
Week 1

Conjugacy classes.

Throughout, C will be the field of complex numbers. Recall that C is al-
gebraically closed and is equipped with a norm | a |= aa (here, a is the
complex conjugate of the complex number a) making C into a topological
space.

Let V be a finite dimensional C-vectorspace, say of dimension d, then
after choosing a basis we can identify V with the space of d-tuples Cd.
As such we can equip V with the analytic topology induced by the metric
d(v, w) =| v − w | coming from the norm

| v |= max | vi |

for any v = (v1, . . . , vd) ∈ V = Cd. In this chapter we will be primarily
interested in the analytic topology induced on closed subsets of some V .

With GLn we denote the group of all invertible n × n matrices GLn(C)
with coefficients in C. As an n × n matrix A ∈ Mn(C) is invertible if and
only if its determinant det(A) is non-zero, we see that GLn is a dense open
subset of the n2-dimensional vectorspace Mn = Mn(C).

1a. Conjugacy classes of matrices.
An n × n matrix A ∈ Mn is by left multiplication a linear operator on the
n-dimensional vectorspace Vn = Cn of column vectors. If g ∈ GLn is the
matrix describing the base change from the canonical basis of Vn to a new
basis, then the linear operator expressed in this new basis is represented
by the matrix gAg−1. For a given matrix A we want to find an adapted basis
such that the conjugated matrix gAg−1 has a simple form.

That is, we consider the linear action of GLn on the n2-dimensional vec-
torspace Mn of n× n matrices determined by

GLn ×Mn
- Mn (g, A) 7→ g.A = gAg−1.



2 1 Conjugacy classes.

The orbit OA of A under this action, that is the set of all matrices of the
form gAg−1 for some g ∈ GLn, is called the conjugacy class of A. We look
for a particularly nice representant in a given conjugacy class. That is, we
want to solve the following orbit space problem.

Problem 1.

Classify the conjugacy classes of n× n matrices.

With rr
n we denote the identity matrix in Mn and with eij the matrix

whose unique non-zero entry is 1 at entry (i, j). Recall that the group GLn

is generated by the following three classes of matrices :

• the permutation matrices pij = rr
n + eij + eji − eii − ejj for all i 6= j,

• the addition matrices aij(λ) = rr
n + λeij for all i 6= j and 0 6= λ, and

• the multiplication matrices mi(λ) = rr
n + (λ− 1)eii for all i and 0 6= λ.

Conjugation by these matrices determine the three types of Jordan moves
on n× n matrices, where the altered rows and columns are dashed :

i j
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Therefore, it suffices to consider sequences of these moves on a given n× n
matrix A ∈ Mn. The characteristic polynomial of A is defined to be the
polynomial of degree n in the variable t

χA(t) = det(A− trr
n) ∈ C[t].

As C is algebraically closed, χA(t) decomposes as a product of linear terms∏e
i=1(t−λi)

di where the {λ1, . . . , λe} are called the eigenvalues of the matrix
A. Observe that λi is an eigenvalue of A if and only if there is a non-zero
eigenvector v ∈ Vn = Cn with eigenvalue λi, that is, A.v = λiv. In particular,
the rank ri of the matrix Ai = λi

rr
n − A satisfies n− di ≤ ri < n.

uia 1999 lieven le bruyn



1a. Conjugacy classes of matrices. 3

We will apply the following reduction step to the matrices Ai. Let B be
a n × n matrix of rank r. Then, applying type p and type a Jordan moves
we can conjugate B to the following block form

[
0n−r top1

0 bot1

]
= ︸ ︷︷ ︸

r
where white blocks denote zero matrices, hence the rank of the (black) right
hand side is equal to r. We separate two cases. First, assume that the
square r × r bottom right matrix has rank r (is invertible). Then, the rows
of the upper right block are linear combinations of its rows. Then, we apply
type a Jordan moves (which do not spoil the zero blocks) and conjugate the
matrix to the block form

[
0n−r

bot1

]
=

The top left zero block of size n − r splits off and we stop the reduction. In
the second case, assume the square r × r matrix has rank s < r (hence the
upper right block has rank r− s ≤ n− r). Repeating the above reduction to
the r × r block we obtain the situations :

︸︷︷︸
r − s

︸︷︷︸
r − s

rr

︸︷︷︸
r − s

The two bottom right blocks together have rank s, whence all rows of the
two upper right blocks are linear combinations of them. Using type a
Jordan moves (which preserve the zero blocks) we arrive at the middle
block decomposition. Here, the two middle black blocks together have rank
r − s. Using type p and type m Jordan moves (which preserve the other
zero blocks) we can conjugate to obtain the rightmost block decomposition,
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4 1 Conjugacy classes.

where the rr-block is the identity matrix rr
r−s ∈ Mr−s. That is, we obtain a

matrix of block form 
0n+s−2r

0r−s
rr
r−s

0r−s 0r−s top2

bot2


and the top left zero block of size n + s − 2r splits off. If the bottom block
bot2 has rank s we can conjugate to make top2 a zero block in which case
also the Kronecker product block

J2 ⊗ rr
r−s =

[
0 1
0 0

]
⊗ rr

r−s =

[
0r−s

rr
r−s

0r−s 0r−s

]
splits off and we stop the reduction. Otherwise, the square s× s block bot2

has rank t < s and we repeat the above reduction

[
0n−r top1 r-s

0 bot1 s

]
moves -


0n+s−2r

0r−s
rr
r−s

0r−s 0r−s top2 s-t

0 bot2 t


to the new top/bottom block (the tiny integers give the ranks of the topi and
boti blocks). This gives us the following block matrix

0n+s-2r

0r+t-2s 0 rr
r+t-2s 0

0 0s-t 0 rr
s-t

0r+t-2s 0 0r+t-2s 0
0 0s-t 0 0s-t

rr
s-t

0s-t 0s-t top3

0 bot3


which after some permutation Jordan moves can be brought into the form

0n+s-2r

0r+t-2s
rr

r+t-2s

0r+t-2s 0r+t-2s

0s-t
rr

s-t 0s-t

0s-t 0s-t
rr

s-t

0s-t 0s-t 0s-t top3 t-u

0 bot3 u


Hence, the block J1 ⊗ rr

r+t−2s splits off and if bot3 is of rank t, so does the
newly created Kronecker product

J3 ⊗ rr
s−t =

0 1 0
0 0 1
0 0 0

⊗ rr
s−t
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1a. Conjugacy classes of matrices. 5

at which stage we stop the reduction. If the rank of bot3 is u < t, then after
the next cycle we will be able to split off the Kronecker product J3 ⊗ rr

s+u−2t

and create a new ’almost’-split Kronecker product J4 ⊗ rr
t−u.

It is now clear that after a finite number of cycles of this reduction pro-
cess we will conjugate our n × n matrix B to a matrix in diagonal block
form

(J1 ⊗ rr
n+s-2r)⊕ (J2 ⊗ rr

r+t-2s)⊕ (J3 ⊗ rr
s+u-2t)⊕ . . .⊕ (Jm ⊗ rr

y-z)⊕ botm+1

with botm+1 invertible or of size zero. Here, Jk is the Jordan block matrix
of size k with zeroes everywhere except ones on the next to main diagonal.

Finally, again by permutation moves we can conjugate B to the block
diagonal matrix

.....

︸ ︷︷ ︸
bot

d

Here, the bottom right corner bot is invertible, hence has all its eigenvalues
{µ1, µ2, . . .} nonzero, and all the diagonal blocks in the upper left d×d corner
are Jordan blocks Jk (there are n + s− 2r blocks J1, r + t− 2s blocks J2 etc.).
The integer d is determined as the maximal power such that td divides the
characteristic polynomial χB(t). Hence, the sizes of these Jordan blocks

p = (m, . . . , m︸ ︷︷ ︸
y-z

, . . . , 3, . . . , 3︸ ︷︷ ︸
s+u-2t

, 2, . . . , 2︸ ︷︷ ︸
r+t-2s

, 1, . . . , 1︸ ︷︷ ︸
n+s-2r

)

form a partition of d.
Recall that a partition p = (a1, a2, . . . , ak) of d is a decompositions in

natural numbers

d = a1 + a2 + . . . + ak with a1 ≥ a2 ≥ . . . ≥ ak ≥ 1

It is traditional to assign to a partition p = (a1, . . . , ak) a Young diagram
with ai boxes in the i-th row, the rows of boxes lined up to the left.

The dual partition p∗ = (a∗1, . . . , a
∗
r) to p is defined by interchanging rows

and columns in the Young diagram of p. For example, to the partition p =
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6 1 Conjugacy classes.

(3, 2, 1, 1) of 7 we assign the Young diagram

p = p∗ =

with dual partition p∗ = (4, 2, 1).

1b. The Jordan-Weierstrass theorem.

Let us return to an arbitrary n×n matrix A with characteristic polynomial
χA(t) =

∏e
i=1(t − λi)

di. Apply the above reduction to the matrix B = Ai =
λi

rr− A. Then, A itself is conjugated to a block diagonal matrix of the form

.....

︸ ︷︷ ︸
bot

di

with all the blocks in the di× di upper left corner Jordan blocks with eigen-
value λi, that is of the form

Jk(λi) =


λi 1

λi
. . .
. . . 1

λi

 ∈ Mk(C)

and the remaining block bot has eigenvalues {λi, . . . , λ̌i, . . . , λe}. Repeating
this procedure for the other eigenvalues we obtain the Jordan-Weierstrass
theorem.

Theorem 1.1. Let A ∈ Mn(C) with characteristic polynomial χA(t) =∏e
i=1(t− λi)

di. Then, A determines unique partitions

pi = (ai1, ai2, . . . , aimi
) of di
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1b. The Jordan-Weierstrass theorem. 7

for 1 ≤ i ≤ e such that A is conjugated to a unique (up to permutation of the
blocks) block-diagonal matrix

J(p1,...,pe) =


B1

B2

. . .

Bm


with m = m1 + . . . + me and exactly one block Bl of the form Jaij

(λi) for all
1 ≤ i ≤ e and 1 ≤ j ≤ mi.

Remains only to prove the unicity of the partitions pi of di corresponding
to the eigenvalue λi of A. Assume A is conjugated to another Jordan block
matrix J(q1,...,qe), necessarily with partitions qi = (bi1, . . . , bim′

i
) of di. To begin,

observe that for a Jordan block of size k we have that

rk Jk(0)l = k − l for all l ≤ k and if µ 6= 0 then rk Jk(µ)l = k

for all l. As J(p1,...,pe) is conjugated to J(q1,...,qe) we have for all λ ∈ C and all l

rk (λrr
n − J(p1,...,pe))

l = rk (λrr
n − J(q1,...,qe))

l

Now, take λ = λi then only on the Jordan blocks with eigenvalue λi are
important in the calculation and one obtains for the ranks eqrank

n−
l∑

h=1

#{j | aij ≥ h} respectively n−
l∑

h=1

#{j | bij ≥ h}. (1.1)

Now, for any partition p = (c1, . . . , cu) and any natural number h we see
that the number z = #{j | cj ≥ h}

c1
c2

cz
cz+1

cu h

is the number of blocks in the h-th row of the dual partition p∗. Therefore,
the above rank equality implies that p∗i = q∗i and hence that pi = qi. As we
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8 1 Conjugacy classes.

can repeat this argument for the other eigenvalues we have the required
unicity.

This completes the classification of the conjugacy classes of n×n matri-
ces, or equivalently, the GLn-orbits in Mn which (for later reference) corre-
sponds to the pattern :

��������n
��

We see that the classification consists of two parts : a discrete part choosing

• a partition p = (d1, d2, . . . , de) of n, and for each di,

• a partition pi = (ai1, ai2, . . . , aimi
) of di,

determining the sizes of the Jordan blocks and a continuous part choosing

• an e-tuple of distinct complex numbers (λ1, λ2, . . . , λe).

fixing the eigenvalues. Moreover, this e-tuple (λ1, . . . , λe) is determined only
up to permutations of the subgroup G of all permutations Se on e letters
where

G = {π ∈ Sp | pi = pπ(i) for all 1 ≤ i ≤ e}
Whereas this gives a satisfactory set-theoretic description of the orbits, one
might ask for a topological orbit space Cn the points of which are in one-to-
one correspondence with the conjugacy classes, and a continuous surjection

Mn
c-- Cn

which is constant along GLn-orbits and sends a matrix A to the point of Cn

corresponding to the orbit OA. If we require that this space Cn has at least
the separation property that its points should be closed, then continuity of
c implies that for any matrix A its conjugacy class OA should be a closed
subset of Mn.

However, this cannot be the case whenever n ≥ 2. Consider the matrices

A =

[
λ 1
0 λ

]
and B =

[
λ 0
0 λ

]
which by theorem 1.1. belong to distinct orbits. For any ε 6= 0 we have that[

ε 0
0 1

]
.

[
λ 1
0 λ

]
.

[
ε−1 0
0 1

]
=

[
λ ε
0 λ

]
belongs to the orbit of A. Hence if ε 7→ 0, we see that B lies in the closure
of OA whence OA cannot be a closed orbit in M2. As any matrix in OA has
trace 2λ, the orbit is contained in the 3-dimensional subspace[

λ + x y
z λ− x

]
⊂ - M2
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1b. The Jordan-Weierstrass theorem. 9

In this space, the orbit-closure OA is the set of points satisfying x2 + yz = 0
(the determinant has to be λ2), which is a cone having the origin as its top :

The orbit OB is the top of the cone and the orbit OA is the complement.
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Week 2

The quotient space.

Last week we have seen that there is no Hausdorff topological space whose

points are in one-to-one correspondence with the conjugacy classes of ma-

trices. Still, we can try to solve :

Problem 2.

Construct the best continuous approximation to the orbit space.

First, we construct a supply of complex valued continuous functions on� �
that are constant along orbits.

2a. Invariant polynomial functions.

If two matrices are conjugated � � � , then � and � have the same un-

ordered � -tuple of eigenvalues � � � 	 
 
 
 	 � � �
(occurring with multiplicities).

Hence any symmetric function in the � � will have the same values in � as

in � . In particular this is the case for the elementary symmetric functions �  � � � � 	 
 
 
 	 � � � � �� � � � � � � � � � � � � � � � � � 
 
 
 � � � 

Observe that for every � � � �

with eigenvalues � � � 	 
 
 
 	 � � �
we have��� � � � � � � � � � � � � � � �  ! � � � "" � � � � � � � # ��� � � � � $ � �  � � � � � � % �

Developing the determinant  ! � � � "" � � � � we see that each of the coefficients � � � � is in fact a polynomial function in the entries of � . A fortiori,  � � � �
is a complex valued continuous function on

� �
. The above equality also



2 2 The quotient space.

implies that the functions  � & � � ' (
are constant along orbits. We now

construct the continuous map � � ) ' ( �
sending a matrix � � � �

to the point �  � � � � 	 
 
 
 	  � � � � � in
( �

. Clearly, if� � � then they map to the same point in
( �

. We claim that * is surjective.

Take any point � + � 	 
 
 
 	 + � � � ( �
and consider the matrix � � � �

� �
,-----.

/ + �� $ / + � % �
. . .

. . .
...� $ / + 0� $ + �

1222223 (2.1)

then we will show that * � � � � � + � 	 
 
 
 	 + � � , that is, ! � � � "" � � � � � � � � + � � � % � # + 0 � � % 0 � 
 
 
 # � � $ � � + � 

Indeed, developing the determinant of � "" � � � along the first column we

obtain

/
...//

/�$
//

//�
. . .


 
 

. . .$

///
...�$

� +
n� +
n-1� +
n-2

...� +
2� � +

1

$ �
�45 67 89 :;

/
...//

/�$
//

//�
. . .


 
 

. . .$

///
...�$

� +
n� +
n-1� +
n-2

...� +
2� � +

1

�$45 67 89 :;

Here, the second determinant is equal to � � $ � � % � + �
and by induction on �

the first determinant is equal to � 
 � � � % � � + � � � % 0 # 
 
 
 # � � $ � � % � + � % � � , proving

the claim.

Next, we will determine which � < � matrices can be conjugated to a

matrix in the canonical form � as above. We call a matrix � � � �
cyclic

if there is a (column) vector = � ( �
such that

( �
is spanned by the vectors� = 	 � 
 = 	 � 0 
 = 	 
 
 
 	 � � % � 
 = � 
 Let > � ? @ �

be the basechange transforming the

standard basis to the ordered basis� = 	 � � 
 = 	 � 0 
 = 	 � � A 
 = 	 
 
 
 	 � � $ � � % � � � % � 
 = � 
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2a. Invariant polynomial functions. 3

In this new basis, the linear map determined by � (or equivalently, > 
 � 
 > % �
)

is equal to the matrix in canonical form,-----.
/ B �� $ / B � % �

. . .
. . .

...� $ / B 0� $ B �
1222223

where � � 
 = has coordinates � B � 	 
 
 
 	 B 0 	 B � � in the new basis.

Prove that a matrix � � � �
can be conjugated to one in standard form

as above if and only if � is a cyclic matrix.

We claim that the set of all cyclic matrices in
� �

is a dense open subset,

that is, its closure is the whole of
� �

. To see this take = � � C � 	 
 
 
 	 C � � D � ( �
and compute the determinant of the � < � matrix

v Bv 
 
 

B

n-1
v

This gives a polynomial of total degree � in the C � with all its coefficients

polynomial functions E � in the entries
B F � of � . Now, � is a cyclic matrix

if and only if at least one of these coefficients is non-zero. That is, the

set of non-cyclic matrices is exactly the intersection of the finitely many

hypersurfaces G � � � � � � B F � � F H � � � � I E � � B � � 	 B � 0 	 
 
 
 	 B � � � � / �
in the vectorspace

� �
. The claim follows because the complement of the

hypersurface

G � is a dense open subset (being equal to the inverse image

of the dense open set
( � � / �

in
(

under the continuous surjection E � &� � ' (
).

Theorem 2.1. The best continuous approximation to the orbit space is

given by the surjection � � ) '' ( �
mapping a matrix � � � � � ( � to the � -tuple �  � � � � 	 
 
 
 	  � � � � � .
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4 2 The quotient space.

Let J & � � ' (
be a continuous function which is constant along

conjugacy classes. We will show that J factors through * , that is, J is really

a continuous function in the  � � � � . Consider the diagram� � K ' (
..

..
..

..
..

..
..K L � K M NO

( �N P )Q
where R is the section of * (that is, * S R � T  U V ) determined by sending

a point � + � 	 
 
 
 	 + � � to the cyclic matrix in canonical form � as in equa-

tion (2.1). Clearly, R is continuous, hence so is J W � J S R . The approximation

property follows if we prove that J � J W S * . By continuity, it suffices to

check equality on the dense open set of cyclic matrices in
� �

.

There it is a consequence of the following three facts we have proved

before : (1) : any cyclic matrix lies in the same orbit as one in standard

form, (2) : R is a section of * and (3) : J is constant along orbits.

2b. Some examples.

Miniature 1. Orbits in X Y .
A Z [ Z matrix \ can be conjugated to an upper triangular matrix with diagonal entries

the eigenvalues ] ^ _ ] Y of \ . As the trace and determinant of both matrices are equal we

have ` ^ a \ b c d e a \ b and

` Y a \ b c f g d a \ b h
The best approximation to the orbitspace is therefore given by the surjective mapX Y i '' j Y k l mn f o pq a l r f _ l f s m n b
The matrix \ has two equal eigenvalues if and only if the discriminant of the characteristic

polynomial d Y s ` ^ a \ b d r ` Y a \ b is zero, that is when

` ^ a \ b Y s t ` Y a \ b c u . This condition

determines a closed curve v in
j Y

wherev c w a x _ y b z j Y { x Y s t y c u | hv

uia 1999 lieven le bruyn



2b. Some examples. 5

Observe that v is a smooth } -dimensional submanifold of
j Y

. We will describe the fibers

(that is, the inverse images of points) of the surjective map ~ .

If � c a x _ y b z j Y s v , then ~ � ^ a � b consists of precisely one orbit (which is then neces-

sarily closed in X Y ) namely that of the diagonal matrixk ] ^ uu ] Y o where ] ^ � Y c s x � � x Y s t yZ
If � c a x _ y b z v then ~ � ^ a � b consists of two orbits,� �� ] }u ] �� and

� �� ] uu ] ��
where ] c Ŷ x . We have seen that the second orbit lies in the closure of the first. Observe

that the second orbit reduces to one point in X Y and hence is closed. Hence, also ~ � ^ a � b
contains a unique closed orbit.

To describe the fibers of ~ as closed subsets of X Y it is convenient to write any matrix\ as a linear combination\ c � a \ b k Ŷ uu Ŷ o r � a \ b k Ŷ uu s Ŷ o r � a \ b k u }u u o r � a \ b k u u} u o h
Expressed in the coordinate functions � _ � _ � and � the fibers ~ � ^ a � b of a point � c a x _ y b zj Y

are the common zeroes of � � c x� Y r t � � c x Y s t y
The first equation determines a three dimensional affine subspace of X Y in which the

second equation determines a quadric.

� Z
�
� Z

u
If � �z v this quadric is non-degenerate and thus ~ � ^ a � b is a smooth Z -dimensional sub-

manifold of X Y . If � z v , the quadric is a cone with top lying in the point �Y "" Y . Under

the � � Y -action, the unique singular point of the cone must be clearly fixed giving us the

closed orbit of dimension u corresponding to the diagonal matrix. The other orbit is the

complement of the top and hence is a smooth Z -dimensional (non-closed) submanifold ofX Y . The graphs represent the orbit-closures and the dimensions of the orbits.
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6 2 The quotient space.

Miniature 2. Orbits in X � .

We will describe the fibers of the surjective map X � i '' j �
. If a � [ � matrix has

multiple eigenvalues then the discriminant f c a ] ^ s ] Y b Y a ] Y s ] � b Y a ] � s ] ^ b Y
is zero.

Clearly, f is a symmetric polynomial and hence can be expressed in terms of

` ^ _ ` Y and

` � .

More precisely, f c t ` �̂ ` � r t ` �Y r Z � ` Y� s ` Ŷ ` YY s } � ` ^ ` Y ` �
The set of points in

j �
where f vanishes is a surface � with singularities.

These singularities are the common zeroes of the � �� � � for } � � � � . One computes that

these singularities form a twisted cubic curve v in
j �

, that is,v c w a � n _ � n Y _ n � b { n z j | h
The description of the fibers ~ � ^ a � b for � c a x _ y _ � b z j �

is as follows. When � �z � , then~ � ^ a � b consists of a unique orbit (which is therefore closed in X � ), the conjugacy class of a

matrix with pairwise distinct eigenvalues. If � z � s v , then ~ � ^ a � b consists of the orbits

of \ ^ c �� ] } uu ] uu u   ¡¢ and \ Y c �� ] u uu ] uu u   ¡¢
Finally, if � z v , then the matrices in the fiber ~ � ^ a � b have a single eigenvalue ] c �̂ x and

the fiber consists of the orbits of the matrices£ ^ c �� ] } uu ] }u u ] ¡¢ £ Y c �� ] } uu ] uu u ] ¡¢ £ � c �� ] u uu ] uu u ] ¡¢
We observe that the strata with distinct fiber behavior (that is,

j � s � , � s v and v ) are

all submanifolds of
j �

.

The dimension of an orbit
� ¤

in X ¥ is computed as follows. Let v ¤
be the subspace of

all matrices in X ¥ commuting with \ . Then, the stabilizer subgroup of \ is a dense open

subset of v ¤
whence the dimension of

� ¤
is equal to ¦ Y s dim v ¤

.
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2b. Some examples. 7

Performing these calculations for the matrices given above, we obtain the following

graphs representing orbit-closures and the dimensions of orbits

j � s �

� §
�
�
� §

t
u

� ¨ ©
� ¨ ª
� ¨ «

�
� §

t
� ¤ ©
� ¤ ª

� s v v
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Week 3

The orbit closures.

This week we will prove the Gerstenhaber-Hesselink theorem which gives
an answer to :

Problem 3.

Describe the orbit-closures for general n.

Consider the quotient map Mn
π-- Cn and a point x = (x1, . . . , xn) ∈ Cn.

All matrices A in the fiber π−1(x) have the same eigenvalues {λ1, . . . , λe}
and multiplicities {d1, . . . , de} because

e∏
i=1

(t− λi)
di = χA(t) = tn − x1t

n+1 + x2t
n−2 − . . . + (−1)nxn.

We have seen in example ?? that the orbit corresponding to the diagonal
matrix with these eigenvalues and multiplicities is contained in the closure
of OA for any A ∈ π−1(x). Moreover, for any λ ∈ C, the linear automorphism

Mn
φλ- Mn defined by A 7→ A− λrr

n

commutes with the action of GLn. Hence, in studying the fibers π−1(x) we
may assume that one of the eigenvalues λi is zero. An important subprob-
lem is therefore to study the orbit-closures in the nullcone, N = π−1(0), that
is the set of all nilpotent n × n matrices. We recall that a matrix A is said
to be nilpotent if Ak = 0 for some power k. Clearly, A ∈ Mn is nilpotent if
and only if An = 0.

A nilpotent matrix A has 0 as its unique eigenvalue (occurring with mul-
tiplicity n). Therefore, by theorem ?? the orbits of nilpotent matrices are
in one-to-one correspondence with partitions of n. We will first introduce a
dominance ordering on all partitions of n and consequently show that this
ordering determines the orbit closures of nilpotent matrices.



2 3 The orbit closures.

3a. The Gerstenhaber-Hesselink theorem.
It is sometimes convenient to relax our definition of partitions to include ze-
roes at its tail. That is, a partition p of n is an integral n-tuple (a1, a2, . . . , an)
with a1 ≥ a2 ≥ . . . ≥ an ≥ 0 with

∑n
i=1 ai = n. As before, we represent a

partition by a Young diagram by omitting rows corresponding to zeroes.
If q = (b1, . . . , bn) is another partition of n we say that p dominates q and

write

p > q if and only if
r∑

i=1

ai ≥
r∑

i=1

bi for all 1 ≤ r ≤ n.

For example, the partitions of 4 are ordered as indicated below

> > > >

Note however that the dominance relation is not a total ordering whenever
n ≥ 6. For example, the following two partition of 6

are not comparable. The dominance order is induced by the Young move
of throwing a row-ending box down the diagram. Indeed, let p and q be
partitions of n such that p > q and assume there is no partition r such that
p > r and r > q. Let i be the minimal number such that ai > bi. Then by
the assumption ai = bi + 1. Let j > i be minimal such that aj 6= bj, then we
have bj = aj + 1 because p dominates q. But then, the remaining rows of p
and q must be equal. That is, a Young move can be depicted as

p =

i

j

−→ q =

i

j

For example, the Young moves between the partitions of 4 given above are
as indicated

.
→

.
→

.
→

.

→
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3a. The Gerstenhaber-Hesselink theorem. 3

A Young p-tableau is the Young diagram of p with the boxes labeled
by integers from {1, 2, . . . , s} for some s such that each label appears at
least ones. A Young p-tableau is said to be of type q for some partition
q = (b1, . . . , bn) of n if the following conditions are met :

• the labels are non-decreasing along rows,

• the labels are strictly increasing along columns, and

• the label i appears exactly bi times.

For example, if p = (3, 2, 1, 1) and q = (2, 2, 2, 1) then the p-tableau below

4

3

2

1 1 3

2

is of type q (observe that p > q and even p → q). In general, let
p = (a1, . . . , an) and q = (b1, . . . , bn) be partitions of n and assume that p → q.
Then, there is a Young p-tableau of type q. For, fill the Young diagram of q
by putting 1’s in the first row, 2’s in the second and so on. Then, upgrade
the fallen box together with its label to get a Young p-tableau of type q. In
the example above

4

3
=⇒2

1 1

2

3'&%$ !"#

•OO

4

3

2

1 1 3

2

Conversely, assume there is a Young p-tableau of type q. The number of
boxes labeled with a number ≤ i is equal to b1 + . . . + bi. Further, any
box with label ≤ i must lie in the first i rows (because the labels strictly
increase along a column). There are a1 + . . . + ai boxes available in the first
i rows whence

i∑
j=1

bi ≤
i∑

j=1

ai for all 1 ≤ i ≤ n

and therefore p > q. After these preliminaries on partitions, let us return
to nilpotent matrices.

Let A be a nilpotent matrix of type p = (a1, . . . , an), that is, conjugated to
a matrix with Jordan blocks (all with eigenvalue zero) of sizes ai. It follows
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4 3 The orbit closures.

from equation ?? that the subspace Vl of column vectors v ∈ Cn such that
Al.v = 0 has dimension

l∑
h=1

#{j | aj ≥ h} =
l∑

h=1

a∗h

where p∗ = (a∗1, . . . , a
∗
n) is the dual partition of p. Choose a basis {v1, . . . , vn}

of Cn such that for all l the first a∗1 + . . . + a∗l base vectors span the subspace
Vl. For example, if A is in Jordan normal form of type p = (3, 2, 1, 1)

0 1 0
0 0 1
0 0 0

0 1
0 0

0
0


then p∗ = (4, 2, 1) and we can choose the standard base vectors ordered as
follows

{e1, e4, e6, e7︸ ︷︷ ︸
4

, e2, e5︸ ︷︷ ︸
2

, e3︸︷︷︸
1

}.

Take a partition q = (b1, . . . , bn) with p → q (in particular, p > q), then for
the dual partitions we have q∗ → p∗ (and thus q∗ > p∗). But then there is
a Young q∗-tableau of type p∗. In the example with q = (2, 2, 2, 1) we have
q∗ = (4, 3) and p∗ = (4, 2, 1) and we can take the Young q∗-tableau of type p∗

2 2 3

1 1 1 1

Now label the boxes of this tableau by the base vectors {v1, . . . , vn} such
that the boxes labeled i in the Young q∗-tableau of type p∗ are filled with
the base vectors from Vi− Vi−1. Call this tableau T . In the example, we can
take

T = e2 e5 e3

e1 e4 e6 e7

Define a linear operator F on Cn by the rule that F (vi) = vj if vj is the label
of the box in T just above the box labeled vi. In case vi is a label of a box in
the first row of T we take F (vi) = 0. Obviously, F is a nilpotent n×n matrix
and by construction we have that

rk F l = n− (b∗1 + . . . + b∗l )
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3a. The Gerstenhaber-Hesselink theorem. 5

That is, F is nilpotent of type q = (b1, . . . , bn). Moreover, F satisfies F (Vi) ⊂
Vi−1 for all i by the way we have labeled the tableau T and defined F .

In the example above, we have F (e2) = e1, F (e5) = e4, F (e3) = e6 and all
other F (ei) = 0. That is, F is the matrix

0 1
0 0

0 0
0 1
0 0

1 0
0


which is seen to be of type (2, 2, 2, 1) after performing a few Jordan moves.

Returning to the general case, consider for all ε ∈ C the n× n matrix :

Fε = (1− ε)F + εA.

We claim that for all but finitely many values of ε we have Fε ∈ OA. Indeed,
we have seen that F (Vi) ⊂ Vi−1 where Vi is defined as the subspace such
that Ai(Vi) = 0. Hence, F (V1) = 0 and therefore

Fε(V1) = (1− ε)F + εA(V1) = 0.

Assume by induction that F i
ε (Vi) = 0 holds for all i < l, then we have that

F l
ε(Vl) = F l−1

ε ((1− ε)F + εA)(Vl)

⊂ F l−1
ε (Vl−1) = 0

because A(Vl) ⊂ Vl−1 and F (Vl) ⊂ Vl−1. But then we have for all l that

rk F l
ε ≤ dim Vl = n− (a∗1 + . . . + a∗l ) = rk Al def

= rl.

Then for at least one rl × rl submatrix of F l
ε its determinant considered it

as a polynomial of degree rl in ε is not identically zero (as it is nonzero for
ε = 1). But then this determinant is non-zero for all but finitely many ε.
Hence, rk F l

ε = rk Al for all l for all but finitely many ε. As these numbers
determine the dual partition p∗ of the type of A, Fε is a nilpotent n × n
matrix of type p for all but finitely many values of ε, proving the claim.
But then, F0 = F which we have proved to be a nilpotent matrix of type q
belongs to the closure of the orbit OA. That is, we have proved the difficult
part of the Gerstenhaber-Hesselink theorem.
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6 3 The orbit closures.

Theorem 3.1. Let A be a nilpotent n×n matrix of type p = (a1, . . . , an) and
B nilpotent of type q = (b1, . . . , bn). Then, B belongs to the closure of the orbit
OA, that is,

B ∈ OA if and only if p > q

in the domination order on partitions of n.

To prove the theorem we only have to observe that if B is contained in
the closure of A, then Bl is contained in the closure of Al and hence rk Al ≥
rk Bl (because rk Al < k is equivalent to vanishing of all determinants of
k × k minors which is a closed condition). But then,

n−
l∑

i=1

a∗i ≥ n−
l∑

i=1

b∗i

for all l, that is, q∗ > p∗ and hence p > q. The other implication was proved
above if we remember that the domination order was induced by the Young
moves and clearly we have that if B ∈ OC and C ∈ OA then also B ∈ OA.

3b. Some examples.

Miniature 3. Nilpotent matrices for small n.

We will apply theorem 1 to describe the orbit-closures of nilpotent matrices of 8 × 8
matrices. The following table lists all partitions (and their dual in the other column)

The partitions of 8.

a (8) v (1,1,1,1,1,1,1,1)
b (7,1) u (2,1,1,1,1,1,1)
c (6,2) t (2,2,1,1,1,1)
d (6,1,1) s (3,1,1,1,1,1)
e (5,3) r (2,2,2,1,1)
f (5,2,1) q (3,2,1,1,1)
g (5,1,1,1) p (4,1,1,1,1)
h (4,4) o (2,2,2,2)
i (4,3,1) n (3,2,2,1)
j (4,2,2) m (3,3,1,1)
k (3,3,2) k (3,3,2)
l (4,2,1,1) l (4,2,1,1)

The domination order between these partitions can be depicted as follows where all
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3b. Some examples. 7

the Young moves are from left to right

a�������� b�������� c��������
d��������

e��������
f��������

g��������

h��������
i�������� j��������

k��������

l��������
m�������� n��������

o��������

p��������
q��������

r��������
s��������

t�������� u�������� v��������
??

?? ���� ??
??

??
??

??
?? ����

??
??

??
??

����

����
����

����
����

Of course, from this graph we can read off the dominance order graphs for partitions of
n ≤ 8. The trick is to identify a partition of n with that of 8 by throwing in a tail of ones
and to look at the relative position of both partitions in the above picture. Using these
conventions we get the following graph for partitions of 7

b�������� d�������� f��������
g��������

i��������
l��������

m��������

p��������

n��������
q��������

r��������

s��������
t�������� u�������� v��������

�����

OOOOOOOOO
OOOOOOOOO

�����

�����

OOOOOOOOO ooooooooo

??
??

? ooooooooo

??
??

?
??

??
?

ooooooooo

and for partitions of 6 the dominance order is depicted as follows

c�������� g�������� l��������
p��������

m��������
q��������

s��������
r��������

t�������� u�������� v��������
??

??
??

??
??

?? ������

������

We have already mentioned that the dominance order on partitions of n ≤ 5 is a total
ordering.

We will prove later that knowledge of the orbit closures of nilpotent
matrices for m×m matrices for all m ≤ n is enough to understand the orbit
closures in all the fibers π−1(x) for the quotient map Mn

π-- Cn.
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Week 4

Dynamical systems.

In this section we will consider linear time-invariant dynamical systems.
Whereas this is a gross simplification of actual processes, often one can
reduce to such a situation (as a first approximation), for example near an
equilibrium state of the system. A linear time invariant dynamical system
Σ is governed by the following system of differential equations diffeq

dx

dt
= Bx + Au

y = Cx.
(4.1)

Here, u(t) ∈ Cm is the input or control of the system at tome t, x(t) ∈ Cn

the state of the system and y(t) ∈ Cp the output of the system Σ. Time
invariance of Σ means that the matrices A ∈ Mn×m(C), B ∈ Mn(C) and
C ∈ Mp×n(C) are constant. The system Σ can be represented as a black box

u(t) y(t)

x(t)

• •// //

which is in a certain state x(t) that we can try to change by using the input
controls u(t). By reading the output signals y(t) we can try to determine
the state of the system. We briefly recall how one solves a linear dynamical
system.

4a. Solving linear systems.

Recall that the matrix exponential eB of any n × n matrix B is defined by
the infinite series

eB = rr
n + B +

B2

2!
+ . . . +

Bm

m!
+ . . .



2 4 Dynamical systems.

Observe that this series converges to a matrix in Mn(C) as the norm | Bn |
is bounded by | B |m for any m. The importance of this construction is
clear from the fact that eBt is the fundamental matrix for the homogeneous
differential equation dx

dt
= Bx. That is, the columns of eBt are a basis for

the n-dimensional space of solutions of the equation dx
dt

= Bx.
Motivated by this, let us look for a solution to equation (4.1) as the form

x(t) = eBtg(t) for some function g(t). Substitution gives the condition

dg

dt
= e−BtAu whence g(τ) = g(τ0) +

∫ τ

τ0

e−BtAu(t)dt.

Observe that x(τ0) = eBτ0g(τ0) and we obtain the solution of the linear dy-
namical system Σ = (A, B, C) :{

x(τ) = e(τ−τ0)Bx(τ0) +
∫ τ

τ0
e(τ−t)BAu(t)dt

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ

τ0
Ce(τ−t)BAu(t)dt.

Differentiating we see that this is indeed a solution and it is the unique one
having a prescribed starting state x(τ0). Indeed, given another solution
x1(τ) we have that x1(τ) − x(τ) is a solution to the homogeneous system
dx
dt

= Bt, but then

x1(τ) = x(τ) + eτBe−τ0B(x1(τ0)− x(τ0)).

4b. Observable and controllable systems.

We will recall some important system-theoretic notions describing the level
of control or observation a given system allows.

We call the system Σ completely controllable if we can steer any starting
state x(τ0) to the zero state by some control function u(t) in a finite time
span [τ0, τ ]. That is, the equation

0 = x(τ0) +

∫ τ

τ0

e(τ0−t)BAu(t)dt

has a solution in τ and u(t). As the system is time-invariant we may always
assume that τ0 = 0 and have to satisfy the equationeqcontrol

0 = x0 +

∫ τ

0

etBAu(t)dt for every x0 ∈ Cn (4.2)

Consider the control matrix c(Σ) which is the n×mn matrix

c(Σ) = A BA B2A Bn-1A. . .
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4b. Observable and controllable systems. 3

Assume that rk c(Σ) < n then there is a non-zero state s ∈ Cn such that
strc(Σ) = 0, where str denotes the transpose (row column) of s. Because B
satisfies the characteristic polynomial χB(t), Bn and all higher powers Bm

are linear combinations of {rr
n, B, B2, . . . , Bn−1}. Hence, sτBmA = 0 for all

m. Writing out the power series expansion of etB in equation (4.2) this leads
to the contradiction that 0 = sτx0 for all x0 ∈ Cn. Hence, if rk c(Σ) < n, then
Σ is not completely controllable.

Conversely, let rk c(Σ) = n and assume that Σ is not completely control-
lable. That is, the space of all states

s(τ, u) =

∫ τ

0

e−tBAu(t)dt

is a proper subspace of Cn. But then, there is a non-zero state s ∈ Cn such
that strs(τ, u) = 0 for all τ and all functions u(t). Differentiating this with
respect to τ we obtain eq11

stre−τBAu(τ) = 0 whence stre−τBA = 0 (4.3)

for any τ as u(τ) can take on any vector. For τ = 0 this gives strA = 0. If we
differentiate (4.3) with respect to τ we get strBe−τBA = 0 for all τ and for
τ = 0 this gives strBA = 0. Iterating this process we show that strBmA = 0
for any m, whence

str
[
A BA B2A . . . Bn−1A

]
= 0

contradicting the assumption that rk c(Σ) = n. That is, we have proved :

Proposition 4.1. A linear time-invariant dynamical system Σ determined
by the matrices (A, B, C) is completely controllable if and only if rk c(Σ) is
maximal.

C

CB

CB2

CBn-1

. . .

lieven le bruyn uia 1999



4 4 Dynamical systems.

Next, we turn to the problem to what degree we can obtain information
about the system by reading off its output displays. We say that a state
x(τ) at time τ is unobservable if Ce(τ−t)Bx(τ) = 0 for all t. Intuitively this
means that the state x(τ) cannot be detected uniquely from the output of
the system Σ. Again, if we differentiate this condition a number of times
and evaluate at t = τ we obtain the conditions

Cx(τ) = CBx(τ) = . . . = CBn−1x(τ) = 0.

We say that Σ is completely observable if the zero state is the only un-
observable state at any time τ . Consider the observation matrix o(Σ) of the
system Σ which is the pn× n matrix

o(Σ) =
[
Ctr (CB)tr . . . (CBn−1)tr

]tr

An analogous argument as in the proof of proposition 4.1. gives us :

Proposition 4.2. A linear time-invariant dynamical system Σ determined
by the matrices (A, B, C) is completely observable if and only if rk o(Σ) is
maximal.

4c. Some examples.

Miniature 4. A physical dynamical system.

We consider a simple magnetic-ball suspension system. The objective of the system
is to control the position of the steel ball by adjusting the current in the electromagnet
through the input voltage e(t).

The differential equations determining this system are :
M

d2y(t)
dt2

= Mg − i2(t)
y(t)

e(t) = Ri(t) + L
di(t)
dt
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4c. Some examples. 5

Here, y(t) is the distance of teh ball from the magnet, M the mass of the ball and g the
gravitational constant. The electromagnet has winding inductance L, winding resistance
R and i(t) is the winding current. If we want to approximate this system by a linear
system we have to solve two problems : (1) to replace the higher order differential term
in the left hand side by first order terms, and (2) to linearize the non-linear terms in teh
right hand side.

The first problem is solved by teh standard trick that a single n-th order differential
equation

dny

dtn
+ a1

dn−1y

dtn−1
+ . . . + any = u(t)

is equivalent to a linear system
dx

dt
= Fx + u

where we take x = (x1, . . . , xn) with x1 = y, xi = diy
dti for i ≥ 2 and where F is then × n

matrix

F =


0 0 . . . 0 −an

1 0 . . . 0 −an−1

0 1 0 −an−2

. . .
...

0 0 1 −a1


Hence, in the above suspension system we take as state vaiables x1(t) = y(t), x2(t) = dy

dt
and x3(t) = i(t). Then, the defining equations of teh system become

dx1

dt
= x2

dx2

dt
= g − 1

M

x2
3

x1
dx3

dt
= −R

L
x3 +

1
L

e

To remove the non-linear terms in teh right hand side we consider an equilibrium state
with y0(t) = a is constant. Then, diy0(t)

dti = 0 and usbstitution in the differential equations
gives that the equilibrium state determined by a is

x0(t) = (a, 0,
√

Mga).

Expanding the nonlinear terms into Taylor series about x0(t) and neglecting higher order

terms we can approximate the system by the linear time-invariant system Σ :
dx′

dt
=

Bx′ + A where x′i(t) = xi(t)− x0i(t) and

B =


0 1 0
g

a
0 −2

√
g

Ma

0 0 −R

L

 and A =

 0
0
1
L


The control matrix c(Σ) is teh 3× 3 matrix

[
A,BA,B2A

]
=


0 0 − 2

L

0 − 2
L

√
g

Ma

2R

L2

√
g

Ma
1
L

− R

L2

R2

L3
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6 4 Dynamical systems.

which is of rank 3 hence Σ is completely controllable. Observability of the system depends
on which variable we define as the output. First, assume that the output signal is the
distance x1 from teh ball to the magnet, that is, C =

[
1, 0, 0

]
. Then, teh observation

matrix o(Σ) is equal to  C
CB
C2B

 =


1 0 0
0 1 0
g

a
0 −2

√
g

Ma


and the system is completely controllable. Similarly, if the output is teh speed x2 of the
ball then one verifies complete controllability. However, if our output signal is the current
i, that is, C =

[
0, 0, 1

]
then the controllability matrix is

 C
CB
C2B

 =


0 0 1

0 0 −R

L

0 0 2
R

L

√
g

Ma


Thus, the system is not completely controllable. That is, observing only the current i(t) we
are not always able to reconstruct the state of teh system. If however, we would observe

the distance y(t) (or the speed
dy

dt
) we are able to reconstruct the state of the system.
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Week 5

The orbit space.

Usually, a system is a black box, that is, its inner workings are unknown
to us and we can only detect its input/output behavior. Let us restrict to
linear time-invariant dynamical systems which are both completely con-
trollable and completely observable and call such systems Schurian. Of
fundamental importance in system theory is the solution to :

Problem 4.

Classify Schurian dynamical systems with the same input/output
behavior.

First, we will reduce this problem to the study of GLn-orbits in an open
subset of a certain vectorspace. Assume we have two systems Σ and Σ′,
determined by matrix triples from Sys = Mn×m(C)×Mn(C)×Mp×n(C)

u(t) y(t)
(A,B,C)

• •// //

u(t) y(t)

(A’,B’,C’)

• •// //

producing the same output y(t) when given the same input u(t), for all
possible input functions u(t). We recall that the output function y for a
system Σ = (A,B,C) is determined by

y(τ) = CeB(τ−τ0)x(τ0) +

∫ τ

τ0

Ce(τ−t)BAu(t)dt.

Differentiating this a number of times and evaluating at τ = τ0 as in the
proof of proposition ?? equality of input/output for Σ and Σ′ gives the con-
ditions

CBiA = C ′B
′iA′ for all i.



2 5 The orbit space.

5a. The Kalman code.
As a consequence the systems Σ and Σ′ have the same Hankel matrix which
by definition is the product of the observation matrix with the control ma-
trix of the system :

H(Σ) =


C
CB

...
CBn−1

 [
A BA . . . Bn−1A

]
=

CA CBA

CBA CB2A

CB2n-2A

. . .

. . .

. . ....
...

Alternatively, we can express this condition in terms of linear maps. Con-
sider the two compositions{

Cmn c(Σ) -- Cn ⊂
o(Σ) - Cpn

Cmn c(Σ′)-- Cn ⊂
o(Σ′) - Cpn

Here, the control maps are onto by complete controllability and the obser-
vation maps are into by complete observability. Equality of input/output
implies equality of the Hankel matrices and so the composed linear maps
Cmn - Cpn are equal.

But then, we have for any v ∈ Cmn that c(Σ)(v) = 0 ⇔ c(Σ′)(v) and we
can decompose Cpn = V ⊕W such that the restriction of c(Σ) and c(Σ′) to
V are the zero map and the restrictions to W give isomorphisms with Cn.
Hence, there is an invertible matrix g ∈ GLn such that c(Σ′) = gc(Σ) and
from the commutative diagram

Cmn c(Σ) -- Cn ⊂
o(Σ) - Cpn

‖ ‖

Cmn c(Σ′)-- Cn

g

?
⊂

o(Σ′) - Cpn

we obtain that also o(Σ′) = o(Σ)g−1.
Consider the system Σ1 = (A1, B1, C1) equivalent with Σ under the base-

change matrix g. That is, Σ1 = g.Σ = (gA, gBg−1, Cg−1). Then,[
A1, B1A1, . . . , B

n−1
1 A1

]
= gc(Σ) = c(Σ′) =

[
A′, B′A′, . . . , B

′n−1A′]
and so A1 = A′. Further, as Bi+1

1 A1 = B
′i+1A′ we have by induction on

i that the restriction of B1 on the subspace of B′iIm(A′) is equal to the
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5a. The Kalman code. 3

restriction of B′ on this space. Moreover, as
∑n−1

i=0 B
′iIm(A′) = Cn it follows

that B1 = B′. Because o(Σ′) = o(Σ)g−1 we also have C1 = C ′. This finishes
the proof of :

Proposition 5.1. Let Σ = (A,B,C) and Σ′ = (A′, B′, C ′) be two Schurian
dynamical systems. The following are equivalent

1. The input/output behavior of Σ and Σ′ are equal.

2. The systems Σ and Σ′ are equivalent, that is, there exists an invertible
matrix g ∈ GLn such that

A′ = gA, B′ = gBg−1 and C ′ = Cg−1.

This proposition reduces the system theoretic problem to a fabric set-
ting. We consider the linear action of GLn on the vectorspace of matrix
triples defining linear time-invariant dynamical systems

Sys = Mn×m(C)×Mn(C)×Mp×n(C)

defined for all g ∈ GLn by

g.(A,B,C) = (gA, gBg−1, Cg−1).

For later reference we depict this action by the pattern

n��������m�������� p����������// //

By definition, a dynamical system Σ = (A,B,C) is Schurian if (and only if)
the determinant of at least one n × n minor of c(Σ) and o(Σ) is non-zero.
That is, the subset Syss of Schurian dynamical systems is open in Sys and
is stable under the GLn-action. Our next job is to classify the orbits under
this action.

We introduce a combinatorial gadget : the Kalman code. It is an array
consisting of (n + 1) × m boxes each having a position label (i, j) where
0 ≤ i ≤ n and 1 ≤ j ≤ m. These boxes are ordered lexicographically that
is (i′, j′) < (i, j) if and only if either i′ < i or i′ = i and j′ < j. Exactly n of
these boxes are painted black subject to the rule that if box (i, j) is black,
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4 5 The orbit space.

then so is box (i′, j) for all i′ < i. That is, a Kalman code looks like

0

n

1 m

We assign to a completely controllable system Σ = (A,B,C) its Kalman
code K(Σ) as follows : let A =

[
A1 A2 . . . Am

]
, that is Ai is the i-th

column of A. Paint the box (i, j) black if and only if the column vector BiAj
is linearly independent of the column vectors BkAl for all (k, l) < (i, j). The
painted array K(Σ) is indeed a Kalman code. Assume that box (i, j) is black
but box (i′, j) white for i′ < i, then

Bi′Aj =
∑

(k,l)<(i′,j)

αklB
kAl but then, BiAj =

∑
(k,l)<(i′,j)

αklB
k+i−i′Al

and all (k + i − i′, l) < (i, l), a contradiction. Moreover, K(Σ) has exactly
n black boxes as there are n linearly independent columns of the control
matrix c(Σ) when Σ is completely controllable.

The Kalman code is a discrete invariant of the orbit OΣ under the action
of GLn. This follows from the fact that BiAj is linearly independent of the
BkAl for all (k, l) < (i, j) if and only if gBiAj is linearly independent of the
gBkAl for any g ∈ GLn and the observation that gBkAl = (gBg−1)k(gA)l.
Next, we will clarify the geometric significance of the Kalman code.

As the Kalman code depends only on the input part (A,B) of the system
Σ = (A,B,C) we consider the linear action of GLn on the vectorspace of
matrixpairs V = Mn×m(C)×Mn(C) defined by g.(A,B) = (gA, gBg−1).

With Vc we will denote the open subset of all completely controllable
pairs (A,B) that is, those for which the rank of the n × nm matrix[
A BA B2A . . . Bn−1A

]
is maximal. We consider the map

V = Mn×m(C)×Mn(C)
ψ - Mn×(n+1)m(C)

(A,B) 7→
[
A BA B2A . . . Bn−1A BnA

]
The matrix ψ(A,B) determines a linear map ψ(A,B) : C(n+1)m - Cn and
(A,B) is a completely controllable pair if and only if the corresponding
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5b. Grassman manifolds. 5

linear map ψ(A,B) is surjective. Moreover, there is a linear action of GLn
on Mn×(n+1)m(C) by left multiplication and the map ψ is GLn-equivariant
meaning that ψ(g.(A,B)) = gψ(A,B).

The Kalman code allows us to find a canonical pair in the orbit O(A,B)

when (A,B) is a completely controllable pair. There is a natural one-to-
one correspondence between the boxes in the Kalman code array and the
columns of ψ(A,B) by sending box (i, j) to the j-th column of the submatrix
BiA.

5b. Grassman manifolds.
The Kalman code induces a barcode on ψ(A,B), that is the n × n minor
of ψ(A,B) determined by the columns corresponding to black boxes in the
Kalman code.

ψ(A,B)

By construction this minor is an invertible matrix g−1 ∈ GLn. The canoni-
cal element in the orbit O(A,B) we have in mind is the pair g.(A,B). It has
the characteristic property that the n×n minor of its image under ψ, deter-
mined by the Kalman code is the identity matrix rr

n. The matrix ψ(g.(A,B))
will be denoted by b(A,B) and is called barcode of the pair (A,B). We now
claim that the barcode determines the orbit uniquely.

In fact, the map ψ is injective on the open set Vc of completely control-
lable pairs. Indeed, if[

A BA . . . BnA
]

=
[
A′ B′A′ . . . B

′nA′]
then A = A′, B | Im(A) = B′ | Im(A) and hence by induction also

B | BiIm(A) = B′ | B′iIm(A′) for all i ≤ n− 1.

But then, B = B′ as both pairs (A,B) and (A′, B′) are completely control-
lable, that is,

∑n−1
i=0 B

iIm(A) = Cn =
∑n−1

i=0 B
′iIm(A′). Hence, the barcode

b(A,B) determines the orbitO(A,B) and is a point in the Grassman manifold
Grasn(Cm(n+1)).

We recall briefly the definition of the Grassman manifolds. Let k ≤ l be
integers, then the points of Grassman manifold Grask(Cl) are in one-to-one
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6 5 The orbit space.

correspondence with k-dimensional subspaces of Cl. For example, if k = 1
then Gras1(Cl) is the projective l − 1-space Pl−1. We know that projective
space can be covered by affine spaces defining a manifold structure on it.
Also Grassman manifold admit a cover by affine spaces.

Let W be a k-dimensional subspace of Cl then fixing a basis {w1, . . . , wk}
of W determines an k× l matrix M having as i-th row the coordinates of wi
with respect to the standard basis of Cl. Linear independence of the vectors
wi means that there is a barcode design I on M

w1

...
wk

i1 i2 . . . ik

where I = 1 ≤ i1 < i2 < . . . < ik ≤ l such that the corresponding k× k minor
MI of M is invertible. Observe that M can have several such designs.

Conversely, given a k× l matrix M of rank k determines a k-dimensional
subspace of l spanned by the transposed rows. Two k × l M and M ′ matri-
ces of rank k determine the same subspace provided there is a basechange
matrix g ∈ GLk such that gM = M ′. That is, we can identify Grassk(Cl)
with the orbit space of the linear action of GLk by left multiplication on the
open set Mmax

k×l (C) of Mk×l(C) of matrices of maximal rank. Let I be a bar-
code design and consider the subset of Grassk(Cl)(I) of subspaces having a
matrix representation M having I as barcode design. Multiplying on the
left with M−1

I the GLk-orbit OM has a unique representant N with NI = rr
k.

Conversely, any matrix N with NI = rr
k determines a point in Grassk(Cl)(I).

Thus, Grassk(Cl)(I) depends on k(l − k) free parameters (the entries of the
negative of the barcode)

w1

...
wk

i1 i2 . . . ik

and we have an identification Grassk(Cl)
πI- Ck(l−k). For a different bar-

code design I ′ the image πI(Grassk(Cl)(I)∩Grassk(Cl)(I ′)) is an open subset
of Ck(l−k) (one extra nonsingular minor condition) and πI′ ◦ π−1

I is a diffeo-
morphism on this set. That is, the maps πI provide us with an atlas and
determine a manifold structure on Grassk(Cl).

Applying the foregoing construction, the barcode b(A,B) determined by
the Kalman code determines a unique point in Grassn(Cm(n+1)). We have
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5b. Grassman manifolds. 7

the following diagram

Vc ⊂
ψ - Mmax

n×m(n+1)(C)

@
@

@
@

@

b(.)

R

Grassn(Cm(n+1))

χ

??

where ψ is a GLn-equivariant embedding and χ the orbit map. Observe
that both ψ and ′chi are clearly continuous maps, hence so is the orbit map
b. Observe that the barcode matrix b(A,B) shows that the stabilizer of
(A,B) is trivial. Indeed, the minor of g.b(A,B) determined by the Kalman
code is equal to g. Moreover, continuity of b implies that the orbit O(A,B) is
closed in Vc.

Our final aim is to prove that ψ is a diffeomorphism to a locally closed
submanifold of Mn×m(n+1)(C). To prove this we have to consider the differ-
ential of ψ. We recall briefly the definition of a differential. Consider a
map

f = (f1, . . . , fl) : Ck - Cl

with all the fi differentiable complex valued maps in the coordinate func-
tions xi of Ck. For a point p ∈ Ck the differential of f at p is a linear map

dfp : Tp Ck ' Ck - Cl = Tf(p) Cl

between the tangent space to Ck in p and the tangent space to Cl in the
image f(p). This linear map is determined by the matrix

∂f1

∂x1

(p) . . .
∂f1

∂xk
(p)

... . . . ...
∂fl
∂x1

(p) . . .
∂fl
∂xk

(p)

 ∈Ml×k(C).

When all the fi are polynomials in the variables xi we can compute the
differential map by the ε-method : compute fi(p + εv) bearing in mind that
ε2 = 0, then one has

f(p+ εv) = f(p) + ε dfp(v) for all v ∈ Tp Ck.

If dfp is injective, then the implicit function theorem implies that the image
of f is locally around f(p) a closed submanifold of dimension n in Cl.

All the coordinate functions of ψ are polynomials in the coordinates of
W . For all (A,B) ∈ W and (X, Y ) ∈ T(A,B)(W ) ' W we have

(B + εY )j(A+ εX) = BnA+ ε (BnX +

j−1∑
i=0

BiY Bn−1−iA).

lieven le bruyn uia 1999



8 5 The orbit space.

Therefore the differential of ψ in (A,B) ∈ W , dψ(A,B)(X, Y ) is equal to[
X BX + Y A B2X +BY A+ Y BA . . . BnX +

∑n−1
i=0 B

iY Bn−1−iA
]
.

Assume dψ(A,B)(X, Y ) is the zero matrix, then X = 0 and substituting in
the next term also Y A = 0. Substituting in the third gives Y BA = 0, then
in the fourth Y B2A = 0 and so on until Y Bn−1A = 0. But then,

Y
[
A BA B2A . . . Bn−1A

]
= 0.

If (A,B) is a completely controllable pair, this implies that Y = 0 and hence
shows that dψ(A,B) is injective for all (A,B) ∈ Vc.

By the implicit function theorem, ψ induces a GLn-equivariant diffeo-
morphism between the open subset Vc of completely controllable pairs and
a locally closed submanifold of Mn×(n+1)m(C)max. The image of this subman-
ifold under the orbit map χ is again a manifold as all fibers are equal to
GLn. This concludes the difficult part of the Kalman theorem :

Theorem 5.2. The orbit space Oc = Vc/GLn of equivalence classes of com-
pletely controllable pairs is a locally closed submanifold of dimension m.n

of the Grassman manifold Grassn(Cm(n+1)). In fact Vc
b-- Oc is a principal

GLn-bundle.

To prove the dimension statement, consider Vc(K) the set of completely
controllable pairs (A,B) having Kalman code K and let Oc(K) be the image
under the orbit map. After identifying Vc(K) with its image under ψ, the
barcode matrix b(A,B) gives a section Oc(K) ⊂

s- Vc(K). In fact,

GLn ×Oc(K) - Vc(K)

(g, x) 7→ g.s(x)

is a GLn-equivariant diffeomorphism because the n × n minor determined
by K of g.b(A,B) is g. Apply the local product decomposition to the generic
Kalman code Kg

0

n

1 m
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5b. Grassman manifolds. 9

obtained by painting the top boxes black from left to right until one has n
black boxes. Clearly Vc(Kg) is open in Vc and one deduces

dim Oc = dim Oc(K
g) = dim Vc(K

g)− dim GLn = mn+ n2 − n2 = mn.

The Kalman theorem 5.2. implies immediately the existence of an or-
bit space for completely controllable and Schurian systems. Indeed, let
Σ = (A,B,C) completely controllable and let g = g(A,B) ∈ GLn be the
uniquely determined basechange such that g.(A,B) = b(A,B), then we have
a canonical representant (gA, gBg−1, Cg−1) in the orbit OΣ. As the stabi-
lizer Stab(A,B) is trivial the orbits of (A,B,C) and (A,B,C ′) are distinct if
C = C ′. That is the natural projection pr3

Sysc
pr3 -- Vc

Sysc/GLn
?

...............
-- Oc

b

??

descends to define an orbit space which is an Mp×n(C)- bundle over Oc

and hence is a manifold. The Schurian systems Syss form a GLn-stable
open subset of Sysc and hence their orbit space is an open submanifold of
Sysc/GLn. This concludes the solution to problem 5 :

Theorem 5.3. Let Sysc (resp. Syss) the the open subset of Sys = Mn×m(C)×
Mn(C)×Mp×n(C) determined by the completely controllable (resp. Schurian)
linear dynamical systems.

1. The orbit space for the GLn action on Sysc exists and is a vectorbundle
of rank pn over Oc.

2. The orbit space for the GLn-action on Syss exists and is a manifold of
dimension mn2p.
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Week 6

The slice space.

Another important problem in system theory is to determine how a system
can change under small perturbations. That is, given a completely control-
lable pair (A, B) or system Σ = (A, B, C), we want to construct a slice giving
unique representants in nearby orbits.

Problem 5.

Construct a slice for completely controllable systems.

Consider first the case of a controllable pair p = (A, B). By a slice we
mean a submanifold S of V = Mn×m(C)×Mn(C) passing through (A, B) and
such that we have a GLn-equivariant diffeomorphism

GLn × S - V given by (g, s) 7→ g.s

in a neighborhood of (A, B). Hence, near (A, B) an orbit intersects S
uniquely. We have the following situation

•p

S

ooooooooooooo ooooooooooooo

111122 00 00



2 6 The slice space.

6a. Slice representation.
In order to determine a good candidate for S let us compute the differential
of the action map

GLn × V
a- V defined by (g, (A′, B′)) 7→ (gA′, gBg−1)

in the point (rr
n, p) where p = (A, B). Because GLn is an open submanifold of

Mn(C) we know that Trr
n

GLn = Mn(C) = {rr
n + ε m | m ∈ Mn(C)}. Similarly,

the tangent space Tp V = V and can be identified with {(A + ε X, B + ε Y ) |
X ∈ Mn×m(C), Y ∈ Mn(C)}. By the ε-method to compute the differential we
have to expand

( (rr
n + ε m)(A + ε X) , (rr

n + ε m)(B + ε Y )(rr
n − ε m) )

which is equal to

(A, B) + ε (X + mA, Y + [m, B]) where [m,B] = mB −Bm.

That is, the differential of the action map in the point (rr
n, p) is given by

da(
rr

n,p)(m, (X, Y )) = (X + mA, Y + [m, B]).

Likewise, we can compute that the differential of the orbit map GLn
o- V

of O(A,B) defined by g 7→ g.(A, B) in the point rr
n is given by the linear map

dorr
n
(m) = (mA, [m, B]).

Observe that dorr
n

is injective. For if mA = 0 and mB = Bm then for all i

we have that mBiA = BimA = 0 whence m
[
A BA . . . Bn−1A

]
= 0. But

then m = 0 by complete controllability of (A, B).
The tangent space Tp O(A,B) in p = (A, B) to the orbit is the subset of

pairs (A, B) + Im dorr
n

= {(A + mA,B + [m,B]) | m ∈ Mn(C)}. Take S to be
the normal space in p to the orbit O(A,B). That is, S = (A, B) + (Im dorr

n
)⊥

where (Im dorr
n
)⊥ is subspace of V orthogonal to Im dorr

n
.

p•
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6a. Slice representation. 3

Here, orthogonality is meant with respect to the Hermitian inner product
on V = Mn×m(C)×Mn(C) defined by

〈(A1, B1), (A2, B2)〉 = Tr(A1A
tr

2 ) + Tr(B1B
tr

2 )

where Tr is the trace on n×n matrices and X
tr is the Hermitian transpose,

that is if U = (uij)i,j, then U
tr

= (uij)j,i. Now, (Im dorr
n
)⊥ is the subspace of

pairs (X,Y ) such that for all m ∈ Mn(C) we have

0 = 〈(mA, [m,B]), (X,Y )〉 = Tr(mAX
tr
) + Tr([m,B]Y

tr
)

= Tr(mAX
tr
) + Tr(m[B, Y

tr
])

= Tr(m(AX
tr

+ [B, Y
tr
]))

where we used that traces of products are the same for cyclic permutations
of the factors. By the non-degeneracy of the trace on Mn(C) (that is, n = 0
if and only if Tr(mn) = 0 for all m ∈ Mn(C)) we conclude from this that

(Im dorr
n
)⊥ = {(X,Y ) | AX

tr
+ [B, Y

tr
] = 0}.

Theorem 6.1. Let p = (A, B) be a completely controllable pair. Then the
manifold

S = {(A + X,B + Y ) | AX
tr

+ [B, Y
tr
] = 0}

is a slice for the action of GLn on V in p = (A, B).

By the implicit function theorem the action map GLn × S
a- V is a

diffeomorphism in p = (A, B) if and only if the differential

da(
rr

n,p) : Trr
n

GLn ⊕ Tp S - Tp V = V

is a linear isomorphism. We have seen that Trr
n

GLn = Mn(C) = Im dorr
n

and that Tp S = (Im dorr
n
)⊥ so the dimensions of both left factors add up to

dim V . It therefore suffices to check injectivity of the differential. We have
calculated that

da(
rr

n,p)(m, (X, Y )) = (mA + X, [m, B] + Y )

Assume that X = −mA and Y = −[m, B] then because (X, Y ) ∈ (Im dorr
n
)⊥

we have 〈(X,Y ), (X, Y )〉 = 0 whence X = 0 and Y = 0. But then as mA = 0
and mB = Bm and (A, B) is completely controllable we also have m = 0
finishing the proof of the slice theorem.
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4 6 The slice space.

6b. Control canonical form.

The determination of the slice S is particularly simple in the point (A′, B′)
of the orbit O(A,B) where (A′, B′) is in control canonical form. This canonical
form is similar to the Jordan normal form and is determined by the Kalman
code K associated to the completely controllable pair (A, B). Assume K has
the following shape :

0

n

1 m

j1 j2 j3 jk. . . . . . jt

Here, 1 ≤ j1 < . . . < jt ≤ m form the set J of integers j such that the box
(0, j) is painted black, hence t = #J = rank A. For each jk ∈ J define bk to
be the number of painted boxes in the j-th column of K.

With notations as above, prove that there is a base-change matrix g ∈
GLn such that g.(A, B) = (A′, B′) where the n×n matrix B′ has the following
block form

rr

rr

rr

. . .bt

b1b2

where the nonzero entries are in one of the identity matrix components
rr
bk−1 or in the painted stripes which represent one row. The off-diagonal
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6c. Another slice result. 5

block Bij is a bi × bj matrix of one of the following typesbi

︸ ︷︷ ︸
bi ︸ ︷︷ ︸

bj

depending on whether bi ≤ bj or bj ≤ bi. The diagonal block Bii is a bi × bi

matrix of the form

rr
bi−1

The n×m matrix A has the following block structure :

1

1

1

bt

b1b2

j1 j2 jt

6c. Another slice result.

Finally, we will generalize the slice construction to dynamical systems Σ =
(A, B, C) which are completely controllable. We define an Hermitian inner
product on Sys = Mn×m(C)×Mn(C)×Mp×n(C) by the rule

〈(A1, B1, C1), (A2, B2, C2)〉 = Tr(A1A
tr

2 ) + Tr(B1B
tr

2 ) + Tr(C
tr

2 C1).

This time, the differential of the orbit map GLn
o- Sys defined by g 7→

g.(A, B, C) is computed by expanding the expression

( (rr
n + ε m)(A + ε X) , (rr

n + ε m)(B + ε Y )(rr
n − ε m) , (C + ε Z)(rr

n − ε m) )
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6 6 The slice space.

and we obtain that the image of the orbit map dorr
n

consists of the triples

Im dorr
n

= {(mA, [m, B],−Cm) | m ∈ Mn(C)}.

Again, using non-degeneracy of the trace map on n × n matrices one can
identify the orthogonal complement of this space as the subspace

(Im dorr
n
)⊥ = {(X,Y, Z) | AX

tr
+ [B, Y

tr
]− Z

tr
C = 0}

From this we again construct a slice as in the proof of theorem 6.1. .

Theorem 6.2. Let Σ = (A, B, C) be a completely controllable system. Then
the manifold

S = {(A + X, B + Y,C + Z) | AX
tr

+ [B, Y
tr
]− Z

tr
C = 0}

is a slice for the GLn-action on Sys in Σ.
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Week 7

Hilbert schemes.

Consider completely controllable pairs of matrices (A,B) with m = 1. That
is, A = v is a column vector and we must have that

B(v) =
[
v Bv B2v . . . Bn−1v

]
has rank n, or equivalently, v is a cyclic vector of B. There is only one
Kalman code K(v,B) possible, the generic one. The barcode b(v,B) of the
pair (v,B) is the matrix B(v)−1

[
B(v) Bnv

]
. That is, we have :

K(v,B) =

0

n

1 and b(v,B) =

rr
n

a1

an

...

Hence, the orbit space Oc(1, n) ' Cn and the point (a1, . . . , an) ∈ Cn corre-
sponding to the orbit of (v,B) is determined by the characteristic polyno-
mial of B :

χB(t) = det(trrn −B) = tn − ant
n−1 − . . .− a2t− a1.

Hence, we can identify the orbit space Oc(1, n) with the space of all monic
polynomials in C[t] of degree n. Such polynomials f(t) are uniquely deter-
mined by their unordered n-tuple of roots {λ1, . . . , λn} as

f(t) =
n∏

i=1

(t− λi) = tn − ant
n−1 − . . .− a2t− a1



2 7 Hilbert schemes.

where ai+1 = (−1)n−1σn−i(λ1, . . . , λn) with σj the j-th elementary symmetric
function in the λk.

That is, we can also identify Oc(1, n) with Hilbn(C1), the Hilbert scheme
of n points in C1. The points of Hilbn(C1) parametrize the ideals I / C[t] of
codimension n and as C[t] is a principal ideal domain such ideals have a
unique monic generator of degree n.

The symmetric product Sn C1 of n copies of C1 is defined to be

Sn C1 = C1 × . . .× C1︸ ︷︷ ︸
n

/Sn

where the symmetric group on n-letters Sn acts on the entries. A point of
Sn C1 is represented as a formal sum

∑
i ni[µi] where ni ∈ N with

∑
i ni = n

and µi ∈ C1. In this case, the Hilbert-Chow map

Hilbn C1 π- Sn C1

defined by sending a monic polynomial f(t) of degree n to
∑

i ni[µi] where
the µi are the roots of f(t) occurring with multiplicity ni, is a one-to-one
correspondence. Observe that the numbers ni determine (when ordered) a
partition of n and that the projection

C1 × . . .× C1︸ ︷︷ ︸
n

-- Sn C1

is defined by sending an n-tuple (c1, . . . , cn) to (s1, . . . , sn) where si =
σi(c1, . . . , cn). So, we still have another description of the orbit space Oc(1, n)
as Sn C1. However, all these identifications are particular to dimension 1.
Let us consider :

Problem 6.

Describe Hilbn C2, the Hilbert scheme of n points in the plane C2. That is,
parametrize all ideals I / C[x, y] of codimension n.

Let I / C[x, y] be such that V =
C[x, y]

I
is an n-dimensional vectorspace

and fix a basis {v1, . . . , vn} of V . Multiplication by x (resp. y) on C[x, y] in-
duces a linear operator on V and hence determines a matrix X ∈ Mn(C)
(resp. Y ∈ Mn(C)). Clearly, [X, Y ] = 0 and they generate an n-dimensional

subalgebra C[X, Y ] ' C[x, y]

I
of Mn(C). Further, the image of the unit ele-

ment 1 ∈ C[x, y] determines a column vector v ∈ V = Cn with the property
that

C[X, Y ]v = Cn.
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7a. An example. 3

Note however that the triple (v,X, Y ) ∈ Cn ⊕ Mn ⊕ Mn is not uniquely
determined by the ideal I as it depends on the choice of basis of V . If we
choose a different basis {v′1, . . . , v′n} with basechange matrix g ∈ GLn, then
the corresponding triple is

(v′, X ′, Y ′) = (gv, gXg−1, gY g−1).

Consider the vectorspace of all triples

Hn = Cn ⊕Mn ⊕Mn with action g.(v,X, Y ) = (gv, gXg−1, gY g−1)

for all g ∈ GLn. For later reference, we depict this action by the pattern

n��������1�������� ��
[[//

The above discussion shows that the ideal I / C[x, y] of codimension n de-
termines an orbit OI in Hn. Conversely, let Cc

n be the subset of triples
(v,X, Y ) ∈ Hn satisfying the additional conditions :

1. The matrix pair commutes : [X,Y ] = 0, and

2. v is a cyclic vector for this pair : C[X, Y ]v = Cn.

For (v,X, Y ) ∈ Cc
n we can define a map C[x, y]

φ- Cn by sending a polyno-
mial f = f(x, y) to the vector φ(f) = f(X,Y )v. By the second condition, φ is
surjective and therefore, its kernel I = {f ∈ C[x, y] | φ(f) = 0} is an ideal
of codimension n. That is, the Hilbert scheme Hilbn C2 of n points in the
plane C2 is the orbit space for the GLn-action on the subset Cc

n.

7a. An example.

Miniature 5. The Hilbert scheme Hilb2 C2.

Let us first consider the Hilbert scheme Hilb1 C2 of one point in C2 which we expect to
be C2. Indeed, H1 = {(v,X, Y ) | v,X, Y ∈ C} and any pair (X, Y ) is commuting. Moreover,
v is cyclic for (X, Y ) if and only if v 6= 0. That is, Cc

1 = C∗×C×C. The group GL1 = C∗ acts
via c.(v,X, Y ) = (cv, X, Y ) and hence the triples {(1, X, Y )} = C2 parametrize the orbits of
Cc

1, that is, Hilb1 C2 = C2 and the ideal I of codimension one corresponding to the point
p = (X, Y ) ∈ C2 is the ideal of polynomials f ∈ C[x, y] vanishing in p, f(X, Y ) = 0.

Next, we consider the Hilbert scheme Hilb2 C2 of two points in C2. Let (v,X, Y ) ∈ Cc
2

and assume that either X or Y has distinct eigenvalues (type a). As

[
[
ν1 0
0 ν2

]
,

[
a b
c d

]
] =

[
0 (ν1 − ν2)b

(ν2 − ν1)a 0

]
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4 7 Hilbert schemes.

we have a representant in the orbit of the form

(
[
v1

v2

]
,

[
λ1 0
0 λ2

]
,

[
µ1 0
0 µ2

]
)

where cyclicity of the column vector implies that v1v2 6= 0. The stabilizer subgroup of the
matrix-pair is the group of diagonal matrices C∗ × C∗ ⊂ - GL2, hence the orbit has a
unique representant with v1 = v2 = 1. The corresponding ideal I / C[x, y] is then

I = {f(x, y) ∈ C[x, y] | f(λ1, µ1) = 0 = f(λ2, µ2)}

hence these orbits in Cc
2 correspond to sets of two distinct points in C2.

The situation is slightly more complicated when X and Y have only one eigenvalue
(type b). If (v,X, Y ) ∈ Cc

2 then either X or Y is not diagonalizable. But then, as

[
[
ν 1
0 ν

]
,

[
a b
c d

]
] =

[
c d− a
0 c

]
we have a representant in the orbit of the form

(
[
v1

v2

]
,

[
λ α
0 λ

]
,

[
µ β
0 µ

]
)

with [α : β] ∈ P1 and v2 6= 0. The stabilizer of the matrixpair is the subgroup

{
[
c d
0 c

]
| c 6= 0} ⊂ - GL2

and hence we have a unique representant with v1 = 0 and v2 = 1. The corresponding ideal
I / C[x, y] is

I = {f(x, y) ∈ C[x, y] | f(λ, µ) = 0 and α
∂f

∂x
(λ, µ) + β

∂f

∂y
(λ, µ) = 0}

as one proves by verification on monomials because[
λ α
0 λ

]k [
µ β
0 µ

]l [0
1

]
=

[
kαλk−1µl + lβλkµl−1

λkµl

]
Therefore, I corresponds to the set of two points at (λ, µ) ∈ C2 infinitesimally attached to
each other in the direction α ∂

∂x + β ∂
∂y . For each point in C2 there is a P1 family of such fat

points. Thus, points of Hilb2 C2 correspond to either of the following two situations :

type a

C2

•

•
p

p’

type b

C2

p•��

The Hilbert-Chow map Hilb2 C2 π- S2 C2 sends a point of type a to the formal sum
[p] + [p′] and a point of type b to 2[p]. Over the complement of (the image of) the diagonal,
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7b. Hilbert stairs. 5

this map is a one-to-one correspondence. However, over points on the diagonal the fibers
are P1, soπ is not a one-to-one correspondence as in the case of Hilbn C1. The situation is
nicer for C1 because there points can only collide along one direction, whereas in C2 they
can approach each other along a P1 family of lines leading to different ideals. In fact, the
symmetric power S2 C2 has singularities and the Hilbert-Chow map Hilb2 C2 π-- S2 C2

is a resolution of singularities.

7b. Hilbert stairs.

For the investigation of the GLn-action on Hn and on the subset Cc
n we

introduce a combinatorial gadget : the Hilbert n-stair. This is the lower
triangular part of a square n× n array of boxes

1

n

1 n

filled with go-stones according to the following two rules :

• each row contains exactly one stone, and

• each column contains at most one stone of each color.

For example, the set of all possible Hilbert 3-stairs is given below.

xh x x x h hx h h h x
Let C〈x, y〉 be the free associative algebra on the non-commuting variables x
and y. That is, C〈x, y〉 is the vectorspace with basis all words in x and y and
with multiplication induced by concatenation of words. To every Hilbert
stair we will now associate a sequence of words in x and y.

At the top of the stairs we place the identity element 1. Then, we de-
scend the stairs according to the following rule. Every go-stone has a top
word T which we may assume we have constructed before and a side word

lieven le bruyn uia 1999



6 7 Hilbert schemes.

S and they are related as indicated below

T

S

1

T

xT

1

•

T

yT

1

◦

For example, for the Hilbert 3-stairs we have the following sequences of
non-commutative words

xh
1

x

y

x x
1

x

x2

x h
1

x

yx

hx
1

y

x

h h
1

y

y2

h x
1

y

xy

Let σ be a Hilbert n-stair with associated sequence of non-commutative
words W (σ) = {1, w2(x, y), . . . , wn(x, y)}. Let (v,X, Y ) ∈ Hn then replacing
each occurrence of x in the word wi(x, y) by X and each occurrence of y
by Y we obtain an n × n matrix wi(X, Y ) ∈ Mn(C) and by left multiplica-
tion a column vector wi(X,Y )v. We call the evaluation of σ in (v,X, Y ) the
determinant of the n× n matrix

σ(v,X, Y ) = det
[
v w1(X, Y )v w2(X, Y )v . . . wn(X, Y )v

]
.

For a fixed Hilbert n-stair σ we denote with Hn(σ) the subset of triples
(v,X, Y ) ∈ Hn with non-zero evaluation σ(v,X, Y ) 6= 0. We claim that
none of the Hn(σ) is empty. Indeed, let v be the basic column vector
e1 =

[
1 0 . . . 0

]tr and let every black stone in the Hilbert stair σ fix a
column of X by the rule that if it lies in box (i, j) the j-th column of X is
the basic column vector ei =

[
0 . . . 0 1 0 . . . 0

]tr (a 1 at place i)

i

j

1

n
1 n

•

X =

1i

j

0

0

.

.

.

0

0

.

.

.

and the same rule applies to white stones determining columns of Y . That
is, one replaces each stone in σ by 1 at the same spot in X or Y and fills the
remaining spots in the same column by zeroes. We say that such a triple
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7b. Hilbert stairs. 7

(v,X, Y ) is in σ-standard form. With these conventions one easily verifies
by induction that

wi(X, Y )e1 = ei for all 2 ≤ i ≤ n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that
σ(v,X, Y ) 6= 0 proving the claim. Hence, Hn(σ) is an open subset of Hn

for every Hilbert n-stair σ. Further, for every word (monomial) w(x, y) and
every g ∈ GLn we have that

w(gXg−1, gY g−1)gv = gw(X, Y )v

and therefore the open sets Hn(σ) are stable under the GLn-action on Hn.
We will give representants of the orbits in Hn(σ).

Let Wn = {1, x, y, xy, . . . , yn} be the set of all words in the non-
commuting variables x and y of length ≤ n, ordered lexicographically. For
every triple (v,X, Y ) ∈ Hn consider the n×m matrix

ψ(v,X, Y ) =
[
v Xv Y v XY v . . . Y nv

]
where m = 2n+1− 1 and the j-th column is the column vector w(X, Y )v with
w(x, y) the j-th word in Wn. Hence, (v,X, Y ) ∈ Hn(σ) if and only if the n× n
minor of ψ(v,X, Y ) determined by the word-sequence {1, w2, . . . , wn} of σ is
invertible. Moreover, as

ψ(gv, gXg−1, gY g−1) = gψ(v,X, Y )

we deduce that the GLn-orbit of (v,X, Y ) ∈ Hn(σ) contains a unique triple
(v′, X ′, Y ′) such that the corresponding minor of ψ(v′, X ′, Y ′) = rr

n. Hence,
eachGLn-orbit inHn(σ) contains a unique representant in σ-standard form.
Therefore, the orbit space On(σ) of Hn(σ) is an affine space of dimension the
number of non-forced entries in X and Y . As we fixed n − 1 columns in X
or Y this dimension is equal to

Oc(σ) = Ck with k = 2n2 − (n− 1)n = n2 + n.

For example, representants for the orbits in H3(σ) are given by (v,X, Y )

with v =
[
1 0 0

]tr andxh x x x h hx h h h x

X

0 a b
1 c d
0 e f

 0 0 a
1 0 b
0 1 c

 0 a b
1 c d
0 e f

 0 a b
0 c d
1 e f

 a b c
d e f
g h i

 a 0 b
c 0 d
e 1 f



Y

0 g h
0 i j
1 k l

 d e f
g h i
j k l

 g 0 h
i 0 j
k 1 l

 0 g h
1 i j
0 k l

 0 0 j
1 0 k
0 1 l

 0 g h
1 i j
0 k l
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8 7 Hilbert schemes.

We define the subset Hc
n of cyclic triples, that is those (v,X, Y ) ∈ Hn such

that there exists no proper subspace W ⊂ Cn containing v and stable under
the action of X and Y , that is, XW ⊂ W and YW ⊂ W . If we denote with
C〈X, Y 〉 the (not necessarily commutative) C-subalgebra of Mn(C) gener-
ated by the matrix-pair (X,Y ), then (v,X, Y ) is a cyclic triple if and only
if

C〈X, Y 〉v = Cn.

Hence, clearly Hn(σ) ⊂ Hc
n for any Hilbert n-stair σ. Conversely, we claim

that a cyclic triple (v,X, Y ) ∈ Hc
n belongs to at least one of the open subsets

Hn(σ). Indeed, either Xv /∈ Cv or Y v /∈ Cv as otherwise the subspace
W = Cv would contradict the cyclicity assumption. Fill the top box of the
stairs with the corresponding stone and define the 2-dimensional subspace
V2 = Cv1 + Cv2 where v1 = v and v2 = w2(X, Y )v with w2 the corresponding
word (either x or y).

Assume by induction we have been able to fill the first i rows of the
stairs with stones leading to the sequence of words {1, w2(x, y), . . . , wi(x, y)}
such that the subspace Vi = Cv1+. . .+Cvi with vi = wi(X, Y )v has dimension
i. Then, either Xvj /∈ Vi for some j or Y vj /∈ Vi (if not Vi would contradict
cyclicity). Then fill the j-th box in the i + 1-th row of the stairs with the
corresponding stone. Then, the top i + 1 rows of the stairs form a Hilbert
i + 1-stair as there can be no stone of the same color lying in the same
column. Define wi+1(x, y) = xwi(x, y) (or ywi(x, y)) and vi+1 = wi+1(X, Y )v.
Then, Vi+1 = Cv1 + . . . + Cvi+1 has dimension i + 1. Continuing we end up
with a Hilbert n-stair σ such that (v,X, Y ) ∈ Hn(σ). This concludes the
proof of the following result.

Theorem 7.1. The orbit space Oc
n for the GLn-action on the open subman-

ifold Hc
n of cyclic triples is a manifold of dimension n2 + n.
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Week 8

Hilbert manifolds.

Recall that Cc
n is the subset of the affine space Hn = Cn⊕Mn⊕Mn consisting

of those triples (v, X, Y ) such that [X, Y ] = 0 and v is a cyclic vector for the
pair (X, Y ). Clearly, Cc

n is a subset of the open submanifold of cyclic triples
Hc

n.
We aim to show that Cc

n is a manifold of dimension n2 + 2n. This is
slightly surprising as the closely related commuting variety

C = {(X, Y ) ∈ Mn ⊕Mn | [X,Y ] = 0}

is known to have singularities. In fact, not much is known about this com-
muting variety except that it is connected.

8a. A slice argument.

Consider the vectorspace Qn = Cn ⊕ Cn∗ ⊕Mn ⊕Mn where Cn∗ denotes the
n-dimensional vectorspace of row vectors. We define a linear action of GLn

on Qn by the rule

g.(v, w,X, Y ) = (gv, wg−1, gXg−1, gY g−1)

for all g ∈ GLn. For later reference, we depict this action by the pattern

n��������1�������� ��
[[

&&ff

Observe that modding out the row vectors gives a surjection Qn
γ-- Hn

which is GLn-equivariant. With Qc
n we will denote the open submanifold



2 8 Hilbert manifolds.

γ−1(Qc
n) of cyclic quartets. Consider the map

Qn
χ - Mn

(v, w,X, Y ) 7→ v.w + [X, Y ]

The differential dχ of this map is computed by expanding (v + εa)(w + εb)
+[(X + εC), (Y + εD)] which shows

dχ(v,w,X,Y )(a, b, C,D) = v.b + a.w + [X, D] + [C, Y ]

We claim that the differential is surjective whenever (v, w,X, Y ) is a cyclic
quartet. Consider the Hermitian inner product 〈M, N〉 = Tr(MN

tr
) on

Mn(C), then the space orthogonal to the image of dχ(v,w,X,Y ) is equal to

{M ∈ Mn(C) | Tr(vbM
tr

+ awM
tr

+ [X, D]M
tr

+ [C, Y ]M
tr
) = 0,∀(a, b, C,D)}

Because Tr does not change under cyclic permutation and is non degener-
ate on Mn(C), we see that this orthogonal space is equal to

{M ∈ Mn(C) | M tr
v = 0 wM

tr
= 0 [M

tr
, X] = 0 and [Y, M

tr
] = 0}.

If (v, w,X, Y ) is a cyclic quartet, for such a matrix M we have that the
nullspace Ker M

tr is a proper subspace of Cn containing v and stable under
X and Y . By the cyclicity condition this implies that Ker M

tr
= Cn or

equivalently that M
tr

= 0, proving the claim. By the implicit function
theorem this implies that the fiber of any point in the image of χ

•

Qc
n Mn

χ−1(0)

χ

// //

0

is a submanifold of Qc
n of dimension dim Qn−dim Mn = n2+2n. In particular,

χ−1(0) is a submanifold of dimension n2 + 2n. We will now identify the fiber
χ−1(0) with the subset Cc

n and hence prove :

Proposition 8.1. The subset Cc
n of cyclic triples (v, X, Y ) with [X, Y ] = 0 is

a submanifold of dimension n2 + 2n of Hn.
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8a. A slice argument. 3

Indeed, let (v, w,X, Y ) be a cyclic quartet satisfying v.w + [X, Y ] = 0 and
let m(x, y) be any word in the non-commuting variables x and y. We claim
that wm(X, Y )v = 0. We prove this by induction on the length l(m) of the
word m. If l(m) = 0 then m = 1 and we have

wm(X,Y )v = wv = Tr(v.w) = −Tr([X, Y ]) = 0.

Assume we proved the claim for all words of length < l and take a word of
the form m(x, y) = m1(x, y)yxm2(x, y) with l(m1) + l(m2) + 2 = l. Then, we
have

wm(X, Y ) = wm1(X, Y )Y Xm2(X, Y )
= wm1(X, Y )([Y,X] + XY )m2(X,Y )
= (wm1(X, Y )v).wm2(X, Y ) + wm1(X, Y )XY m2(X, Y )
= wm1(X, Y )XY m2(X, Y )

where we used the induction hypotheses in the last equality (the bracketed
term vanishes). Hence we can reorder the terms in m(x, y) if necessary
and have that wm(X,Y ) = wX l1Y l2 with l1 + l2 = l and l1 the number of
occurrences of x in m(x, y). Hence, we have to prove the claim for X l1Y l2 .

wX l1Y l2v = Tr(X l1Y l2vw) = −Tr(X l1Y l2 [X, Y ])
= −Tr([X l1Y l2 , X]Y ) = −Tr(X l1 [Y l2 , X]Y )

= −
∑l2−1

i=0 Tr(X l1Y i[Y,X]Y l2−i) = −
∑l2−1

i=0 Tr(Y l2−iX l1Y i[Y,X]

= −
∑l2−1

i=0 Tr(Y l2−iX l1Y iv.w = −
∑l2−1

i=0 wY m2−iX l1Y iv

But we have seen that wY l2−iX l1Y i = wX l1Y l2 hence the above implies that
wX l1Y l2v = −l2wX l1Y l2v. But then wX l1Y l2v = 0, proving the claim.

Consequently, wC〈X,Y 〉v = 0 and by the cyclicity condition we have
wCn = 0 hence w = 0. Finally, as v.w+[X, Y ] = 0 this implies that [X, Y ] = 0
and we can identify the fiber χ−1(0) with Cc

n (identifying Hn with the closed
submanifold of Qn where w = 0), finishing the proof of proposition 8.1. .
Recalling that the Hilbert scheme Hilbn C2 is the orbit space of the GLn-
action on Cc

n we have the situation

Cc
n
⊂ - Hc

n

Hilbn C2

??
⊂ - Oc

n

??

We will construct a slice for the GLn-action on Cc
n. First, consider the orbit

map GLn
o- Hn for a point (v, X, Y ) ∈ Hc

n defined by g 7→ g.(v, X, Y ). The
differential of this map in the point rr

n is given by the linear map

dorr
n

: Mn(C) - Hn where dorr
n
(m) = (mv, [m, X], [m, Y ])
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4 8 Hilbert manifolds.

as one verifies as in the previous section. Observe that this differential
is injective whenever (v, X, Y ) ∈ Hc

n. Indeed, if m satisfies mv = 0 and
[m,X] = 0 = [m, Y ] then the nullspace Ker m is a subspace of Cn containing
v and stable under X and Y so must be Cn whence m = 0. Define an
Hermitian inner product on the vectorspace Hn by the rule

〈(v1, X1, Y1), (v2, X2, Y2)〉 = Tr(v1v
tr
2 + X1X

tr

2 + Y1Y
tr

2 ).

The subspace of the tangentspace Hn in (v, X, Y ) orthogonal to Im dorr
n

is
then the subspace of triples (a, C,D) such that

0 = Tr(mvatr) + Tr([m,X]C
tr
) + Tr([m, Y ]D

tr
)

= Tr(m(vatr + [X, C
tr
] + [Y,D

tr
])

Again using the non-degeneracy of the trace map on n × n matrices, we
have

(Im dorr
n
)⊥ = {(a, C,D) ∈ Hn | vatr + [X,C

tr
] + [Y,D

tr
] = 0}

which is of dimension n2 + n (using injectivity of dorr
n
). Reasoning as in the

foregoing section we obtain the slice.

Proposition 8.2. Let (v, X, Y ) ∈ Hc
n, then the n2 +n-dimensional manifold

S = {(v + a, X + C, Y + D) | vatr + [X, C
tr
] + [Y,D

tr
] = 0}

is a slice for the action of GLn on Hn in (v, X, Y ).

Now let (v, X, Y ) ∈ Cc
n, that is, assume that [X, Y ] = 0. We have seen

that Cc
n is a submanifold of dimension n2+2n. Thus, the tangentspace to Cc

n

in p = (v, X, Y ) is of dimension n2 + 2n. This is the subspace (a, C,D) ∈ Hn

such that [X + εC, Y + εD] = 0, that is

Tp Cc
n = {(a, C,D) | [X,D] + [C, Y ] = 0}

Observe that as Cc
n is GLn-stable the image of dorr

n
is contained in the

tangentspace (can be checked immediately using the Jacobi identity and
[X, Y ] = 0). Therefore, the orthogonal complement of Im dorr

n
in the tan-

gentspace is of dimension n2 + 2n− n2 = 2n.

Proposition 8.3. Let (v, X, Y ) ∈ Cc
n, then the 2n-dimensional manifold S ′

{(v + a, X + C, Y + D) | vatr + [X, C
tr
] + [Y,D

tr
] = 0 and [X, D] + [C, Y ] = 0}

is a slice for the GLn-action on Cc
n.

Because the dimension of the slice is independent of the point in Cc
n this

concludes the proof of the following result.

Theorem 8.4. The Hilbert scheme Hilbn C2 of n points in C2 is a manifold
of dimension 2n.
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8b. The Hilbert game. 5

8b. The Hilbert game.
The determination of the slice is easier in a triple (v, X, Y ) in standard
σ- form for a Hilbert n-stair σ. In fact the description of On(σ) is a slice
for the action of GLn on Hn(σ). It is an interesting exercise to determine
the covering of Hilbn C2 by the 2n-dimensional submanifolds Hilbn C2(σ) =

Hilbn C2 ∩ On(σ) of On(σ) = Cn2+n. For example, consider Hilb2 C2(
x

).
Because

[

[
0 a
1 b

]
,

[
c d
e f

]
] =

[
ae− d af − ac− bd

c + be− f d− ae

]
this subset can be identified with C4 using the equalities d = ar and f =
c + be. Similarly, one has identifications

Hilb3 C2(

xh
) = C6 = Hilb3 C2(

x x
)

However, for Hilb3 C2(

x h
) the description is more complicated. Observe

that some of these intersections may be empty. For example, consider the
Hilbert 5-stair

σ5 =

xh xh
then the associated series of words is {1, x, y, xy, yx} whence σ(v, X, Y ) = 0
whenever [X, Y ] = 0. Hence all Hilbert stairs σ containing σ5 (that is, if we
recover σ5 after removing certain rows and columns) satisfy Hilbn C2(σ) =
∅.

Call a Hilbert n-stair σ a forbidden position if Hilbn C2(σ) is empty. A
forbidden position of minimal size is called a blocking position. Examples
of blocking positions are σ5 above and the Hilbert 6-stairs

xx hh x and

x h xx h
Determine all blocking positions for small n (up to color changes). Con-
sider the following two person game on an n-stair. Left and right take
turns where left places bLack stones and right white stones according to
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6 8 Hilbert manifolds.

the Hilbert n-stair rules. The person unable to move or forced to move to a
forbidden position is declared the looser. Determine the values of positions
for small n following the rules of combinatorial game theory as explained
in J.H. Conway’s ”On Numbers and Games”. For example,

xh
= 〈

x
xh |

h xh 〉 = 〈1 | 0〉

8c. Connectedness.

We have shown that Hilbn C2 is a manifold of dimension 2n. A priori it may
have many connected components (all of dimension 2n). We will now show
that Hilbn C2 is connected. As there is clearly a component of Hilbn C2 of
which points in general position correspond to n distinct points in C2, this
result implies that any fat n-point of C2 can be deformed into n distinct
simple points. In the next section we will show that a similar result does
not hold for Hilbn Cm with m,n sufficiently large.

Recall that the symmetric power Sn C1 parametrizes sets of n-points on
the line C1 and can be identified with Cn. Consider the map

Hilbn C2 π-- Sn C1

defined by mapping a cyclic triple (v, X, Y ) ∈ Cc
n with [X, Y ] = 0 in the orbit

corresponding to the point of Hilbn C2 to the set {λ1, . . . , λn} of eigenvalues
of X. Observe that this map does not depend on the point chosen in the
orbit. Let ∆ be the big diagonal in Sn C1, that is, Sn C1 − ∆ is the space
of all sets of n distinct points from C1. Clearly, Sn C1 − ∆ is a connected
n-dimensional manifold. We claim that

π−1(Sn C1 −∆) ' (Sn C1 −∆)× Cn

and hence is connected. Indeed, take a matrix X with n distinct eigenval-
ues {λ1, . . . , λn}. We may diagonalize X. But then, as

[

λ1

. . .
λn

 ,

y11 . . . y1n

...
...

yn1 . . . ynn

] =

(λ1 − λ1)y11 . . . (λ1 − λn)y1n

...
...

(λn − λ1)yn1 . . . (λn − λn)ynn


we see that also Y must be a diagonal matrix with entries (µ1, . . . , µn) ∈ Cn

where µi = yii. But then the cyclicity condition implies that all coordinates
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8c. Connectedness. 7

of v must be non-zero. Now, the stabilizer subgroup of the commuting (diag-
onal) matrix-pair (X,Y ) is the maximal torus Tn = C∗× . . .×C∗ of diagonal
invertible n × n matrices. Using its action we may assume that all coordi-
nates of v are equal to 1. That is, the points in π−1({λ1, . . . , λn}) with λi 6= λj

have unique representants of the form

(


1
1
...
1

 ,


λ1

λ2

. . .
λn

 ,


µ1

µ2

. . .
µn

)

that is π−1({λ1, . . . , λn} can be identified with Cn, proving the claim. Next,
we claim that all the fibers of π have dimension at most n.

Let {λ1, . . . , λn} ∈ Sn C1 then there are only finitely many X in Jordan
normalform with eigenvalues {λ1, . . . , λn}. Fix such an X, then the subset
T (X) of cyclic triples (X, Y.v) ∈ Cc

n has dimension at most n + dim C(X)
where C(X) is the centralizer of X in Mn(C), taht is, C(X) = {Y ∈ Mn(C) |
XY = Y X}. The stabilizer subgroup Stab(X) = {g ∈ GLn | gXg−1 = X}
is an open subset of the vectorspace C(X) and acts freely on the subset
T (X) because the action of GLn on Cc

n has trivial stabilizers. But then,
the orbitspace for the Stab(X)-action on T (X) has dimension at most n +
dim C(X)− dim Stab(X) = n. As we only have to consider finitely many X
this proves the claim.

The diagonal ∆ has dimension n − 1 in Sn C1 and hence by the fore-
going we know that the dimension of π−1(∆) is at most 2n − 1. Let H
be the connected component of Hilbn C2 containing teh connected subset
π−1(Sn C1 − ∆). If π−1(∆) were not entirely contained in H, then Hilbn C2

would have a component of dimension less than 2n, which we proved not to
be the case. Thus H = Hilbn C2 and we have proved :

Theorem 8.5. The Hilbert scheme Hilbn C2 of n points in C2 is a connected
manifold of dimension 2n.

Let (v, X, Y ) be a cyclic triple representing a point in h ∈ Hilbn C2, that
is [X, Y ] = 0. We claim that X and Y are simultaneously upper triangular-
izable. Let λ be an eigenvalue of X and consider the eigenspace Vλ = {w ∈
Cn | Xw = λw}. Then, Y Vλ ⊂ Vλ as XY w = Y (Xw) = Y (λw) = λY w. Let Yλ

be the matrix representing the action of Y on Vλ then up to basechange in
Vλ we may assume that Yλ is in Jordan normal form, but then X and Y have
at least one common eigenvector w ∈ Vλ such that Y w = µw. Consider a
new basis {f1, . . . , fn} with fn = w, then in this basis the matrixpair (X, Y )
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8 8 Hilbert manifolds.

has blockform

X =

X1

λ

Y =

Y1

µ

But then (X1, Y1) is a commuting matrixpair in Mn−1(C) and by induction
we may assume that they are simultaneously upper triangularizable, prov-
ing the claim. Hence, we have a cyclic triple in the orbit of (v, X, Y ) of the
form

(

w1

...
wn

 ,

λ1 . . . ∗
. . . ...

λn

 ,

µ1 . . . ∗
. . . ...

µn

)

The Hilbert-Chow map Hilbn C2 H- Sn C2 is defined by sending the point h
representing the orbit of (v, X, Y ) to the set {(λ1, µ1), . . . , (λn, νn)} of n points
in C2. If (λi, µi) 6= (λj, µj) for i < j and consider the 2× 2 minors of X and Y

Xij =

[
λi xij

0 λj

]
Yij =

[
µi yij

0 µj

]
Assume that λi 6= λj, conjugating with the matrix g =

[
1

xij

λi−λj

0 1

]
gives[

λi 0
0 λj

] [
µi y′ij
0 µj

]
but then the commutation relation forces y′ij = 0. Repeating this argument
and possibly permuting the base vectors we may assume that the commut-
ing matrix pair (X,Y ) can be brought into block form

X =

X1

Xk

and Y =

Y1

Yk

Here, Xi (resp. Yi) is an upper triangular mi ×mi matrix with single eigen-
value λi (resp. µi) where pi is the multiplicity with which pi = (λi, µi) ap-
pears in the n-set of points. The image under the Hilbert-Chow map is then
the formal sum

H(v, X, Y ) = m1[p1] + . . . mk[pk] ∈ Sn C2.

uia 1999 lieven le bruyn



8c. Connectedness. 9

Another way to phrase the above block decomposition is in terms of the
n-dimensional algebra C[X, Y ] = C[x,y]

I
determined by h ∈ Hilbn C2. As

C[X, Y ] is the C-subalgebra of Mn(C) generated by the commuting matrix-
pair (X,Y ) we have a decomposition

C[X, Y ] = C[X1, Y1]⊕ . . .⊕ C[Xk, Y − k] =
C[x, y]

I1

⊕ . . .⊕ C[x, y]

Ik

where Ij is an ideal of C[x, y] of codimension mj concentrated in the point
pj = (λj, µj). This means that pj is the only point of C2 where every poly-
nomial f ∈ Ij vanishes. Let us draw some consequences from this decom-
position. If all multiplicities mj are one, that is if H(v, X, Y ) does not lie
on the diagonal ∆ in Sn C2, then X and Y are simultaneously diagonaliz-
able. But then, as the stabilizer subgroup of the commuting matrix-pair
(X, Y ) is equal to the maximal torus Tn = C∗× . . .×C∗ of diagonal elements
in GLn we see that there is precisely one orbit in Cc

n lying over this point
represented by the cyclic triple

(

1
...
1

 ,

λ1

. . .
λn

 ,

µ1

. . .
µn

)

Hence, over the open subset Sn C2 − ∆ the Hilbert-Chow map H is a one-
to-one correspondence. As we have seen that Hilbn C2 is a manifold, the
Hilbert-Chow map is a resolution of singularities of Sn C2.

When δ = m1[p1] + . . . + mk[pk] ∈ ∆, then any point in the fiber
of the Hilbert-Chow map is determined by a k-tuple (h1, . . . , hk) where
hi ∈ Hilbmi

C2 and concentrated in pi, that is, the image of hi under the
Hilbert-Chow map Hilbmi

C2 - Smi C2 is mi[pi]. The parallel translations
in C2 give a natural one-to-one correspondence between H−1(mi[(0, 0)]) and
H−1(mi[pi]). Hence, it is important to study the subset H−1(n[(0, 0)]) of
Hilbn C2. Its points correspond to codimension n ideals I of C[x, y] con-
centrated in (0, 0). The n-dimensional algebra C[x, y]/I has a unique un-
derlying point (0, 0), that is, it is a local algebra of dimension n. Hence,
the algebras C[x, y]/I are examples of fat points of multiplicity n, that is,
commutative local algebras of dimension n.
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Week 9

Reductivity of GLn.

In this section we will put the examples considered before in a general
framework. To begin, in each of the examples we have a linear action of
the basechange group GLn on a finite dimensional C-vectorspace V , that is
g(v + w) = g.v + g, w, rr

n.v = v and (gg′).v = g.(g′.v) for all g, g′ ∈ GLn and
v, w ∈ V

Jordan forms V = Mn(C)
g.m = gmg−1

Dynamical systems V = Mn×m(C)⊕Mn(C)⊕Mp×n(C)
g.(A, B, C) = (gA, gBg−1, Cg−1)

Hilbert schemes V = Cn ⊕Mn(C)⊕Mn(C)
g.(v, X, Y ) = (gv, gXg−1, gY g−1)

Our first objective will be to control all linear actions possible. We
will call actions on V and W isomorphic if there is a linear isomorphism
V

φ- W which is GLn-equivariant, that is g.φ(v) = φ(g.v) for all g ∈ GLn

and v ∈ V .

Problem 7.

Describe all linear actions of GLn on finite dimensional vectorspaces V
up to isomorphism.

Let G be a group and V a finite dimensional C-vectorspace on which
G acts linearly. We say that V is a G-representation. If V and W are G-
representations, then so are V ⊕W and V ⊗W where the actions are given
by

g.(v, w) = (g.v, g.w) and g.(v ⊗ w) = g.v ⊗ g.w.
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for all g ∈ G and all v ∈ V, w ∈ W . A G-subrepresentation of V is a subspace
W which is left stable under the action of G. A G-representation V is said
to be simple if V contains no proper G-subrepresentations and is said to be
completely reducible if V is the direct sum of simple G-subrepresentations.

9a. Haar measures.
Our first aim is to prove that GLn is a reductive group, that is, all GLn-
representations are completely reducible. The method of proof is based
on the ’averaging over the group’-idea used to prove that finite groups are
reductive. We will briefly sketch it. Let G be a finite group and W a G-
subrepresentation of a G-representation V . Let φ : V -- W be a linear
projection obtained from extending a basis of W to one of V . Then, we
consider the averaged linear map

π : V -- W where v 7→
∑
g∈G

g(φ(g−1.v)).

This map is G-equivariant and restricted to W it is multiplication by #(G).
The kernel K of π is a subspace of V , stable under the action of G and
complementary to W . That is, V = W ⊕ K is a decomposition of G-
representations. Continuing gives a complete decomposition of V .

We will replace the sum by an integral and the finite group by the com-
pact subgroup of unitary matrices

Un = {A ∈ GLn | A.A
tr

= In}

Clearly, Un is a subgroup of GLn and we claim that it is a compact Lie
group, that is a real compact differentiable manifold (a C∞-manifold) with
a differentiable groupstructure. Because Un is a group it suffices to verify
the manifold property in a neighborhood of the unit element e = rr

n. Let
Hermn be the R-vectorspace of Hermitian n × n matrices Hermn = {H ∈
Mn(C) | H = H

tr} and consider the map

f : GLn
- Hermn defined by A - AA

tr

Calculating the differential with the ε-method gives that Im dfrr
n
(X) =

X + X
tr and as any Hermitian matrix H can be written as 1

2
(H + H

tr
)

this differential is surjective. By the implicit function theorem (over R)
we deduce that the fiber f−1(rr

n) = Un is a real manifold of R-dimension
2n2 − dim Hermn = n2. Finally, Un is compact as it is closed in the R-
topology on Mn and bounded as the norms of all entries in a fixed row (or
column) add up to one.
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9a. Haar measures. 3

Compact Lie groups have a Haar measure allowing to integrate complex
valued continuous functions in an invariant way. For example U1 = {c ∈ C |
cc = 1} is the unit circle S1 = {eix | 0 ≤ x < 2π}. We define a complex valued
linear map

∫
U1

.(g) dg on the space of all continuous functions f : U1
- C

by ∫
U1

f(g) dg =
1

2π

∫ 2π

0

f(eix) dx.

We see that this map is normalized, that is
∫

U1
dg = 1 and is left and right

invariant, that is for any h = eiy ∈ U1∫
U1

f(gh) dg =
1

2π

∫ 2π

0

f(ex+y) dx =
1

2π

∫ 2π

0

f(ex′
) dx′ =

∫
U1

f(g) dg

and similarly for multiplication by h on the left. For the compact group
G = U1 × U1, that is the torus group S1 × S1

we can take as the normalized invariant integral
∫

U1×U1
f(g) dg =

1
4π2

∫ 2π

0

∫ 2π

0
f(eix, eiy) dx dy. In general, a Haar measure on a compact Lie

group is a linear functional
∫

G
f(g) dg which is normalized

∫
G

dg = 1 and
is left and right invariant

∫
G

f(gh) dg =
∫

G
f(g) dg =

∫
G

f(hg) dg. Assuming
its existence we can prove :

Proposition 9.1. If G is a compact Lie group, then every G-representation
is completely reducible.

Let W be a subspace of a finite dimensional G-representation V which
is invariant under the G-action. Extending a basis of W to one of V gives a
linear projection V

π-- W which is the identity on W . For v ∈ V we have
complex valued coordinate maps

G - W = Ck defined by g 7→ g.(π(g−1.v)

Integrating these coordinate maps defines a map φ : V - W

φ(v) =

∫
G

g.π(g−1.v) dg
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4 9 Reductivity of GLn.

which is linear and the identity on W . Moreover, φ commutes with the
G-action as for every h ∈ G

φ(h.v) =
∫

G
g.π(g−1.h.v) dg = h.

∫
G

h−1g.π(g−1h.v) dg
∗
= h.

∫
G

g.π(g−1.v) dg = h.φ(v)

where the starred equality uses invariance of the Haar measure on G. But
then, V = W ⊕Ker φ is a decomposition as G-representations. Continuing
whenever one of the components has a non-trivial G-subrepresentation, we
arrive after a finite number of steps at a decomposition of V into simple
G-representations proving proposition 9.1. .

9b. Cartan decomposition.

Next, we want to move from the (real) compact Lie group to the associated
(complex) algebraic group. In particular, from the (real) torus Tn(R) = U1×
. . . × U1 to the (complex) torus Tn = C∗ × . . . × C∗ and from the unitary
group Un to the basechange group GLn. Let us first consider the torus case.
A polynomial f(t) ∈ C[t] has only finitely many zeroes so if f(U1) = 0, f
must be the zero polynomial whence f(C∗) = 0. A similar result holds for
n-dimensional tori. Let f(x1, . . . , xn) be a polynomial in C[x1, . . . , xn] and
write it as a polynomial in xn with coefficients in C[x1, . . . , xn−1]

f(x1, . . . , xn) = f0(x1, . . . , xn−1)x
k
n + . . .+fk(x1, . . . , xn−1)xn +fk+1(x1, . . . , xn−1)

Assume that f(Tn(R)) = 0 and fix (u1, . . . , un−1) ∈ Tn−1(R), then
f(u1, . . . , un−1, xn) is a polynomial vanishing on U1, whence all the coeffi-
cients fi(u1, . . . , un−1) must be zero. Hence, the fi are polynomials such
that fi(Tn−1(R)) = 0 and by induction on n we may assume that then
fi(Tn−1) = 0, whence f(Tn) = 0.

Assume now that V is a Tn-representation. Assume that V has a decom-
position V = W ⊕ W ′ as a Tn(R)-representation. Consider the normalizer
subgroup

N = NTn(W ) = {c = (c1, . . . , cn) ∈ Tn | c.W ⊂ W}

Extending a basis {w1, . . . , wl} of W to V we see that this condition can be
expressed by the fact that certain certain coordinates of c.wi (which are
polynomial functions in the cj) must be zero. Hence, N can be identified as
the subset of points of Tn which are simultaneous zeroes of a set of polyno-
mials {fa}. Because W is a Tn(R)-representation we have Tn(R) ⊂ N and
hence fa(Tn(R)) = 0 for all fa, whence fa(Tn) = 0. That is, N = Tn and
so W is also a Tn-representation. That is, a decomposition of V in simple
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Tn(R)-representations is also a decomposition of simple Tn-representations.
Hence, the complex torus Tn = C∗ × . . .× C∗ is a reductive group.

To prove a similar result for GLn we need a polynomial density result
for Un with respect to GLn. This follows from the Cartan decomposition
asserting that

GLn = Un Tn Un

where Tn is the maximal torus of diagonal matrices in GLn. Indeed, for
g ∈ GLn, ggtr is an Hermitian matrix and hence diagonalizable by unitary
matrices (this follows from the Gramm-Schmidt procedure of orthonormal
bases in linear algebra). So, there is a u ∈ Un

u−1ggtru =

α1

. . .
αn

 = u−1gu︸ ︷︷ ︸
p

. u−1gtru︸ ︷︷ ︸
ptr

Because αi =
∑n

j=1 ‖ pij ‖2, αi > 0 ∈ R. Let βi =
√

αi and consider the
diagonal matrix

d =

β1

. . .
βn


Clearly, g = ud(d−1u−1g) and v = d−1u−1g is a unitary matrix as

vvtr =(d−1u−1g).(gtrud−1) = d−1(u−1ggtru)d−1

=d−1d2d−1 = rr
n

proving the Cartan decomposition. Let f = f(x11, x12, . . . , xnn) be a polyno-
mial function in the matrix entries of Mn(C) such that f(Un) = 0. Then
f ′ = f | Tn is a polynomial such that f ′(Tn(R)) = 0 whence f(Tn) = 0. By
continuity of the matrix-multiplication in GLn and the Cartan decomposi-
tion, it follows that f(GLn) = 0. Using this polynomial denseness of Un in
GLn we can repeat the above Tn argument verbatim and conclude :

Theorem 9.2. The n-dimensional torus Tn and the basechange group GLn

are reductive groups. That is, every representation V admits a decomposi-
tion as a direct sum of simple subrepresentations Si

V = S1 ⊕ . . .⊕ Sk.

Moreover, such a decomposition is unique up to permutation of the factors.

The last statement follows because any G-equivariant map S
φ- S ′

between two simple G-representations is either the zero map or an isomor-
phism (the kernel Ker φ is a G-subrepresentation of S).
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Week 10

GLn-representations.

Reductivity of GLn reduces our problem to that of classifying all simple
GLn-representations V . Again, we will first consider this problem for the n-
dimensional complex torus Tn. We claim that the simple Tn-representations
are all one dimensional and are classified by the lattice Zn. For example,
for T2 we get the discrete set

• • • ••••
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

10a. Characters.
Let V be a simple Tn-representation of dimension m and h = (r1, . . . , rn) ∈
Tn(R) with all ri roots of unity. The subgroup < h > of Tn(R) is a finite
Abelian group so as an < h >- representation V = ⊕Vλi

where Vλi
is the

eigenspace {v ∈ V | h.v = λiv}. Tn being Abelian, each of the Vλi
is a Tn-

subrepresentation. By simplicity, there is only one non-zero eigenspace,
that is V = Vλ. Varying h we see that the subgroup µ × . . . × µ of Tn(R)
consisting of elements having all its entries roots of unities acts diago-
nally on V . But then so does its closure, which is Tn(R) so V is a direct
sum of one-dimensional Tn(R)-subrepresentations, a contradiction unless
m = 1. Hence, all simple Tn-representations are one dimensional. For V
a one-dimensional simple Tn-representation, the action determines (and is
determined by) a groupmorphism Tn

χ- C∗. The only groupmorphisms
C∗ - C∗ are easily seen to be the maps x 7→ xν for some ν ∈ Z. Hence V
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is determined by the character

χ : Tn
- C∗ given by (x1, . . . , xn) 7→ xa1

1 . . . xan
n

for some a = (a1, . . . , an) ∈ Zn, proving the claim. Traditionally, one writes
the character group X(Tn) = Zn additively and denotes the character cor-
responding to the standard basis vector ei by εi : Tn

- C∗ defined by
(x1, . . . , xn) 7→ xi.

Proposition 10.1. Every finite dimensional Tn-representation V is the di-
rect sum of its eigenspaces

Vχ = {v ∈ V | x.v = χ(x)v for all x = (x1, . . . , xn) ∈ Tn }

where χ =
∑

i aiεi is a character in X(Tn) = Zn.

On X(Tn) = Zn we put an ordering defined as follows. Let λ =
∑

aiεi

and µ =
∑

biεi, then

λ ≤ µ ⇔
n∑

i=1

ai =
n∑

i=1

bi and
k∑

i=1

ai ≤
k∑

i=1

bi for all 1 ≤ k ≤ n

For example, for T2 the characters smaller than the circled characters all
lie on the indicated halflines

• • • ••••
•
•
•

•
•
•

•
•
•

•
•
•/.-,()*+

?????????????????

•
•
•

•/.-,()*+

?????????????????

•
•

•/.-,()*+

?????????•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Let V be a finite dimensional GLn-representation. As a Tn-representation
(using the diagonal embedding Tn

⊂ - GLn) V decomposes as a direct sum
of weight spaces

V = ⊕λ∈X(Tn)Vλ

We will now investigate the restriction imposed on the Vλ by the GLn-
action. To begin, consider the permutation matrixes Pσ for σ ∈ Sn, hav-
ing a 1 at all positions (i, σ(i)) and zeroes elsewhere. There is a nat-
ural action of the symmetric group Sn on Tn and on X(Tn) defined by
σ.x = σ.(x1, . . . , xn) = (xσ(1), . . . , xσ(n)) and σ.λ = σ.(

∑
aiεi) =

∑
aiεσ(i). If

v ∈ Vλ and x = diag(x1, . . . , xn) ∈ Tn
⊂ - GLn, we have

x.(Pσ.v) = Pσ.(P
−1
σ xPσ).v = Pσ.(σ.x).v

= Pσ.(σλ(x)v) = σλ(x)Pσ.v
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that is, Pσ.v ∈ Vσ.λ. So we have that dim Vλ = dim Vσλ for all λ ∈ X(Tn) and
all σ ∈ Sn. Further, consider the elementary matrices

xij(t) =



1
. . .

1 . . . t
. . . ...

1
. . .

1


having 1’s on the diagonal, t ∈ C at place (i, j) and zeroes elsewhere. One
calculates that for every x = diag(x1, . . . , xn) ∈ Tn

⊂ - GLn we have

xxij(t)x
−1 = xij((xi − xj)t) = xij((εi − εj)(x).t)

If v ∈ Vλ, then as the map t 7→ xij(t).v is a polynomial map in t we can write
with respect to a basis {w1, . . . , wl} of V that

xij(t).v =
l∑

a=1

(
∑
b≥0

cabt
b)wa =

∑
b≥0

tbvb with vb =
l∑

a=1

cabwa

As xij(0) = rr
n we have v0 = v and we claim that vb ∈ Vλ+b(εi−εj). Indeed, for

all x = diag(x1, . . . , xn) ∈ Tn
⊂ - GLn and t ∈ C we have

x.xij(t).v = (xxij(t)x
−1).x.v = xij((εi − εj)(x).t).(λ(x)v)

= λ(x)
∑

b≥0((εi − εj)(x).t)bvb = λ(x)
∑

b≥0 tb((εi − εj)(x))bvb

=
∑

b≥0 tb(λ + b(εi − εj))(x)vb

and on the other hand we have the equalities

x.xij(t).v = x.(
∑
b≥0

tbvb) =
∑
b≥0

tb(x.vb)

So, comparing terms we establish our claim as

x.vb = (λ + b(εi − εj))(x)vb that is, vb ∈ Vλ+b(εi−εj).

10b. Borel subgroups.
Let Nn be the subgroup of GLn consisting of upper triangular matrices with
1’s on the diagonal and let Hn be the corresponding subgroup of lower tri-
angular matrices in GLn. Consider the product map

Hn × Tn × Nn
prod- GLn (l, d, u) 7→ ldu
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4 10 GLn-representations.

The differential of prod in the unit element (rr
n,

rr
n,

rr
n) can be computed by

the ε-method expanding

(rr
n + εL)(rr

n + εD)(rr
n + εU) = rr

n + ε(L + D + U)

with L (resp. U ) a strictly lower (resp. upper) triangular matrix and D
a diagonal matrix. Hence, d prod(

rr
n,

rr
n,

rr
n) is an isomorphism and so the

product map has a dense image in GLn. Therefore,

V = Vl1 ⊕ . . .⊕ Vls Vl = ⊕{Vλ | λ =
∑

aiεi with
∑

i

ai = l}

as Nn and Hn are generated by the respective xij(t) and by the above equal-
ity we have that for any v ∈ Vl that xij(t)v ∈ Vl. Hence, the non-zero weight
spaces Vλ of a GLn-representation V lie in a finite number of hyperplanes
where they form a configuration stable under the action of Sn. For T2 the
configuration of non-zero weight spaces is symmetric with respect to the
main diagonal and constrained to the indicated boxes

• • • ••••
•
•
•

•
•
•

•
•
•

•
•
•

?????????????????

���

??
??

??
??

??
??

??
??

??
?

���

???????????????????

•
•
•

•

?????????????

���

??
??

??
??

??
??

??
?

���

???????????????

•
•

•

?????????

���

??
??

??
??

??
?

���

???????????

•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

The dashed circled weights are the highest weights with respect to the or-
dering on X(T2). For general n we similarly have for each component Vl a
highest weight Vλ with respect to the ordering on X(Tn). An element v ∈ Vλ

is then called a highest weight vector of V (or of the component Vl). Let vb

be the vectors in Vλ+b(εi−εj) introduced before, then again using the dense
map Hn×Tn×Nn

- GLn we see that the subspace of V spanned by v = v0

and the vb is a simple GLn-subrepresentation of V . We now have all the
necessary ingredients to finish the proof of :

Theorem 10.2. There is a one-to-one correspondence between

1. isomorphism classes of simple GLn-representations, and

2. λ =
∑

i aiεi ∈ X(Tn) which are highest weights, that is,

a1 ≥ a2 ≥ . . . ≥ an.

We have already seen that a highest weight vector generates a simple
component. Observe that a highest weight vector spans a one-dimensional
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10b. Borel subgroups. 5

subspace which is stable under the action of the Borel subgroup Bn of upper
triangular elements of GLn. Further, if V is a simple GLn-representation
then using the Sn-action we know that V has a highest weight vector. Re-
mains to prove that two GLn-representations spanned by a highest weight
vector of the same weight are isomorphic and that every λ =

∑
i aiεi with

a1 ≥ . . . ≥ an occurs as a highest weight for a GLn-representation. First, let
V and V ′ be simple GLn-representations with highest weight vectors v and
v′ of weight λ. Then, W = V ⊕ V ′ is a GLn-representation and w = (v, v′) a
vector of highest weight λ so generates a simple component W ′ of W with
W ′

λ = Cw. V ∩W ′ is a GLn-subrepresentation of V so is either 0 or V . As
W ′

λ = Cw 6⊂ Vλ = C(v, 0) this intersection must be zero. Then, the composi-
tion

W ′ ⊂ - V ⊕ V ′ pr1-- V

is into and gives therefore an isomorphism W ' V . Repeating the argu-
ment with V ′ instead of V we deduce that V ' V ′.

As for the existence, let λ =
∑

i aiεi with a1 ≥ . . . ≥ an and consider
ωi = ε1 + . . . + εi, then we have

λ = b1ω1 + . . . bnωn

with bn = an ∈ Z and all bi = ai − ai+1 ∈ N for 1 ≤ i ≤ n − 1. Recall the
construction of exterior product ∧i Cn for 1 ≤ i ≤ n that is, the subspace
of Cn ⊗ . . . ⊗ Cn (i terms) spanned by the anti-symmetric tensors which is
clearly a GLn- subrepresentation of Cn ⊗ . . . ⊗ Cn with the diagonal action
on the tensorproduct, g.(c1 ⊗ . . . ⊗ ci) = (g.c1) ⊗ . . . ⊗ (g.ci). Consider the
GLn-representation

V = (∧1 Cn)⊗b1 ⊗ (∧2 C2)⊗b2 ⊗ . . .⊗ (∧n Cn)⊗bn

where (∧i Cn)⊗k is the k-fold tensorproduct of ∧i Cn for k ∈ N+, (∧i Cn)0 =
Ctriv the trivial one-dimensional GLn-representation and (∧n Cn)⊗m is the
one-dimensional GLn-representation defined by g 7→ (det g)m (note that m <
0 is possible). If {e1, . . . , en} is the standard basis of Cn, then e1 ∧ e2 ∧ . . .∧ ei

is stable under the action of the Borel subgroup Bn and has weight ωi as
clearly

diag(x1, . . . , xn).(e1 ∧ e2 ∧ . . . ∧ ei) =
i∏

j=1

xj(e1 ∧ e2 ∧ . . . ∧ ei)

But then, the following vector v is stable under the Borel Bn and has weight
λ

v =

{
e⊗b1
1 ⊗ (e1 ∧ e2)

⊗b2 ⊗ . . .⊗ (e1 ∧ . . . ∧ en)⊗bn when bn ∈ N, and
e⊗b1
1 ⊗ (e1 ∧ e2)

⊗b2 ⊗ . . .⊗ (f1 ∧ . . . ∧ fn)⊗−bn when bn < 0
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6 10 GLn-representations.

where {f1, . . . , fn} is the dual basis, that is the standard basis of Cn∗. Hence,
v generates a simple GLn-representation of highest weight λ. This con-
cludes the proof of theorem 10.2. . That is, we can identify the set ΩGLn

of isomorphism classes of simple GLn-representations with the subset of
X(Tn)

ΩGLn = Nω1 ⊕ Nω2 ⊕ . . .⊕ Nωn−1 ⊕ Zωn

For example, the simple GL2-representations are in one-to-one correspon-
dence to the subset of Z2 = X(T2)

• • • •
•
•
•

• •
•
•
•
•

•
•
•

•
••

•
•
•

•
•
•

•
•
•

We will denote the simple GLn-representation of highest weight λ by Sλ.
For example,

Cn = S(1,0,...,0) and Cn∗ = S(0,...,0,−1)

Consider the action of GLn on Mn(C) by conjugation. If eij is the matrix
having a 1 at place (i, j) and zeroes elsewhere, then we have

Mn(C) = Mn(C)0 ⊕⊕i6=jMn(C)εi−εj
with Mn(C)εi−εj

= Ceij

and Mn(C)0 is the space of diagonal matrices. The weightspaces left in-
variant by the Bn-action are Ce1n and Crr

n. The first generates the simple
representation with highest weight (1, 0, . . . , 0,−1), the second is the trivial
representation (highest weight (0, . . . , 0). That is, as GLn-representations

Mn(C) = Mn(C)(0,...,0) ⊕Mn(C)(1,0,...,0,−1) = Crr
n ⊕M0

n(C)

where M0
n(C) is the space of all trace zero matrices. The weights εi − εj are

called the roots of GLn. The roots εi − εj with i < j are called positive. This
allows a reformulation of the ordering in X(Tn) : for λ, µ ∈ X(Tn) we have
λ ≤ µ if and only if µ− λ can be written as a sum of positive roots.

10c. GLn-varieties.

Combining reductivity of GLn with the combinatorial description of the iso-
morphism classes of simple GLn-representations allows us to determine all
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10c. GLn-varieties. 7

linear actions of GLn on a finite dimensional vectorspace V . To formal-
ize the notion of GLn-variety we consider the induced action of GLn on the
polynomial functions f on V . Considering the diagram

V
f - C

�
�

�
�

�

g,f

�

V

g.

?

we see that this action is defined by the rule g.f(v) = f(g−1.v). Alterna-
tively, if the dimension of V is l, then the ring of all polynomial maps on V
is C[V ] = C[x1, . . . , xl] where the linear forms Cx1 + . . . + Cxl can be identi-
fied with the dual vectorspace V ∗. V ∗ is a GLn-representation with action
g.φ for V

φ- C in V∗ defined by (g.φ)(v) = φ(g−1.v). Hence, the action of
GLn on the polynomial ring coincides with the natural action of GLn on the
symmetric algebra of V ∗

S(V ∗) = ⊕∞i=0S
i V ∗ ' C[x1, . . . , xl]

where Si V ∗ is the subspace of symmetric tensors in V ∗ ⊗ . . . ⊗ V ∗ (i
terms). The action of GLn on C[V ] is locally finite, that is, any finite set
of polynomials {f1, . . . , fa} ⊂ C[V ] is contained in a finite dimensional GLn-
subrepresentation W of C[V ]. Indeed, let k be such that all fi have total
degree at most k, then they are all contained in the finite dimensional GLn-
subrepresentation ⊕k

i=0S
i V ∗.

Recall that the Hilbert basis theorem asserts that any ideal I / C[V ] is
finitely generated. We say that an ideal I / C[V ] is GLn-stable if g.I ⊂ I for
all g ∈ GLn.

Definition 10.3. A GLn-variety is a couple (V, I) where

• V is a finite dimensional GLn-representation, and

• I is a GLn-stable ideal of C[V ] = S(V ∗).

Examples of GLn-varieties.

Jordan forms V = Mn(C)
g.m = gmg−1

C[V ] = C[m11, . . . ,mnn]
I = 0
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8 10 GLn-representations.

Examples of GLn-varieties.

Dynamical systems V = Mn×m(C)⊕Mn(C)⊕Mp×n(C)
g.(A, B, C) = (gA, gBg−1, Cg−1)
C[V ] = C[a11, . . . , anm, b11, . . . , bnn, c11, . . . , cpn]
I = 0

Hilbert schemes V = Cn ⊕Mn(C)⊕Mn(C)
g.(v, X, Y ) = (gv, gXg−1, gY g−1)
C[V ] = C[v1, . . . , vn, x11, . . . , xnn, y11, . . . , ynn]
I = (

∑
k xikykj | ∀ i, j)
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