hilbert-Chow map is then
the formal sum

H(v, X,Y) =m[p1] + ... my[p] € S™ C*.
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8c. Connectedness.

Another way to phrase the above block decomposition is in terms of the
n-dimensional algebra C[X,Y]| = % determined by h € Hilb, C>. As
C[X,Y] is the C-subalgebra of M, (C) generated by the commuting matrix-
pair (X,Y) we have a decomposition

Clz,y] Clz, y]
Il Pb...H Ik

CIX,Y]=C[X,,Yi]|®...®C[X,,Y — k] =

where /; is an ideal of C|z, y| of codimension m; concentrated in the point
p; = (A\j, ;). This means that p; is the only point of C*> where every poly-
nomial f € I; vanishes. Let us draw some consequences from this decom-
position. If all multiplicities m; are one, that is if H(v, X,Y’) does not lie
on the diagonal A in S" C?, then X and Y are simultaneously diagonaliz-
able. But then, as the stabilizer subgroup of the commuting matrix-pair
(X,Y) is equal to the maximal torus T,, = C* x ... x C* of diagonal elements
in GL, we see that there is precisely one orbit in C¢ lying over this point
represented by the cyclic triple

1 A1 H1

1 An Hn
Hence, over the open subset S™ C? — A the Hilbert-Chow map H is a one-
to-one correspondence. As we have seen that Hilb, C? is a manifold, the
Hilbert-Chow map is a resolution of singularities of S™ C2.

When 6 = my[pi] + ... + mg[pr] € A, then any point in the fiber
of the Hilbert-Chow map is determined by a k-tuple (hq,...,h;) where
h; € Hilb,, C? and concentrated in p;, that is, the image of h; under the
Hilbert-Chow map Hilb,,, C* — S™i C?is m;[p;]. The parallel translations
in C? give a natural one-to-one correspondence between H ' (m;[(0,0)]) and
H=Y(m;[p;]). Hence, it is important to study the subset H~'(n[(0,0)]) of
Hilb, C2. Its points correspond to codimension n ideals I of Clz,y] con-
centrated in (0,0). The n-dimensional algebra C[z,y|/I has a unique un-
derlying point (0,0), that is, it is a local algebra of dimension n. Hence,

the algebras C[z,y|/I are examples of fat points of multiplicity n, that is,
commutative local algebras of dimension n.
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Week 9
Reductivity of GL,,.

In this section we will put the examples considered before in a general
framework. To begin, in each of the examples we have a linear action of
the basechange group GL, on a finite dimensional C-vectorspace V/, that is
gv+w) =gv+g,w, T,.v=uvand (g9)v = g.(¢'.v) for all g,¢' € GL,, and
v,weV

Jordan forms V = M,(C)

gm=gmg*

Dynamical systems V' = Mpym(C) @& M, (C) & Mpyyn(C)
9.(A,B,C) = (9A,gBg™",Cg™")

Hilbert schemes V=C"a®M,(C)a® M,(C)
9-(v, X,Y) = (gv,9Xg~ ', gYg™")

Our first objective will be to control all linear actions possible. We
will call actions on V' and W isomorphic if there is a linear isomorphism

vV —”+ W which is GL,-equivariant, that is g.¢(v) = ¢(g.v) for all g € GL,

andv eV.
Problem 7. I

Describe all linear actions of GL,, on finite dimensional vectorspaces V'
up to isomorphism.

Let G be a group and V' a finite dimensional C-vectorspace on which
G acts linearly. We say that V is a G-representation. If V and W are G-
representations, then so are V @& W and V ® W where the actions are given
by
g.(v,w) = (gv,gw) and g.(vRW)=gvR gw.




9 Reductivity of GL,,.

forallg € Gand allv € V,w € W. A G-subrepresentation of V' is a subspace
W which is left stable under the action of G. A G-representation V is said
to be simple if V contains no proper GG-subrepresentations and is said to be
completely reducible if V is the direct sum of simple G-subrepresentations.

9a. Haar measures.

Our first aim is to prove that GL, is a reductive group, that is, all GL,,-
representations are completely reducible. The method of proof is based
on the ’averaging over the group’-idea used to prove that finite groups are
reductive. We will briefly sketch it. Let G be a finite group and W a G-
subrepresentation of a G-representation V. Let ¢ : V ——= IV be a linear
projection obtained from extending a basis of W to one of V. Then, we
consider the averaged linear map

7:V —W where v~ Zg(¢(g*1.v)).

geG

This map is G-equivariant and restricted to IV it is multiplication by #(G).
The kernel K of 7 is a subspace of V, stable under the action of G and
complementary to W. That is, V = W @& K is a decomposition of G-
representations. Continuing gives a complete decomposition of V.

We will replace the sum by an integral and the finite group by the com-
pact subgroup of unitary matrices

U,={A€GL, | AA" =1,}

Clearly, U, is a subgroup of GL, and we claim that it is a compact Lie
group, that is a real compact differentiable manifold (a C*°-manifold) with
a differentiable groupstructure. Because U, is a group it suffices to verify
the manifold property in a neighborhood of the unit element ¢ = 1,. Let
Herm,, be the R-vectorspace of Hermitian n x n matrices Herm,, = {H €

M,(C) | H=H'"} and consider the map
f:GL, — Herm, definedby A —— AA"

Calculating the differential with the e-method gives that Im dfy (X) =

X + X" and as any Hermitian matrix H can be written as S(H + H)
this differential is surjective. By the implicit function theorem (over R)
we deduce that the fiber f~1(1,) = U, is a real manifold of R-dimension
2n% — dim Herm, = n?. Finally, U, is compact as it is closed in the R-
topology on M, and bounded as the norms of all entries in a fixed row (or
column) add up to one.
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9a. Haar measures. 3

Compact Lie groups have a Haar measure allowing to integrate complex
valued continuous functions in an invariant way. For example U; = {c € C'|
cc = 1} is the unit circle S' = {¢" | 0 < z < 27}. We define a complex valued

linear map fU g) dg on the space of all continuous functions f : U; —— C
by
1 2 )
dg = — i) dor.
[ sgrdg= o [ ey o

We see that this map is normalized, that is fU1 dg = 1 and is left and right
invariant, that is for any h = % € U,

1 2 1 2w

flghydg=— [ fle"™)do=— [ f(e”)da' = | I(9)dg

Uy 27T 0 27T 0

and similarly for multiplication by h on the left. For the compact group
G = U, x Uy, that is the torus group S* x S!

we can take as the normalized invariant integral fleUl flg) dg =

2 2 ; ; .
o Jo" ST f(€", ") dx dy. In general a Haar measure on a compact Lie

group is a linear functional fG g) dg Whlch 1s normalized [, dg = 1 and
is left and right invariant [, f gh dg = [, f(9) dg = [, f(hg) dg. Assuming
its existence we can prove :

Proposition 9.1. If G is a compact Lie group, then every G-representation
is completely reducible.

Let W be a subspace of a finite dimensional G-representation V' which
is invariant under the G-action. Extending a basis of I/ to one of V' gives a

linear projection V — = W which is the identity on W. For v € V we have
complex valued coordinate maps

G —— W =C" definedby g~ g.(m(g ')

Integrating these coordinate maps definesamap ¢ : V —— W

olv) = /G gn(gv) dg
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9 Reductivity of GL,,.

which is linear and the identity on W. Moreover, ¢ commutes with the
G-action as for every h € G

¢(hv) = [,97(g " hv)dg=h.[,h " gm(g " hv)dg
= h. [,97m(g7" ) dg = h.¢(v)

where the starred equality uses invariance of the Haar measure on GG. But
then, V =W @ Ker ¢ is a decomposition as G-representations. Continuing
whenever one of the components has a non-trivial G-subrepresentation, we
arrive after a finite number of steps at a decomposition of V' into simple
G-representations proving proposition|9.1.

9b. Cartan decomposition.

Next, we want to move from the (real) compact Lie group to the associated
(complex) algebraic group. In particular, from the (real) torus 7,,(R) = U; x

. x U; to the (complex) torus 7,, = C* x ... x C* and from the unitary
group U, to the basechange group GL,,. Let us first consider the torus case.
A polynomial f(¢) € C[t] has only finitely many zeroes so if f(U;) = 0, f
must be the zero polynomial whence f(C*) = 0. A similar result holds for
n-dimensional tori. Let f(zi,...,z,) be a polynomial in C[zy,...,z,] and
write it as a polynomial in z, with coefficients in C[zq, ..., 2z, 1]

flze,. . xn) = folxy, ... 7xn_1)xfl—i—. ot fro(zy, o )T+ fraa (T, 1)

Assume that f(7,(R)) = 0 and fix (uy,...,u,1) € T,_1(R), then
f(uy, ..., uy—1,2,) is a polynomial vanishing on U;, whence all the coeffi-
cients f;(ui,...,u,_1) must be zero. Hence, the f; are polynomials such

that f;(7,-1(R)) = 0 and by induction on n we may assume that then
fi(T,—1) = 0, whence f(T,,) = 0.

Assume now that V is a T,,-representation. Assume that IV has a decom-
position V = W @& W' as a T,,(R)-representation. Consider the normalizer
subgroup

N=NrW)={c=(c1,...,¢c,) €T, | cW CW}

Extending a basis {w;,...,w;} of W to VV we see that this condition can be
expressed by the fact that certain certain coordinates of c.w; (which are
polynomial functions in the c;) must be zero. Hence, NV can be identified as
the subset of points of 7,, which are simultaneous zeroes of a set of polyno-
mials {f,}. Because W is a T,,(R)-representation we have 7,,(R) C N and
hence f,(7,(R)) = 0 for all f,, whence f,(7,,) = 0. Thatis, N = T, and
so W is also a T),-representation. That is, a decomposition of V' in simple
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9b. Cartan decomposition.

T, (R)-representations is also a decomposition of simple 7, -representations.
Hence, the complex torus 7,, = C* x ... x C* is a reductive group.

To prove a similar result for GL, we need a polynomial density result
for U, with respect to GL,. This follows from the Cartan decomposition
asserting that

GL,=U,T,U,

where T, is the maximal torus of diagonal matrices in GL,. Indeed, for
g € GL,, gg'" is an Hermitian matrix and hence diagonalizable by unitary
matrices (this follows from the Gramm-Schmidt procedure of orthonormal
bases in linear algebra). So, there is a u € U,

a1
uflggtru — . — uflgu ) uflgtru
—— N——

(0% n p ﬁt T

Because o; = > 77| || pi; ||, s > 0 € R. Let 8; = \/a; and consider the
diagonal matrix

I
d =

B

Clearly, g = ud(d'u"'g) and v = d"'u~'g is a unitary matrix as

,U@t'r‘ :(d_lu_lg).(gtr’dd_l) — d_l(u_lggtTu)d_l
:dfledfl — /ﬂn

proving the Cartan decomposition. Let f = f(z11,z12,...,2,,) be a polyno-
mial function in the matrix entries of M, (C) such that f(U,) = 0. Then
" = f | T, is a polynomial such that f'(7,,(R)) = 0 whence f(7,,) = 0. By
continuity of the matrix-multiplication in GL,, and the Cartan decomposi-
tion, it follows that f(GL,) = 0. Using this polynomial denseness of U, in
G L, we can repeat the above T, argument verbatim and conclude :

Theorem 9.2. The n-dimensional torus T, and the basechange group GL,
are reductive groups. That is, every representation V admits a decomposi-
tion as a direct sum of simple subrepresentations S;

Moreover, such a decomposition is unique up to permutation of the factors.

The last statement follows because any G-equivariant map S B
between two simple G-representations is either the zero map or an isomor-
phism (the kernel Ker ¢ is a G-subrepresentation of S).

lieven le bruyn

uia 1999



Week 10

G Ly-representations.

Reductivity of GL, reduces our problem to that of classifying all simple
G L,-representations V. Again, we will first consider this problem for the n-
dimensional complex torus 7,,. We claim that the simple 7},-representations
are all one dimensional and are classified by the lattice Z". For example,
for T, we get the discrete set

10a. Characters.

Let V be a simple 7),-representation of dimension m and h = (ry,...,7,) €
T,(R) with all r; roots of unity. The subgroup < h > of 7,,(R) is a finite
Abelian group so as an < h >- representation V' = &V,, where V), is the
eigenspace {v € V | h.v = \wv}. T, being Abelian, each of the V), is a T,-
subrepresentation. By simplicity, there is only one non-zero eigenspace,
that is V = V). Varying h we see that the subgroup u x ... x u of T,,(R)
consisting of elements having all its entries roots of unities acts diago-
nally on V. But then so does its closure, which is 7,,(R) so V is a direct
sum of one-dimensional 7),(R)-subrepresentations, a contradiction unless
m = 1. Hence, all simple T,-representations are one dimensional. For V/

a one-dimensional simple 7, -representation, the action determines (and is
X

determined by) a groupmorphism 7, C*. The only groupmorphisms
C* —— C* are easily seen to be the maps x — z” for some v € Z. Hence V'
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is determined by the character

Qn
n

x:T,— C* givenby (z1,...,2,)—2]'...x

for some a = (ay,...,a,) € Z", proving the claim. Traditionally, one writes
the character group X(T,) = Z" additively and denotes the character cor-
responding to the standard basis vector ¢; by ¢; : T,, —— C* defined by
(1, .., Tp) — Xy

Proposition 10.1. Every finite dimensional T,,-representation V is the di-
rect sum of its eigenspaces

Vi={veV|zv=x(z)v forall x = (x1,...,2,) €T, }
where x =Y. a;¢; is a character in X (T,,) = Z".

On X(7T,) = Z" we put an ordering defined as follows. Let A = " a;¢;
and p =) bse;, then

n n k k
Agu@Zai:Zbi andZaiSZbiforalllngn
i=1 i=1 i=1

= i=1

For example, for 75 the characters smaller than the circled characters all
lie on the indicated halflines

Let V be a finite dimensional G L, -representation. As a T),-representation
(using the diagonal embedding 7,, —— GL,) V decomposes as a direct sum
of weight spaces
V = ®rexT)Va

We will now investigate the restriction imposed on the V, by the GL,-
action. To begin, consider the permutation matrixes P, for o € S,, hav-
ing a 1 at all positions (i,0(i)) and zeroes elsewhere. There is a nat-
ural action of the symmetric group S, on 7, and on X(7,) defined by
ox = 0.(T1,...,%,) = (To@)s -, Tom)) aNd 0. X = 0.(>ai&;) = Y aiepny. If
v eV, and x = diag(zy,...,z,) € T,, — GL,, we have

r.(P,w) = PB,(P;/'zP,)v=P,.(0.x)v
=  P,(cA(x)v) =c\(x)P,.v

uia 1999
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10b. Borel subgroups. 3

that is, P,.v € V, . So we have that dim V), = dim V,, for all A € X(T,,) and
all o € S,,. Further, consider the elementary matrices

1

1

having 1’s on the diagonal, ¢ € C at place (i, j) and zeroes elsewhere. One
calculates that for every » = diag(xy,...,x,) € T,, — GL, we have

xxij(t)x_l =2 ((z; — 2)t) = z45((e; — €;)().1)

If v € V), then as the map ¢ — z;;(¢).v is a polynomial map in ¢t we can write
with respect to a basis {w;,...,w;} of V that

l

!
xi;(t).v = Z(Z Capt®)w, = Z thv, with v, = Z CapWa
a=1

a=1 b>0 b>0

As 7;;(0) = 1, we have vy = v and we claim that v, € Vi,y,—,). Indeed, for
all x = diag(zy,...,z,) € T, — GL, and t € C we have

r.25(t).v = (zxij(t)x™).zv = z5((6; — €)(x).t).(A(z)v)
= Az) szo((ez‘ - Ej)(x)'t)bvb = A(z) szo tb((ei - Ej)(x))bvb
= > b0 (A 4 bles — €)) (x)vs
and on the other hand we have the equalities
x.25(t) v = x(z thy,) = Z t*(z.vp)

So, comparing terms we establish our claim as

XT.vp = ()\ + b(EZ — ej))(a:)vb that iS, Vp € V>\+b(€i—€j)~

10b. Borel subgroups.

Let A, be the subgroup of GL,, consisting of upper triangular matrices with
1’s on the diagonal and let ¥,, be the corresponding subgroup of lower tri-
angular matrices in GL,,. Consider the product map

V. x T, x Ay 2% GL,  (I,d,u) — ldu

lieven le bruyn uia 1999
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The differential of prod in the unit element (1,,7,,7,) can be computed by
the e-method expanding

(1, +eL)(T, +eD)(1, +eU) =T, +e(L+ D +U)

with L (resp. U) a strictly lower (resp. upper) triangular matrix and D
a diagonal matrix. Hence, d prodq, 4, 1,) is an isomorphism and so the
product map has a dense image in GL,,. Therefore,

V=V,e..eV, Vi=e{ilA=)> awith ) a =1}

as A, and v, are generated by the respective z;;(¢) and by the above equal-
ity we have that for any v € V, that z,;(¢)v € V;. Hence, the non-zero weight
spaces V), of a GL,-representation V lie in a finite number of hyperplanes
where they form a configuration stable under the action of S,,. For T; the
configuration of non-zero weight spaces is symmetric with respect to the
main diagonal and constrained to the indicated boxes

The dashed circled weights are the highest weights with respect to the or-
dering on X (7). For general n we similarly have for each component V; a
highest weight V) with respect to the ordering on X (7},). An element v € V),
is then called a highest weight vector of V' (or of the component 1}). Let v,
be the vectors in V), —.,) introduced before, then again using the dense
map ¥, x 7T, X A, — GL, we see that the subspace of V spanned by v = v,
and the v, is a simple GL,-subrepresentation of V. We now have all the
necessary ingredients to finish the proof of :

Theorem 10.2. There is a one-to-one correspondence between
1. isomorphism classes of simple G L, -representations, and
2. X=),ai¢; € X(T,,) which are highest weights, that is,

alzagz...zan.

We have already seen that a highest weight vector generates a simple
component. Observe that a highest weight vector spans a one-dimensional

uia 1999
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10b. Borel subgroups.

subspace which is stable under the action of the Borel subgroup B, of upper
triangular elements of GL,. Further, if V' is a simple G L, -representation
then using the S,-action we know that V' has a highest weight vector. Re-
mains to prove that two GL,-representations spanned by a highest weight
vector of the same weight are isomorphic and that every A = ). a;¢; with
ai; > ... > a, occurs as a highest weight for a GL,-representation. First, let
V and V' be simple G L, -representations with highest weight vectors v and
v" of weight \. Then, W =V & V' is a GL,-representation and w = (v,v’) a
vector of highest weight )\ so generates a simple component 1/’ of W with
W = Cw. VNW'"is a GL,-subrepresentation of V' so is either 0 or . As
W{ = Cw ¢ V) = C(v,0) this intersection must be zero. Then, the composi-
tion
We—sVaVlV 2V

is into and gives therefore an isomorphism W =~ V. Repeating the argu-
ment with V' instead of IV we deduce that V' ~ V.

As for the existence, let A = > . a,e; with a; > ... > a, and consider
w; = €1 + ...+ ¢, then we have

A= blwl + . ..bnwn

with b, = a, € Z and all b, = a; — a;;; € Nfor 1 < i < n — 1. Recall the
construction of exterior product N\ C" for 1 < i < n that is, the subspace
of C" ® ... ® C" (i terms) spanned by the anti-symmetric tensors which is
clearly a GL,- subrepresentation of C" ® ... ® C"” with the diagonal action
on the tensorproduct, g.(c; ® ... ® ¢;) = (g9.c1) ® ... ® (g.c;). Consider the
G L,-representation

V=(ANCY" e (N CH* ... (A" C")¥n

where (A" C")®* is the k-fold tensorproduct of A" C" for k € N, (A" C")° =
Cyriv the trivial one-dimensional G Ln-representation and (A" C")®™ is the
one-dimensional G, -representation defined by g — (det g)™ (note that m <
0 is possible). If {e;,...,e,} is the standard basis of C", then e; Aea A ... Ae;
is stable under the action of the Borel subgroup B, and has weight w; as
clearly

i
diag(zy,...,x,).(e1 Nea A ... Ne;) = ij(el Neg A ... Ne;)
=1

But then, the following vector v is stable under the Borel B, and has weight
A

B e @ (1 Nen)®2 ... @ (er A Aey)En when b, € N, and
e @ (e Ne)®? @ ... @ (fu ... A fa)® " whenb, <0

lieven le bruyn
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10 GL,-representations.

where {f1,..., f,} is the dual basis, that is the standard basis of C"*. Hence,
v generates a simple GL,-representation of highest weight A\. This con-
cludes the proof of theorem That is, we can identify the set Qg
of isomorphism classes of simple GGL,-representations with the subset of
X(T.,)

Qcr, =Nwy ®Nw, @ ... & Nw,,_1 & Zw,

For example, the simple GL,-representations are in one-to-one correspon-
dence to the subset of Z? = X (T3)

We will denote the simple GL,-representation of highest weight A by S,.
For example,
C"=Su0,..0 and C™ =S4, 0-1

Consider the action of GL, on M,(C) by conjugation. If ¢;; is the matrix
having a 1 at place (i, j) and zeroes elsewhere, then we have

M,,(C) = My(C)o ® ®ipMy(C).,_., with M,(C),,_., = Ce;;

and M, (C), is the space of diagonal matrices. The weightspaces left in-
variant by the B, -action are Ce;,, and C1,. The first generates the simple
representation with highest weight (1,0,...,0,—1), the second is the trivial
representation (highest weight (0,...,0). That is, as GL,-representations
M,(C) = M,,(C)....0) ® Mn(C)(10....0,-1) = CT, & M(C)

where M!(C) is the space of all trace zero matrices. The weights ¢; — ¢; are
called the roots of GL,,. The roots ¢; — ¢; with i < j are called positive. This
allows a reformulation of the ordering in X (7,,) : for A\, u € X(7,,) we have
A < pif and only if 4 — A can be written as a sum of positive roots.

10c. GL,-varieties.

Combining reductivity of GL, with the combinatorial description of the iso-
morphism classes of simple G L,,-representations allows us to determine all
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10c. GL,-varieties.

linear actions of GL, on a finite dimensional vectorspace V. To formal-
ize the notion of G L, -variety we consider the induced action of GL,, on the
polynomial functions f on V. Considering the diagram

g C

9,f

Vv

we see that this action is defined by the rule g.f(v) = f(¢g~'.v). Alterna-
tively, if the dimension of V' is [, then the ring of all polynomial maps on V'
is C[V] = Clzy, ..., z;] where the linear forms Cxz; + ... + Cz; can be identi-
fied with the dual vectorspace V*. V* is a GL,-representation with action
9.6 for V. —2—+ C in V* defined by (g.¢)(v) = ¢(g'.v). Hence, the action of
G L,, on the polynomial ring coincides with the natural action of GL,, on the
symmetric algebra of V*

S(V*) = @2,S" V* ~ Clzy,. .., 7]

where S° V* is the subspace of symmetric tensors in V* ® ... ® V* (i
terms). The action of GL, on C[V] is locally finite, that is, any finite set
of polynomials {fi, ..., f.} C C[V] is contained in a finite dimensional GL,,-
subrepresentation W of C[V]. Indeed, let k be such that all f; have total
degree at most £, then they are all contained in the finite dimensional GL,,-
subrepresentation ©F_,S* V*.

Recall that the Hilbert basis theorem asserts that any ideal / <« C[V] is
finitely generated. We say that an ideal / < C[V] is GL,-stable if g.I C I for
all g € GL,,.

Definition 10.3. A GL,-variety is a couple (V, I) where

e V is a finite dimensional G L,-representation, and

e [is a GL,-stable ideal of C[V| = S(V*).

Examples of G L, -varieties.

Jordan forms V = M,(C)
g.m = gmg~!
C[V] == (C[mu, [N ,mm]
I=0
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8 10 GL,-representations.
Examples of GG L, -varieties.
Dynamical systems V = M,xm(C) & M,,(C) & M,x,(C)
9-(A,B,C) = (gA,gBg~',Cg™")
C[V] = C[alla <oy Qumy, blla cee 7bnn7 C11y - - 7Cpn]
I=0
Hilbert schemes V=C"® M,(C)® M,(C)
9.(v, X,Y) = (gv,9Xg7 ', 9Yg™")
C[V] = C[Ula vy Uny T11y - -+ Ty Y115 - - - 7ynn]
I'= (3 vy | Vi,7)
uia 1999 lieven le bruyn
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