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1 Manifolds and differentiable manifolds

Roughly speaking, a manifold is a topological space which locally looks like Rn,
standard affine n-space over the real numbers R. We recall some basic facts about
topology and analysis on Rn.
For an integer n > 0 let Rn be the product space of ordered n-tuples of real
numbers

Rn = {(a1, . . . , an) | ai ∈ R}.

For 1 ≤ i ≤ n we denote with ui the coordinate function on Rn, that is,
ui(a1, . . . , an) = ai.
An open set of Rn will be a set which is open in the standard metric topology in-
duced by the standard metric d on Rn, thus if a = (a1, . . . , an) and b = (b1, . . . , bn)
are points in Rn, then

d(a, b) =

√√√√ n∑
i=1

(ai − bi)2.

The concept of differentiability is based ultimately on the definition of a derivative
in elementary calculus. With ∂i we will denote the partial derivative ∂

∂ui
. Recall

that a map

U
f // R

from an open set U ⊂ Rn is called a Cr-function on U if it possesses continuous
partial derivatives on U of all orders ≤ r, that is, the functions

∂kf

∂ui1 . . . ∂uik

are continuous on U for all 0 ≤ k ≤ r and all 1 ≤ ij ≤ n.
If f is merely a continuous function from U to R, then f is a C0- function on U .
If f is a Cr-function on U for all r, then f is said to be a C∞-function on U .
More generally, a function

U
f // Rk

is said to be a Cr-function on U if all the component functions fi = ui ◦ f are
Cr-functions on U for all 1 ≤ i ≤ k, that is, for all points p ∈ U

f(p) = (f1(p), . . . , fk(p)) ∈ Rk.

We are now ready to define a manifold. Let M be a Hausdorff topological space.
We define the following concepts :

• An n-dimensional chart on M is a pair (φ, U) of an open subset U of M
and a homeomorphism φ from U to an open subset of Rn.
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• Two charts (φ1, U1) and (φ2, U2) are Cr-related whenever the maps φ1 ◦φ−1
2

and φ2 ◦ φ−1
1 are Cr-functions on φ2(U1 ∩ U2) resp. on φ1(U1 ∩ U2).

• An n-dimensional Cr-subatlas on M is a collection of n-dimensional charts
{(φi, Ui)} such that ∪iUi = M and any two pairs are Cr-related.

• An n-dimensional Cr-atlas onM is a maximal collection of Cr-related charts
on M .

• If a Cr-atlas contains a Cr-subatlas, we say that the subatlas induces the
atlas.

Definition 1.1 M is said to be an n-dimensional Cr-manifold if M has a
n-dimensional Cr-atlas.
If r = 0 then M is said to be a (topological) manifold. If r > 0, then M is said
to be a differentiable manifold.

We can restrict to C∞-manifolds since a result of Whitney asserts that any Cr-
atlas on M with r > 0 contains a C∞-atlas. On the other hand, Kervaire has
produced examples of C0-manifolds having no C1-atlas.

Example 1.2 (n-sphere Sn)
Consider the closed subset

Sn = {(x1, . . . , xn+1) ∈ Rn+1 |
n+1∑
i=1

x2
i = 1}.

Sn is an n-dimensional differentiable manifold with charts given as follows.
On U1 = Sn − {(0, . . . , 0, 1)} we put

φ1(x1, . . . , xn+1) = (
x1

1− xn+1

, . . . ,
xn

1− xn+1

)

and on U2 = Sn − {(0, . . . , 0,−1)} we put

φ2(x1, . . . , xn+1) = (
x1

1 + xn+1

, . . . ,
xn

1 + xn+1

)

Verify that these charts are C1-related.

Example 1.3 ( n-dimensional torus T n )
Let {w1, . . . , wn} be linearly independent vectors in Rn. Define an equivalence
relation on Rn by saying that z1, z2 ∈ Rn are equivalent if there are m1, . . . ,mn ∈
Z such that

z1 − z2 =
n∑

i=1

miwi
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(verify that this is indeed an equivalence relation).
The torus T n is the set of equivalence classes with the induced (quotient) topol-
ogy. Verify that T n can be made a differentiable manifold by taking as charts
(π(Ui), π

−1) where Ui is an open subset of Rn containing no pair of equivalent
points and π is the projection map.

Every n-dimensional chart (φ, U) on M induces a set of real valued functions on
U defined by

xi = ui ◦ φ for 1 ≤ i ≤ n

The functions xi are called local coordinate functions on M with domain U .
Let U be an open set of an n-dimensional Cr-manifold M . Consider a function

U
f // R

Then f is said to be a Cs-function if f ◦ φ−1 is a Cs-function on φ(U ∩ V ) for
every chart (φ.V ).
More generally, consider a function

U
f // N

where N is a d-dimensional Ck-manifold. then f is said to be a Cs-function on
U if f is continuous and for every Cs-function

W
g // R

on an open subset W of N we have that g ◦ f is a Cs-function.
This allows us to define a category MAN of manifolds and continuous morphisms
and a category DIFF of differentiable manifolds with C∞-functions. An isomor-
phism in MAN is called a homeomorphism, one in DIFF is called a diffeomor-
phism.
The main objective of topology (resp. differential geometry) is to classify man-
ifolds (resp. differentiable manifolds) up to homeomorphism (resp. diffeomor-
phism). In recent years significant progress has been made in the classification
of 3- and 4-dimensional manifolds.
The only one dimensional manifolds are the real line R and the unit circle S1,
the latter being the only compact one. Two dimensional compact manifolds are
classified by their genus and orientability character as we will see in the next
section.
In three dimensions, there exists a program by Thurston about the possible clas-
sification of compact three dimensional manifolds. In higher dimensions, the
multitude of compact manifolds makes a classification useless and impossible.
In dimension ≤ 3, each manifold carries a unique differentiable structure and so
in dimension at most three the classification of manifolds and of differentiable
manifolds coincide.
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William Paul Thurston
Born : 30 october 1946 in Washington D.C. (USA)

Bill Thurston studied at New College, Sarasota, Florida. He received his B.S. from there in 1967 and moved

to the University of California at Berkeley to undertake research under Morris Hirsch’s and Stephen Smale’s

supervision. He was awarded his doctorate in 1972 for a thesis entitled ”Foliations of 3-manifolds which are

circle bundles.” This work showed the existence of compact leaves in foliations of 3-manifolds. After completing

his Ph.D., Thurston spent the academic year 1972-73 at the Institute for Advanced Study at Princeton. Then, in

1973, he was appointed an assistant professor of mathematics at Massachusetts Institute of Technology. In 1974

he was appointed professor of mathematics at Princeton University. Thurston’s contributions led to him being

awarded a Fields Medal in 1982. In fact the 1982 Fields Medals were announced at a meeting of the General

Assembly of the International Mathematical Union in Warsaw in early August 1982. They were not presented

until the International Congress in Warsaw which could not be held in 1982 as scheduled and was delayed until

the following year. Lectures on the work of Thurston which led to his receiving the Medal were made at the 1983

International Congress. Wall, giving that address, said:- ’Thurston has fantastic geometric insight and vision:

his ideas have completely revolutionized the study of topology in 2 and 3 dimensions, and brought about a new

and fruitful interplay between analysis, topology and geometry.’ Wall goes on to describe Thurston’s work in

more detail:- ’The central new idea is that a very large class of closed 3-manifolds should carry a hyperbolic

structure - be the quotient of hyperbolic space by a discrete group of isometries, or equivalently, carry a metric

of constant negative curvature. Although this is a natural analogue of the situation for 2-manifolds, where such

a result is given by Riemann’s uniformisation theorem, it is much less plausible - even counter-intuitive - in the

3-dimensional situation.’ Kleinian groups, which are discrete isometry groups of hyperbolic 3-space, were first

studied by Poincaré and a fundamental finiteness theorem was proved by Ahlfors. Thurston’s work on Kleinian

groups yielded many new results and established a well known conjecture. Thurston’s work is summarized

by Wall :- ’Thurston’s work has had an enormous influence on 3-dimensional topology. This area has a strong

tradition of ’bare hands’ techniques and relatively little interaction with other subjects. Direct arguments remain

essential, but 3-dimensional topology has now firmly rejoined the main stream of mathematics.’
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In higher dimensions this is no longer true. As mentioned before, Kervaire gave
examples of manifolds without a differentiable structure and Kervaire and Milnor
showed that there can be different differentiable structures on Sn. For example
on S7 there are precisely 28 non diffeomorphic differentiable structures, on S15

there are 16256 such structures.

John Willard Milnor
Born : 20 february 1931 in Orange, New Jersey (USA)

John Milnor was educated at the University of Princeton, receiving his A.B. in 1951. He began research at

Princeton after graduating and, in 1953 before completing his doctoral studies, he was appointed to the faculty

in Princeton. In 1954 Milnor received his doctorate for his thesis ”Isotopy of Links” written under Ralph Fox’s

supervision. Milnor remained on the staff at Princeton where he was an Alfred P Sloan fellow from 1955 until

1959. He was promoted to professor in 1960 then, in 1962, Milnor was appointed to the Henry Putman chair.

Milnor was awarded a Fields Medal at the 1962 International Congress of Mathematicians in Stockholm. His

most remarkable achievement, which played a major role in the award of the Fields Medal, was his proof that a

7-dimensional sphere can have several differential structures. This work opened up the new field of differential

topology. Milnor showed that 28 different differentiable structures exist on the seven-dimensional sphere. He

distinguished between these structures using numerical invariants based on the Todd polynomials. The Todd

polynomials were first studied in algebraic geometry and it is surprising that they play this fundamental role in

classification of manifolds. The reason that Milnor could use them to distinguish the differential properties of

manifolds is because they have arithmetic properties, involving the Bernoulli numbers, which reflect in a deep

and not fully understood way these differential properties. In differential geometry we have Milnor’s theorem,

which shows that the total curvature of a knot is at least 4π . Among other results discussed are Milnor’s result

showing that we cannot necessarily ”hear the shape” of a 16-dimensional torus, and another result giving upper

and lower bounds on the number of distinct words of a given length in a finitely generated subgroup of the

fundamental group.
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In dimension 4, the understanding of differentiable structures owes important
progress to the work of S. Donaldson. In particular, it follows from his work that
there exist exotic structures on R4, that is differentiable structures not diffeomor-
phic to the usual manifold structure on R4.
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2 Two dimensional compact manifolds

Recall that a topological space is said to be compact if every open covering
contains a finite subcover. A topological space is said to be connected if it cannot
be decomposed in two disjoint clopen subsets.
In this section we will prove the classification of two dimensional compact con-
nected manifolds (or surfaces for short). Recall that in dimension ≤ 3 every
homeomorphism class of manifolds can be equipped with a unique differentiable
structure. Hence it suffices to classify manifolds up to homeomorphism.
First we will construct a ’cut-and-paste’-model for a compact surface, a so called
triangulation. Next we will use this triangulation to prove the classification result
and finally we will give topological invariants (genus and orientability character)
for compact surfaces.

2.1 Triangulations of compact surfaces

Let us first give some examples of surfaces, that is, of two dimensional compact
connected manifolds. The simplest example is the two sphere S2. Another ex-
ample we have seen is the two-dimensional torus T 2. We will give some slightly
different descriptions of T 2

• T 2 is homeomorphic to the product S1 × S1 of two circles.

• T 2 is homeomorphic to the closed surface in R3 determined by

{(x, y, z) ∈ R3 | (
√
x2 + y2 − 2)2 + z2 = 1}

which is the set obtained by rotating the circle (x − 2)2 + z2 = 1 in the
(x, z)-plane about the z-axis.

• T 2 is the space homeomorphic to the space obtained from the unit square
X in R2,

{(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
obtained by identifying opposite sides of the square X. That is, the points
(0, y) and (1, y) are identified for all 0 ≤ y ≤ 1 and similarly (x, 0) and
(x, 1) are identified for all 0 ≤ x ≤ 1.

The last description allows us to write T 2 symbolically by a diagram

OOb

//a

OO b

//
a
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By this we mean that sides that are to be identified are labeled with the same
letter and the identification should be made so that the directions indicated by
the arrows agree.

So far, S2 and T 2 were homeomorphic to surfaces in R3. In general, H. Whitney
proved in 1936 that any n-dimensional differentiable manifold can be embedded
into R2n+1.

Hassler Whitney
Born : 23 march 1907 in New York (USA)
Died : 10 may 1989 in Mont Dents Blanches (Switserland)

Hassler Whitney attended Yale University where he received his first degree in 1928, then continued to undertake

mathematical research at the University of Harvard from where his doctorate was awarded in 1932. His doctorate

was awarded for a dissertation ”The Coloring of Graphs” written under Birkhoff’s supervision. He continued

to work at Harvard, being an instructor in mathematics from 1930 until 1935, although the years 1931-33 were

spent as a National Research Council Research Fellow. From 1935 he was promoted to assistant professor, then

from 1940 associate professor. Harvard made him a full professor in 1946 and he held this professorship until

he accepted an offer from the Institute of Advanced Study at Princeton of a chair in 1952. Whitney’s main

work was in topology, particularly in the theory of manifolds. Continuing work started by Veblen and Henry

Whitehead, Whitney produced fundamental work in differential topology in 1935. Whitney also wrote on graph

theory, in particular the coloring of graphs and chromatic polynomials. Other work on algebraic varieties and

integration theory was important. Princeton was to remain Whitney’s base from 1952 until he retired in 1977.

The year before he retired he was awarded the National Medal of Science. Then in 1983 he received the Wolf

Prize and, two years later, the Steele Prize.

In the case of surfaces (n = 2) there is no reason why any surface should be
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embeddable in R3. An example of a surface not embeddable in R3 is

Example 2.1 (the real projective plane P2)
P2 is the quotient space of the 2-sphere S2 obtained by identifying every pair of
diametrically opposite points.
Recall that P2 is the space of lines through the origin in R3 and clearly any
such line is determined by its intersections points with the unit sphere (which
are opposite points).

P2 can also be viewed as the space obtained from the closed upper hemisphere

H = {(x, y, z) ∈ S2 | z ≥ 0}

by identifying diametrically opposite points on the boundary (the equator). As
H is homeomorphic to the closed unit square we can represent P2 symbolically
by the diagram

OOb

//a

�� b

oo
a

Although one cannot embed P2 in R3 there exists an image of P2 to R3 which
is called Boy’s surface. It contains one continuous double point curve, which
meets itself in a triple point. These are the only self-intersections in Boy’s surface.
There are no singularities in this image surface. Below a picture of the front and
back of Boy’s surface.

If S1 and S2 are disjoint surfaces then their connected sum

S1#S2
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is formed by cutting a small circular hole in each surface and then gluing the two
surfaces together along the boundaries of the holes.
If Si are surfaces, then it is easy to see that the following relations hold (here
equality means ’homeomorphic to’)

• Si#S
2 = Si

• Si#Sj = Sj#Si

• (Si#Sj)#Sk = Si#(Sj#Sk)

In short, the connected sum operation makes the homeomorphism classes of sur-
faces into a semigroup with unit element S2. Note however that it is not a group
(inverses do not exist).

Example 2.2 (P2#P2)
The connected sum operation can be symbolically presented as

a

EE

a

��
c

""

b

EEcbb

b

��

After gluing we obtain a surface represented by the following identifications

OOa

//a

�� b

oo
b

??c

Example 2.3 (T 2#T 2)
Verify similarly that the connected sum of two T 2’s can be symbolically represented
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by the following identification polygon

OOOOOOOOOOOOO
gg
b1

/////////////

WWa1

�������������

��b1

ooooooooooooo

wwa1

OOOOOOOOOOOOO

''b2

//
//

//
//

//
//

/

��a2

��
��
��
��
��
��
�

GGb2

ooooooooooooo
77
a2

OOc

Again we mean by this the surface obtained from the closed polygon in R2 where
sides are to be identified when labeled by the same letter, and the identifications
should be made so that the directions indicated by the arrows agree.

Observe that all surfaces constructed so far are quotients of closed 2n-gons in R2

where the edges are identified in pairs in a specific manner.
Also the 2-sphere S2 fits in this framework as the quotient space of the following
2-gon with identification

a

EE

a

��

For, cut S2 open along a line joining the two poles.
We now introduce a rather obvious and convenient method of indicating precisely
which paired edges are to be identified in such a polygon. Start at a definite
vertex, proceed around the boundary of the polygon recording the letters assigned
to the different sides in succession. If the arrow on a side points in the opposite
direction that we are going around the boundary we write the letter for that side
with the exponent −1. For example, with the above conventions we have the
following symbols associated to the surfaces

• S2 : aa−1.

• T 2 : aba−1b−1.

• P2 : abab or aa.
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• P2#P2 : aabb and more generally the connected sum of n copies of P2 has
symbol

a1a1a2a2 . . . anan.

• T 2#T 2 : a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 and more generally the connected sum of n
copies of T 2 has symbol

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . anbna
−1
n b−1

n .

Our first job is to prove that any compact surface is homeomorphic to such a
quotient space. For this we need that any surface is triangulated, that is, divided
into triangles which fit together nicely.

Definition 2.4 A triangulation of a compact surface S consists of a finite
family of closed subsets {T1, T2, . . . , Tn} that cover S and such that each Ti is
homeomorphic to a closed triangle in R2. Using these homeomorphisms we can
speak of ’vertices’ and ’edges’ of these ’triangles’ Ti.
It is required that two distinct triangles Ti and Tj either be disjoint, have a single
vertex in common or have one entire edge in common.

We can regard a triangulated surface as having been constructed by gluing to-
gether the various triangles in a certain way. It has been proved by T. Rado in
1925 that any compact surface can be triangulated.

Tibor Rado
Born : 2 june 1895 in Budapest (Hungary)
Died : 12 december 1965 in New Smyrna Beach, Florida (USA)
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Tibor Radó enlisted in 1915 and fought on the Russian front before being captured and imprisoned for four

years. While he was in prison, the only books he had to read were on mathematics. After his release he went

to Szeged University, taking a Ph.D. under Riesz. In 1929 he went to the USA and held posts at Harvard

and Rice before being appointed to a chair at Ohio State University. Radó; worked on conformal mappings,

real analysis, calculus of variations, partial differential equations, integration theory and topology. He worked

on the Plateau Problem and found the solution independently of Douglas. He also worked on surface measure

continuing the work of Lebesgue and Riesz. Tibor Radó; was the American Mathematical Society Colloquium

Lecturer in 1945.

Example 2.5 Show that the set of triangles
�������������������������

��������� �����������������

����������������� ���������

is a triangulation for the torus T 2 but is not a triangulation for P2 (compare
upper left and bottom right triangles).

Lemma 2.6 Consider a triangulation of a compact surface.

1. Each edge is an edge of precisely two triangles.

2. For v a vertex we can arrange the triangles having vertex v in cyclic order
say T0, T1, . . . , Tk−1, Tk = T0 such that Ti and Ti+1 have an edge in common.

Proof. Follows from the fact that each point of an edge (or v) has an open
neighborhood homeomorphic to the open unit disc U2. �

Lemma 2.7 Let n be the number of triangles in a triangulation of a compact
surface S. Then, we can order the triangles T1, T2, . . . , Tn such that Ti has an
edge ei in common with at least one of the triangles T1, . . . , Ti−1.

Proof. Take any triangle as T1, choose T2 to be a triangle having an edge in
common with T1. Take T3 to be a triangle having an edge in common with T1 or
T2 etc. If this process would stop prematurely we would have sets {T1, . . . , Tk}
and {Tk+1, . . . , Tn} such that no triangle in the first set has an edge or vertex in
common with any triangle in the second set. This contradicts that S is connected.

�

Proposition 2.8 Let S be a compact surface. Then, S is homeomorphic to
the quotient space of a closed polygon with an even number of edges which are
identified in pairs.
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Proof. Take an ordered triangulation {T1, . . . , Tn} and {e2, . . . , en} with prop-
erties of the foregoing lemma. Glue triangles t1 and t2 in R2 along their common
edge e′2 to obtain a polygon P2 with 4 outer edges homeomorphic to a closed disc
D2. t3 has an (necessarily outer) edge e3 in common with P2 so glue to obtain a
polygon P3 with 5 outer edges homeomorphic to D2. Continue until Pn which is
a polygon having n+2 outer edges homeomorphic to D2. Consider an outer edge
e of Pn. As it belongs to precisely one other triangle in S it has to be identified
with another outer edge. Therefore, the number of outer edges of Pn is even
and we obtain S as the quotient space of Pn after identifying the outer edges in
pairs. �

2.2 Classification of compact surfaces

In this subsection we will prove the following classification result.

Theorem 2.9 Any compact surface is homeomorphic to either

• the sphere S2 or to

• the connected sum T 2# . . .#T 2 of a number of tori or to

• the connected sum P2# . . .#P2 of a number of projective planes.

The strategy of proof is to view S as the quotient space of a polygon with even
number of edges which are identified in pairs, consider the associated symbol and
manipulate this symbol topologically until one obtains one of the symbols of the
situations of the theorem.
If the letter designated to a certain pair of edges occurs in the symbol once with
exponent +1 and once with exponent −1 we say that it is a pair of edges of the
first kind. Otherwise it is a pair of edges of the second kind.
For example, in the symbol

aa−1fbb−1fe−1cgc−1gdd−1e−1

the pairs corresponding to a, b, c, d are of the first kind, those corresponding to
e, f, g of the second kind.
We can eliminate an adjacent pair of edges of the first kind as illustrated in the
following topological operation.

O�
O�
O�
O�
O�
O�
O�
O�

���������

//a

??
??

??
??

?

__a

�?
�?

�?
�?

�?

o/ o/ o/ o/ o/ o/ o/

_�
_�

_�
_�

_�

_�
_�

_�
_�

_�
_�

_�
_�

?�
?�

?�
?�

?�
?�

?�
?� ??

??
??

??
??

??
?

�?
�?

�?
�?

�?
�?

�?
�?

o/ o/ o/ o/ o/ o/ o/














��a
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Assume we have made all these reductions.

_�
_�

_�
_�

_�
_�

_�
_�

?�
?�

?�
?�

?�
?�

?�
?�

//c

�_
�_

�_
�_

�_
�_

�_
�_

�?
�?

�?
�?

�?
�?

�?
�?

//
a

Q

P

���������

??a
??

??
??

??
?

__ b

P

_�
_�

_�
_�

_�
_�

_�
_�

?�
?�

?�
?�

?�
?�

?�
?�

//c

�_
�_

�_
�_

�_
�_

�_
�_

�?
�?

�?
�?

�?
�?

�?
�?

//
a

Q

P

??
??

??
??

?

�� c
���������

??b

Q

Next, we claim that we may assume that all the vertices of the polygon are
identified to a single point in S. Call two vertices of the polygon equivalent if
they are to be identified in S.
Suppose there are at least two different equivalence classes of vertices, then the
polygon must have an adjacent pair of vertices P and Q which are not equivalent.
Then, we can perform the topological operation described above to obtain a new
polygon having one vertex less in the equivalence class of P and one more in the
equivalence class of Q (observe that the edges a and b are not to be identified as
otherwise they would be adjacent of the fist kind).
Continuing in this way (and eliminating adjacent pairs of first kind when they
appear) we obtain a polygon such that all the vertices are to be identified to a
single point in S.
Next, we can make any pair of edges of the second kind adjacent by the following
topological operation.

_�
_�

_�
_�

_�
_�

_�
_�

?�
?�

?�
?�

?�
?�

?�
?�

//b

�_
�_

�_
�_

�_
�_

�_
�_

�?
�?

�?
�?

�?
�?

�?
�?

oo
b

�� a
�_

�_
�_

�_
�_

�_
�_

�_

�?
�?

�?
�?

�?
�?

�?
�?

oo
b







































�� a

44
44

44
44

44
44

44
44

44
44

4

�� a
?�

?�
?�

?�
?�

?�
?�

?�

_�
_�

_�
_�

_�
_�

_�
_�
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Continue until all pairs of the second kind are adjacent. If there are no pairs of
edges of the first kind we are done as we have a polygon with symbol that of the
connected sum of projective planes.
If there is at least one pair of edges of the first kind, then there is another one
such that the two pairs separate each other, that is, such that in the symbol
the pairs appear as . . . a . . . b . . . a−1 . . . b−1 . . .. For otherwise we would have the
situation

OOa

/o/o/o/o/o/o/o/o/o/o/o A

OO a

o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

B

where A and B designate a whole sequence of edges and no edge from A is
identified with an edge from B. This contradicts the fact that both endpoints of
c are identified in S.
Hence if we have two pairs of edges of the first kind we can perform the following
sequence of topological moves to transform the polygon such that the four edges
in questions are consecutive.
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By repeating these procedures we are reduced to polygons with symbols such
that all pairs of edges of the second kind are adjacent and all couples of pairs of
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edges of the first kind are adjacent groups of four. That is, our surface S is the
connected sum of tori and of projective planes.
The final ingredient of the proof is contained in the following

Exercise 2.10 Show that the connected sum of a torus and a projective plane is
homeomorphic to the connected sum of three projective planes.

2.3 Topological invariants of compact surfaces.

We have not yet proved that all the cases of the classification theorem are really
distinct, that is, are not homeomorphic. In order to do this we will introduce
topological invariants : the Euler characteristic (or equivalently, the genus) and
the orientability character.
If S is a compact surface with a triangulation {T1, . . . , Tn} and let v be the total
number of vertices, e the total number of edges and t the total number of triangles
(that is, t = n) then

χ(S) = v − e+ t

is called the Euler characteristic of S.
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Leonard Euler
Born : 15 april 1707 in Basel (Switserland)
Died : 18 september 1783 in St Petersburg (Russia)

In 1723 Euler completed his Master’s degree in philosophy having compared and contrasted the philosophical

ideas of Descartes and Newton. He began his study of theology in the autumn of 1723, following his father’s

wishes, but, although he was to be a devout Christian all his life, he could not find the enthusiasm for the study

of theology, Greek and Hebrew that he found in mathematics. Euler obtained his father’s consent to change

to mathematics after Johann Bernoulli had used his persuasion. Euler completed his studies at the University

of Basel in 1726. He had studied many mathematical works during his time in Basel, they include works by

Varignon, Descartes, Newton, Galileo, von Schooten, Jacob Bernoulli, Hermann, Taylor and Wallis. By 1726

Euler had already a paper in print, a short article on isochronous curves in a resisting medium. As soon as

he knew he would not be appointed to the chair of physics, Euler left Basel on 5 April 1727. He traveled

down the Rhine by boat, crossed the German states by post wagon, then by boat from Lübeck arriving in St

Petersburg on 17 May 1727. He had joined the St. Petersburg Academy of Science two years after it had been

founded by Catherine I the wife of Peter the Great. The publication of many articles and his book Mechanica

(1736-37), which extensively presented Newtonian dynamics in the form of mathematical analysis for the first

time, started Euler on the way to major mathematical work. Euler’s health problems began in 1735 when he

had a severe fever and almost lost his life. By 1740 Euler had a very high reputation, having won the Grand

Prize of the Paris Academy in 1738 and 1740. On both occasions he shared the first prize with others. Euler’s

reputation was to bring an offer to go to Berlin, but at first he preferred to remain in St Petersburg. During the

twenty-five years spent in Berlin, Euler wrote around 380 articles. He wrote books on the calculus of variations;

on the calculation of planetary orbits; on artillery and ballistics; on analysis; on shipbuilding and navigation;

on the motion of the moon; lectures on the differential calculus; and a popular scientific publication ”Letters to

a Princess of Germany” (3 vols., 1768-72). In 1766 Euler returned to St Petersburg and Frederick was greatly

angered at his departure. Soon after his return to Russia, Euler became almost entirely blind after an illness. In

1771 his home was destroyed by fire and he was able to save only himself and his mathematical manuscripts. A

cataract operation shortly after the fire, still in 1771, restored his sight for a few days but Euler seems to have
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failed to take the necessary care of himself and he became totally blind. Because of his remarkable memory

was able to continue with his work on optics, algebra, and lunar motion. Amazingly after his return to St

Petersburg (when Euler was 59) he produced almost half his total works despite the totally blindness. After

his death in 1783 the St Petersburg Academy continued to publish Euler’s unpublished work for nearly 50 more

years. He made decisive and formative contributions to geometry, calculus and number theory. He integrated

Leibniz’s differential calculus and Newton’s method of fluxions into mathematical analysis. He introduced beta

and gamma functions, and integrating factors for differential equations. He studied continuum mechanics,

lunar theory, the three body problem, elasticity, acoustics, the wave theory of light, hydraulics, and music. He

laid the foundation of analytical mechanics, especially in his ”Theory of the Motions of Rigid Bodies” (1765).

Analytic functions of a complex variable were investigated by Euler in a number of different contexts, including

the study of orthogonal trajectories and cartography. He discovered the Cauchy-Riemann equations in 1777,

although d’Alembert had discovered them in 1752. In 1755 Euler published ”Institutiones calculi differentialis”

which begins with a study of the calculus of finite differences. The work makes a thorough investigation of

how differentiation behaves under substitutions. Euler made substantial contributions to differential geometry,

investigating the theory of surfaces and curvature of surfaces. Many unpublished results by Euler in this area

were rediscovered by Gauss. Other geometric investigations led him to fundamental ideas in topology such as

the Euler characteristic of a polyhedron.

It s an important fact that the Euler characteristic does not depend on the given
triangulation and so is really an invariant of the surface S. Using triangulations
of the sphere S2, the torus T 2 and the projective plane compute that their Euler
characters are resp. 2, 0 and 1.

Lemma 2.11 If S1 and S2 are compact surfaces, then

χ(S1#S2) = χ(S1) + χ(S2)− 2

Proof. Take a triangulation for Si and form their connected sum by removing
from each the interior of a triangle and then identify edges and vertices of the
boundaries of the removed triangles. Then, count! �

Using this lemma it is easy to count the Euler characteristic of

• The sphere : 2.

• Connected sum of n tori : 2− 2n,

• Connected sum of n projective planes : 2− n.

Exercise 2.12 For over 2000 years it has been known that there are only five
regular polyhedra : the regular tetrahedron, cube, octahedron, dodecahedron and
icosehadron.

21



Prove this by considering subdivisions of the sphere into n-gons (n fixed) such
that exactly m edges meat at every vertex (m fixed) with m,n ≥ 3. Use the fact
that χ(S2) = 2.

A surface that is the connected sum of n tori or n projective planes is said to be
of genus n. Hence, the genus gives the number of ’holes’ in the surface.
Now let us turn to orientability of (compact) surfaces. We will give a formal
definition later. For now, view orientation on a manifold as a consistent way to
define left or right handed coordinate systems along the surface. If the surface
has a closed loop such that if one carries a right-handed coordinate system along
the curve and ends up with a left handed one, then we say that the surface is not
orientable.

Example 2.13 (The Möbius strip)
Let X be the following rectangle in the plane

X = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 < y < 1}

and consider the quotient space of X by identifying the vertical edges as follows

OOb �� b
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This quotient space is the Möbius strip, it is a (non-compact) connected two- di-
mensional manifold. The indicated closed loop is easily seen to be an orientation-
reversing path, so the Möbius strip is not orientable.
As a consequence, also the projective plane is not oriented as it contains a Möbius
strip as indicated below.

OOb

//a

�� b

oo
a

The connected sum of two orientable surfaces is again orientable. On the other
hand, if either S1 or S2 is nonorientable, then so is S1#S2. As a consequence, a
connected sum of tori is orientable whereas a connected sum of projective planes
is not. This together with the computation of the Euler characters gives the
following topological characterization of compact surfaces.

Theorem 2.14 Let S1 and S2 be compact surfaces. Then, S1 and S2 are home-
omorphic if and only if their Euler characters are equal and both are orientable
or both are nonorientable.
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3 Vectorbundles

All invariants of a 3- or 4-dimensional differentiable manifold M discovered re-
cently use special higher dimensional manifolds constructed from M . The main
example of such manifolds are vectorbundles.

Definition 3.1 A (differentiable) vectorbundle of rank n consists of a total
space E, a base M and a projection map

E
π // M

where E and M are differentiable manifolds, each fiber

Ex = π−1(x) for x ∈M

carries the structure of an n-dimensional (real) vector space, and the following
local triviality requirement is satisfied. For each x ∈ M there exists an open
neighborhood U and a diffeomorphism

π−1(U)
φ // U × Rn

with the property that for every y ∈ U we have that

φy = φ | Ey : Ey
// {y} × Rn

is a bijective linear map. Such a pair (φ, U) is called a bundle chart.

A vectorbundle may be considered as a family of n-dimensional vectorspaces
parameterized by a manifold. It is important to point out that a vectorbundle is
by definition locally, but not necessarily globally, a product of base and fiber. If
the vectorbundle is isomorphic to M × Rn we call it trivial.

3.1 Tangentbundle and Riemannian metrics

An important example of a vectorbundle is the tangentbundle TM having as
fiber over a point x ∈M the tangentspace TxM in x to M .
Let (x1, . . . , xd) be Euclidian coordinates of Rd and Ω ⊂ Rd an open subset and
p ∈ Ω. The tangent space of Ω (or of Rd) at the point p, TpΩ is the space {p}×E
where E is the d-dimensional vectorspace

E = R
∂

∂x1

+ . . .+ R
∂

∂xd

where ∂
∂xi

are the partial derivatives at p.
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If Ω′ ⊂ Re is open and if we have a differentiable map

Ω
f // Ω′

we define the derivative df(p) for p as the induced linear map between the tangent
spaces

TpΩ
df(p)// Tf(p)Ω

′

v =
d∑

i=1

vi
∂

∂xi

7→
d∑

i=1

e∑
j=1

vi
∂fj

∂xi

(p)
∂

∂fj

With the previous notations we put

TΩ = Ω× E ' Ω× Rd

which is an open subset of Rd×Rd and hence a differentiable manifold. Projection
on the first factor

TΩ
π // Ω where (x, v) 7→ x

makes TΩ into a vectorbundle called the tangentbundle of Ω. Likewise we define

TΩ
df //Tω′

by the assignment

(x,
d∑

i=1

vi
∂

∂xi

) 7→ (f(x),
d∑

i=1

e∑
j=1

vi
∂fj

∂xi

(x)
∂

∂fj

)

We will now generalize the construction to a differentiable manifold M of dimen-
sion d and p ∈M . Let (φ, U) be a chart of M with p ∈ U . Clearly we would like
to define the tangent space TpM of M in p to be

TpM = Tφ(p)φ(U).

Then, TpM is a vectorspace of dimension d hence isomorphic to Rd. This isomor-
phism, however, is not canonical, but depends on the choice of chart. Hence, let
(φ′, U ′) be another chart with p ∈ U ′. The diffeomorphic transition map

φ(U ∩ U ′)
φ′◦φ−1

// φ′(U ∩ U ′)

induces a vector space isomorphism

L = d(φ′ ◦ φ−1)(φ(p)) : Tφ(x)Ω // Tφ′(p)Ω
′

(where Ω = φ(U) and Ω′ = φ′(U ′)) and we say that v ∈ Tφ(p)Ω and L(v) ∈ Tφ′(p)Ω
′

represent the same tangent vector in TpM . That is, a tangent vector is given by
the family of its coordinate representations. Formally,
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Definition 3.2 Let p ∈M . We define an equivalence relation on

{(φ, v) | (φ, U) a chart with p ∈ U, v ∈ Tφ(p)φ(U)}

defined by
(φ, v) ∼= (ψ,w) ⇔ w = d(ψ ◦ φ−1)v

The space of equivalence classes is called the tangent space to M at the point
p and it is denoted by TpM . Clearly, TpM is a vectorspace where the equivalence
class of λ(φ, v) + µ(φ,w) is that of (φ, λv + µw).

Observe that for a differentiable map M
F // N between differentiable man-

ifolds, dF is represented in local charts (φ, U) of M and (ψ, V ) of N by
d(ψ ◦ F ◦ φ−1) and it induces linear maps for all p ∈M

TpM
dF // TF (p)N

The disjoint union TM of the tangent spaces TpM for p ∈ M is made into a
differentiable manifold as follows. If (φ, U) is a chart for M we let TU be the
disjoint union of the TpM with p ∈ U and define the chart

TU
dφ // Tφ(U)

where Tφ(U) carries the differentiable structure of φ(U) × Rd and it is easy to
verify that the transition maps

dψ ◦ dφ−1 = d(ψ ◦ φ−1)

then all are differentiable. We also have a natural projection map TM
π // M

defined by π(v) = p for all v ∈ TpM .

Definition 3.3 The triple (TM, π,M) is called the tangentbundle of M and
TM is called the total space of the tangentbundle.

Exercise 3.4 Prove the following alternative definition of a tangentspace which
is more elegant but less easy to compute with.
A germ of a function at p ∈ M is an equivalence class of smooth functions
defined on neighborhoods of p, where two such functions are equivalent if they
coincide on some neighborhood of p. A tangent vector at p may then be defined
as a linear operator δ on the function germs at p satisfying the Leibniz rule

δ(f.g)(x) = (δf(x))f(x) + f(x)(δg(x))

We want to introduce metric structures on differentiable manifolds, in particular
we want to define the length of tangent vectors. Then, by integration we can de-
fine the length of a differentiable curve and hence ’geodesics’ as curves of minimal
length.
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Definition 3.5 A Riemannian metric on a differentiable manifold M is given
by a scalar product on each tangent space TpM which depends smoothly on the
point p. A Riemannian manifold is a differentiable manifold equipped with a
Riemannian metric.

Georg Friedrich Bernhard Riemann
Born : 17 september 1826 in Hanover (Germany)
Died : 20 july 1866 in Selasca (Italy)

In 1849 he returned to Göttingen and his Ph.D. thesis, supervised by Gauss, was submitted in 1851. However

it was not only Gauss who strongly influenced Riemann at this time. Weber had returned to a chair of physics

at Göttingen from Leipzig during the time that Riemann was in Berlin, and Riemann was his assistant for

18 months. Also Listing had been appointed as a professor of physics in Göttingen in 1849. Through Weber

and Listing, Riemann gained a strong background in theoretical physics and, from Listing, important ideas

in topology which were to influence his ground breaking research. Riemann’s thesis studied the theory of

complex variables and, in particular, what we now call Riemann surfaces. It therefore introduced topological

methods into complex function theory. The work builds on Cauchy’s foundations of the theory of complex

variables built up over many years and also on Puiseux’s ideas of branch points. However, Riemann’s thesis is a

strikingly original piece of work which examined geometric properties of analytic functions, conformal mappings

and the connectivity of surfaces. On Gauss’s recommendation Riemann was appointed to a post in Göttingen

and he worked for his Habilitation, the degree which would allow him to become a lecturer. He spent thirty

months working on his Habilitation dissertation which was on the representability of functions by trigonometric

series. He gave the conditions of a function to have an integral, what we now call the condition of Riemann

integrability. To complete his Habilitation Riemann had to give a lecture. He prepared three lectures, two on

electricity and one on geometry. Gauss had to choose one of the three for Riemann to deliver and, against

Riemann’s expectations, Gauss chose the lecture on geometry. Riemann’s lecture ”Uber die Hypothesen welche

der Geometrie zu Grunde liegen” delivered on 10 June 1854, became a classic of mathematics. There were two
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parts to Riemann’s lecture. In the first part he posed the problem of how to define an n-dimensional space and

ended up giving a definition of what today we call a Riemannian manifold. In fact the main point of this part of

Riemann’s lecture was the definition of the curvature tensor. The second part of Riemann’s lecture posed deep

questions about the relationship of geometry to the world we live in. He asked what the dimension of real space

was and what geometry described real space. The lecture was too far ahead of its time to be appreciated by most

scientists of that time. In 1858 Betti, Casorati and Brioschi visited Göttingen and Riemann discussed with them

his ideas in topology. This gave Riemann particular pleasure and perhaps Betti in particular profited from his

contacts with Riemann. The winter of 1862-63 was spent in Sicily and he then traveled through Italy, spending

time with Betti and other Italian mathematicians who had visited Göttingen. He returned to Göttingen in June

1863 but his health soon deteriorated and once again he returned to Italy. Having spent from August 1864

to October 1865 in northern Italy, Riemann returned to Göttingen for the winter of 1865-66, then returned to

Selasca on the shores of Lake Maggiore on 16 June 1866. He died 4 days later.

The simplest example of a Riemannian metric is of course the Euclidian one. For
v = (v1, . . . , vd) and w = (w1, . . . , wd) ∈ TxRd, the Euclidian scalar product is

〈v, w〉 =
d∑

i=1

viwi

and is hence determined by the positive definite symmetric matrix

(δij)i,j

where δij is the Kronecker symbol.
Consider an open set U around p ∈ M and let x = (x1, . . . , xd) be the local
coordinates, then we require a positive definite symmetric matrix

(gij(x))i,j

that is, gij(x) = gji(x) for all i, j, for all (ζ1, . . . , ζd) 6= 0 ∈ Rd we have

d∑
i,j=1

gij(x)ζiζj > 0

and the coefficients gij(x) depend smoothly on x.
We can then define an inproduct on tangent vectors v, w ∈ TpM by the rule

〈v, w〉 =
d∑

i,j=1

gij(x(p))viwj

where v =
∑
vi

∂
∂xi

and w =
∑
wi

∂
∂xi

. The length of a tangent vector v ∈ TpM is
then defined as

‖ v ‖=
√
〈v, v〉
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Exercise 3.6 Compute that if f(x) define other local coordinates and if the met-
ric in these new coordinates is given by hkl(f(x)) then we have

d∑
k,l=1

hkl(f(x))
∂fk

∂xi

∂fl

∂xj

= gij(x)

In particular, the smoothness of the metric does not depend on the choice of local
coordinates.

We will see below that a connected paracompact differentiable manifold always
has a Riemannian metric (but observe that there are more such metrics). Recall
that a topological space is called paracompact if any open covering has a locally
finite refinement. Observe that this condition is also necessary as we will see below
that a Riemannian manifold is a metric space and hence paracompact.
First we need an multitude of C∞ functions on a differentiable manifold.

Lemma 3.7 Let 0 < b < c ∈ R. Then there exists a C∞-function R
f // R

with

f(t) = 0 for t ≤ b

0 ≤ f(t) ≤ 1 for all t

f(t) = 1 for t ≥ c

Proof. Let g(x) be the C∞-function which is zero if x ≤ 0 and is e−(1/x2) for
x > 0. Consider

h(x) = g(x+
c− b

2
)g(−x− c− b

2
)

And consider the function

i(x) =

∫ x

−∞ h(y)dy∫∞
−∞ h(y)dy

Then f(x) = i(x− c+b
2

) has the required properties. �

Lemma 3.8 Let 0 < b < c ∈ R, then there is a C∞-function Rd F // R with

F (p) = 0 for ‖ p ‖≤ b

0 ≤ F (p) ≤ 1 for all p

F (p) = 1 for ‖ p ‖≥ c

Proof. Take F (p) = f(‖ p ‖) with f as above. �
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Lemma 3.9 Let M be a differentiable d-dimensional manifold, p ∈ M . Then

there is a neighborhood V of p and a C∞-function M
f // R such that f(x) ≥ 0

for x ∈ V and f(x) = 0 for x /∈ V .

Proof. Let (φ, U) be a chart containing p and assume without loss of generality
that φ(p) = (0, . . . , 0) ∈ Rd. Choose numbers 0 < b < c such that the open ball
with radius c B(0, c) is contained in φ(U). Let G = 1− F with F as before and
take V = φ−1(B(0, c)) and let f = G ◦ φ on V and f(x) = 0 for x /∈ V . �

It is about time to do something useful with these lemmas.

Proposition 3.10 (partition of unity)
If M is a paracompact differentiable manifold, then there is a locally finite atlas
(φi, Ui) and a collection gi of non-negative real valued C∞- functions such that
gi(x) = 0 for x /∈ Ui and ∑

i

gi = 1

Proof. From paracompactness and the foregoing lemma we obtain a locally

finite atlas (φi, Ui) with C∞-functions M
fi // R such that fi > 0 on Ui and

fi = 0 on M − Ui. The function F =
∑

i fi is a well-defined non-vanishing C∞-
function on M and take gi = fi/F . �

Theorem 3.11 Every paracompact differentiable manifold may be equipped with
a Riemannian metric.

Proof. Let (φi, Ui) and gi be as above. Let v, w ∈ TpM with representations (if
p ∈ Ui) (v(i)1, . . . , v(i)d) resp. (w(i)1, . . . , w(i)d). Then, define

〈v, w〉 =
∑

i|p∈Ui

d∑
j=1

gi(p)v(i)jw(i)j

which is well defined and a Riemannian metric. �

If [a, b] is a closed interval in R and we have a smooth (that is, C∞) curve

[a, b]
γ // M

then we define the length of γ using the Riemannian metric to be

L(γ) =

∫ b

a

‖ dγ
dt

(t) ‖ dt
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and the energy of γ to be the integral

E(γ) =
1

2

∫ b

a

‖ dγ
dt

(t) ‖2 dt

Of course, these expressions can be computed in local coordinates. If γ(t) =
(x1(γ(t)), . . . , xd(γ(t)) and we use the abbreviation ẋi(t) = d

dt
(xi(γ(t))) then e.g.

the energy becomes

E(γ) =
1

2

∫ b

a

d∑
i,j=1

gij(x(γ(t)))ẋi(t)ẋj(t)dt

A recurring theme in differential geometry will be that once we have a functional
on geometric objects (here, curves) we want to describe the objects having critical
values. These are described via Euler-Lagrange equations. Recall that if we
have a functional of the form

I(x) =

∫ b

a

f(t, x(t), ẋ(t))dt

then its Euler-Lagrange equations are given by

d

dt

∂f

∂ẋi

− ∂f

∂xi

= 0 for all 1 ≤ i ≤ d

If we define the inverse of the matrix (gij(x))i,j to be (gij(x))i,j, then we obtain

Proposition 3.12 The Euler-Lagrange equations for the energy E are

ẍi(t) +
d∑

j,k=1

Γi
jk(x(t))ẋj(t)ẋk(t) = 0

for 1 ≤ i ≤ d with the Christoffel symbols

Γi
jk =

1

2

d∑
l=1

gil(gjl,k + gkl,j − gjk,l)

where we define

gjl,k =
∂

∂xk

gjl

Proof. Writing down the Euler-Lagrange equations in local coordinates we
obtain for 1 ≤ i ≤ d

d

dt
(
∑

k

gik(x(t))ẋk(t) +
∑

j

gji(x(t))ẋj(t))−
∑
j,k

gjk,i(x(t))ẋj(t)ẋk(t) = 0
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whence ∑
j,k,l

gikẍk + gjiẍj + gik,lẋlẋk + gji,lẋlẋj − gjk,iẋjẋk = 0

Renaming some indices and using the symmetry gik = gki we get for 1 ≤ l ≤ d∑
j,k,m

2glmẍm + (glk,j + gjl,k − gjk,l)ẋjẋk = 0

multiplying this with
∑

l g
il and using

∑
l g

ilglm = δim we obtain the required
equations. �

Elwin Bruno Christoffel
Born : 10 november in Monschau (Germany)
Died : 15 march 1900 in Strasbourg (France)

Elwin Christoffel was noted for his work in mathematical analysis, in which he was a follower of Dirichlet

and Riemann. Christoffel studied at the University of Berlin from 1850 where he was taught by Borchardt,

Eisenstein, Joachimsthal, Steiner and Dirichlet. It was Dirichlet who had the greatest influence on him and

Christoffel is rightly thought of as a student of Dirichlet’s. Christoffel published papers on function theory

including conformal mappings, geometry and tensor analysis, Riemann’s o-function, the theory of invariants,

orthogonal polynomials and continued fractions, differential equations and potential theory, light, and shock

waves. Some of Christoffel’s early work was on conformal mappings of a simply connected region bounded

by polygons onto a circle. This work on conformal mappings was published in four papers between 1868 and

1870. The first of these papers was written while Christoffel was at Zurich, the remaining three papers on the

Christoffel-Schwarz formula were written while he was at the Gewerbsakademie in Berlin. Between 1865 and

1871 Christoffel published four important papers on potential theory, three of them dealing with the Dirichlet

problem. Christoffel was interested in the theory of invariants. He wrote six papers on this topic. He wrote
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important papers which contributed to the development of the tensor calculus of C G Ricci-Curbastro and Tullio

Levi-Civita. The Christoffel symbols Γi
jk which he introduced are fundamental in the study of tensor analysis.

The Christoffel reduction theorem, so named by Klein, solves the local equivalence problem for two quadratic

differential forms. His influence is clearly seen since this allowed Ricci-Curbastro and Levi-Civita to develop a

coordinate free differential calculus which Einstein, with the help of Grossmann, turned into the tensor analysis

mathematical foundation of general relativity.

Definition 3.13 A smooth curve γ : [a, b] // M which satisfies

ẍi(t) +
d∑

j,k=1

Γi
jk(x(t))ẋj(t)ẋk(t) = 0

for 1 ≤ i ≤ d is called a geodesic.

One can show that geodesics with minimal energy also minimize the length.
Hence, one can use geodesics to make a Riemannian manifold M into a metric
space by defining the distance between two points p, q ∈M to be

d(p, q) = inf{L(γ) | γ : [a, b] // M piecewise smooth with γ(a) = p, γ(b) = q}

and using connectivity of M one can show that this function is always defined.
One can show that this distance function satisfies all the requirements of a metric
and that the topology on M induced by this distance function coincides with the
original manifold topology of M . Finally observe that geodesics are important
in physics as particles have the tendency to move along paths minimizing their
energy.

3.2 Vectorfields, forms and tensors.

In this subsection we will recall some standard definitions and constructions of
vectorbundlse taking the tangentbundle TM as a basic example.

Definition 3.14 Let (E, π,M) be a vectorbundle. A section of E is a differen-
tiable map

E
s // M

with π ◦ s = idM . The space of sections of E is denoted by Γ(E).

A section of the tangentbundle TM is called a vectorfield on M . It assigns to
each point p a tangentvector to M at p in a smooth way.
We can generalize most constructions from vector spaces to vectorbundles by
performing them fiberwise.
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Definition 3.15 Let (E1, π1,M) and (E2, π2,M) be vectorbundles over M . A
differentiable map

E1
f // E2

is called a bundle homomorphism if f is fibre preserving, that is, if π2 ◦ f = π1

and the fiber maps

E1,p
fp // E2,p

are linear.

Definition 3.16 Let (E, π,M) be a vectorbundle of rank n and E ′ ⊂ E. (E ′, π |
E ′,M) is a subbundle of E if for every p ∈M there is a bundle chart (φ, U) of
E with p ∈ U such that

φ(π−1(U) ∩ E ′) = U × Rm ⊂ U × Rn

Definition 3.17 Let (E1, π1,M) and (E2, π2,M) be vectorbundles over M . One
can construct the following vectorbundles :

1. The tensor productbundle (E1⊗E2, π1⊗π2,M) having as fibers E1,p⊗E2,p.
Recall that if V and W are vectorspaces of dimension m and n with basis
{v1, . . . , vm} resp. {w1, . . . , wn}, then V ⊗W is the vectorspace of dimension
mn spanned by the basis {vi ⊗ wj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

2. The dual bundle (E∗
i , π

∗,M) having as fibers the dual space E∗
i,p. Recall that

if V is a vectorspace of dimension m with basis {v1, . . . , vm}, then V ∗ is the
vectorspace of dimension m spanned by the linear maps {f1, . . . , fm} where
fi : V // R satisfy fi(vj) = δij.

In particular, the dual bundle of TM is denoted with T ∗M and is called the
cotangentbundle of M . Sections of T ∗M are called 1-forms on M .
If in local coordinates TpM has basevectors ∂

∂xi
, then T ∗pM has basevectors dxi.

If f is a coordinate change, then a tangentvector v =
∑

i vi
∂

∂xi
is transformed to

f∗(v) =
∑
i,j

vi
∂fj

∂xi

∂

∂fj

whereas a cotangentvector η =
∑
ηidxi is transformed to

f ∗(η) =
∑
i,j

ηi
∂xi

∂fj

dfj

because in this case we have

f ∗(η)f∗(v) =
∑
i,j,k

ηj
∂xj

∂fk

vi
∂fk

∂xi

=
∑

i

ηivi = η(v)
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Definition 3.18 A p times contravariant and q times covariant tensor field on
M is a section of the vectorbundle

TM ⊗ . . .⊗ TM︸ ︷︷ ︸
p

⊗T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
q

Under a coordinate change f such a tensor field is transformed p times by the
matrix (df) and q times by the matrix (df−1)τ .

For example, A Riemannian metric is a two times covariant tensorfield on M
which is symmetric and positive definite, hence a section of T ∗M ⊗ T ∗M and we
can therefore write the metric in local coordinates as∑

i,j

gij(x)dxi ⊗ dxj

Recall that if V is an m-dimensional vectorspace with basis {v1, . . . , vm} then the
p-th exterior product of V

∧p V = V ∧ . . . ∧ V︸ ︷︷ ︸
p

is the subvectorspace of ⊗p
i=1V consisting of anti-symmetric tensors. That is, if

σ ∈ Sp the symmetric group on p letters then σ acts on ⊗p
i=1V via

σ(u1 ⊗ u2 ⊗ . . .⊗ um) = uσ(1) ⊗ uσ(2) ⊗ . . .⊗ uσ(m)

and a p-tensor w ∈ ⊗p
i=1V is said to be anti-symmetric if σ(w) = sgn(σ)w where

sgn(w) = ±1 the sign of the permutation. One can show that a basis of ∧p V is
given by the tensors

vi1 ∧ vi2 ∧ . . . ∧ vip

for all 1 ≤ i1 < i2 < . . . < ip ≤ m where this expression stands for the p-tensor∑
σ∈Sp

sgn(σ)vσ(i1) ⊗ . . .⊗ vσ(ip)

Therefore, the dimension of the vectorspace ∧p V is

(
m
p

)
.

The vectorbundle over M with fibres ∧p T ∗pM will be denoted by ∧p(M). The
space of its sections will be denoted as

Γ(∧p(M)) = Ωp(M)

and its elements are called p-forms on M . In local coordinates a p-form is a sum
of terms of the form

ω(x) = η(x)dxi1 ∧ . . . ∧ dxip
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Thus, a p-form assigns to each point p ∈M an alternating p-linear map

ωp : TpM × . . .× TpM // R

We have two important operations on ∧p T ∗pM . For any η ∈ T ∗pM there is a map

∧pT ∗pM
ε(η) // ∧p+1 T ∗pM

determined by ε(η)(ω) = η ∧ ω. On the other hand, for any tangent vector
v ∈ TpM we have a map

∧p T ∗pM
i(v) // ∧p−1 T ∗pM

determined by
i(v)(ω)(v1, . . . , vp−1) = ω(v, v1, . . . , vp−1)

for all vi ∈ TpM .

Definition 3.19 The exterior derivative

Ωp(M) d // Ωp+1(M)

is defined by linearly extending the formula

d(η(x)dxi1 ∧ . . . ∧ dxip) =
d∑

j=1

∂η(x)

∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxip

Exercise 3.20 Prove that for ω ∈ Ωp(M) and θ ∈ Ωq(M) we have

d(ω ∧ θ) = d(ω) ∧ θ + (−1)pqω ∧ d(θ)

Moreover, show that
d ◦ d = 0

If M
f // N is a differentiable map and

ω(z) = η(z)dzi1 ∧ . . . ∧ dzip ∈ Ωp(N)

is a p-form on N , then we can pull it back to a p-form on M by the rule

f ∗(ω)(x) =
∑

j1,...,jp

η(f(x))
∂fi1

∂xj1

dxj1 ∧ . . . ∧
∂fip

∂xjp

dxjp

Exercise 3.21 Show that the pull back is compatible with exterior derivative

d(f ∗(ω)) = f ∗(d(ω))

When applied to a coordinate transformation f this shows in particular that the
definition of d is independent of the choice of local coordinates.
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Georges de Rham
Born : 10 september 1903 in Roche (Switserland)
Died : 9 october 1990 in Lausanne (Switserland)

From 1926 he studied in Paris for his doctorate, spending the winter term of 1930/31 at the University of

Göttingen. He was awarded his doctorate from Paris in 1931 and became a lecturer at the University of

Lausanne. There he was promoted to extraordinary professor in 1936 and to full professor in 1943. He retired

and was given an honorary appointment by Lausanne in 1971. Raoul Bott describes the context of de Rham’s

famous theorem:- ”In some sense the famous theorem that bears his name dominated his mathematical life, as

indeed it dominates so much of the mathematical life of this whole century. When I met de Rham in 1949 at

the Institute in Princeton he was lecturing on the Hodge theory in the context of his ’currents’. These are the

natural extensions to manifolds of the distributions which had been introduced a few years earlier by Laurent

Schwartz and of course it is only in this extended setting that both the de Rham theorem and the Hodge

theory become especially complete. The original theorem of de Rham was most probably believed to be true

by Poincaré and was certainly conjectured (and even used!) in 1928 by E Cartan. But in 1931 de Rham set out

to give a rigorous proof. The technical problems were considerable at the time, as both the general theory of

manifolds and the ’singular theory’ were in their early formative stages.”

3.3 de Rham cohomology

Let M be a differential manifold of dimension d, then we have a complex

0 // Ω0(M)
d // Ω1(M)

d // . . .

. . . d // Ωp(M) d // Ωp+1(M)
d // . . .

. . . d // Ωd(M)
d // 0
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satisfying d ◦ d = 0. A p-form α ∈ Ωp(M) is said to be closed if dα = 0 and is
said to be exact if there exists η ∈ Ωp−1(M) such that dη = α.
On the closed forms one defines an equivalence relation by calling two forms
α, β ∈ Ωp(M) cohomologous if α− β is exact.

Definition 3.22 The set of equivalence classes of closed forms in Ωp(M) is a
vector space over R called the p-th de Rham cohomology group and denoted
by

Hp
dR(M,R) or, usually, Hp(M)

Therefore,

Hp
dR(M,R) =

Ker Ωp(M) d // Ωp+1(M)

Im Ωp−1(M)
d // Ωp(M)

One can show that for a compact differentiable manifold, all cohomology groups
Hp

dR(M,R) are finite-dimensional vectorspaces. The dimension

bp(M) = dim Hp
dR(M,R)

is called the p-th Betti number of M and is an important numerical invariant
of the manifold M .

Enrico Betti
Born : 21 october 1823 in Pistoia (Italy)
Died : 11 august 1892 in Pisa (Italy)

Enrico Betti is noted for his contributions to algebra and topology. Betti studied at the University of Pisa, later

was to become a professor (1857) and rector there and director of its teacher’s college. Under his leadership the

Scuola Normale Superiore in Pisa became the leading Italian center for mathematical research and mathematical
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education. Betti is noted for his contributions to algebra and topology. His early work is in the area of equations

and algebra. Betti extended and gave proofs relating to the algebraic concepts of Evariste Galois. These had

been previously given without proofs. Betti thus made an important contribution to the transition from classical

to modern algebra. He published this in several works starting in 1851. He was the first to give a proof that

the Galois group is closed under multiplication. In 1854 Betti showed that the quintic equation could be solved

in terms of integrals resulting in elliptic functions. Bernhard Riemann arrived in Pisa in 1863. Influenced

by his friend Bernhard Riemann, Betti did important work in theoretical physics, in particular in potential

theory and elasticity. Riemann inspired Betti’s memoir on topology which Betti had neglected for 40 years.

Before we can define extra structure on these cohomology groups, we have to
recall some facts from linear algebra.

Let V be a real vectorspace of dimension d equipped with an inproduct 〈., .〉 and
let ∧p V be the p-th exterior product of V . We then obtain an inproduct on ∧p V
by the rule

〈v1 ∧ . . . ∧ vp, w1 ∧ . . . ∧ wp〉 = det (〈vi, wj〉)i,j

and extend this bilinearly to ∧p V .
Thus, if e1, . . . , ed is an orthogonal basis of V , then

ei1 ∧ . . . ∧ eip with 1 ≤ i1 < i2 < . . . < ip ≤ d

is an orthogonal basis for ∧p V .
An orientation on V is the choice of a distinguished basis of V . Any other basis
that is obtained from this basis by a basechange with positive determinant is
called positive, and the other bases are called negative.
If we give V an orientation, we can define the linear star operator

∧p V
∗ // ∧d−p V

by defining for all 0 ≤ p ≤ d

∗(ei1 ∧ . . . ∧ eip) = ej1 ∧ . . . ejd−p

where j1, . . . , jd−p is selected such that

{ei1 , . . . , eip , ej1 , . . . , ejd−p
}

is a positive basis of V .
For example we have if e1, . . . , ed is a positive basis of V that

∗(1) = e1 ∧ . . . ∧ ed

∗(e1 ∧ . . . ∧ ed) = 1

Lemma 3.23 We have that ∗∗ = (−1)p(d−p) on ∧p V .
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Proof. By definition we know that

∗ ∗ (ei1 ∧ . . . ∧ eip) = ±ei1 ∧ . . . ∧ eip

depending on whether or not ej1 , . . . , ejd−p
, ei1 , . . . , eip is a positive basis of V

where ej1 ∧ . . . ∧ ejd−p
is the ∗(ei1 ∧ . . . ∧ eip). Observe that

(−1)p(d−p)ej1 ∧ . . . ∧ ejd−p
∧ ei1 ∧ . . . eip =

ei1 ∧ . . . ∧ eip ∧ ej1 ∧ . . . ejd−p

�

Exercise 3.24 Show that for all v, w ∈ ∧p V we have

〈v, w〉 = ∗(w ∧ ∗v) = ∗(v ∧ ∗w)

Hint : verify it on wedges of an orthonormal basis of V .
If {v1, . . . , vd} is an arbitrary positive basis of V show that

∗(1) =
1√

det (〈vi, vj〉)i,j

v1 ∧ . . . vd

A manifold M is said to be oriented if we may select on orientation on all the
tangents spaces Tp M in a consistent manner (see later for a formal definition in
terms of structure groups of vectorbundles).
We now suppose that M is a compact oriented Riemannian manifold of dimension
d. Because of the Riemannian structure we have an inproduct on each T ∗p M given
by (gij(x)) = (gij(x))

−1. By the orientability of M we have a consistent choice of
orientation on all the cotangent spaces T ∗p M . Therefore, we have a star operation

∧p(T ∗p M) ∗ // ∧d−p(T ∗p M)

and we have in local coordinates

∗(1) =
√
det(gij)dx1 ∧ . . . ∧ dxd

which is called the volume form on M .
Hence, we have a star operation on the sections

Ωp(M) ? // Ωd−p(M)

On Ωp(M) we can define a bilinear and positive definite form by taking for α, β ∈
Ωp(M)

(α, β) =

∫
M

〈α, β〉 ∗ (1) =

∫
M

α ∧ ∗(β)
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This form allows us to define operators

Ωp(M) δ // Ωp−1(M)

by declaring that it should be formally adjoint to the exterior derivative d. That
is, we require for all α ∈ Ωp−1(M) and β ∈ Ωp(M) that

(dα, β) = (α, δβ)
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Pierre-Simon Laplace
Born : 28 march 1749 in Beaumont-en-Auge (France)
Died : 5 march 1825 in Paris (France)

Pierre-Simon Laplace proved the stability of the solar system. In analysis Laplace introduced the potential

function and Laplace coefficients. He also put the theory of mathematical probability on a sound footing.

Laplace attended a Benedictine priory school in Beaumont between the ages of 7 and 16. At the age of 16 he

entered Caen University intending to study theology. Laplace wrote his first mathematics paper while at Caen.

At the age of 19, mainly through the influence of d’Alembert, Laplace was appointed to a chair of mathematics

at the Ecole Militaire in Paris on the recommendation of d’Alembert. In 1773 he became a member of the

Paris Academy of Sciences. In 1785, as examiner at the Royal Artillery Corps, he examined and passed the

16 year old Napoleon Bonaparte. Laplace became Count of the Empire in 1806 and he was named a marquis

in 1817 after the restoration of the Bourbons. In his later years he lived in Arcueil, where he helped to found

the Societe d’Arcueil and encouraged the research of young scientists. Laplace discovered the invariability of

planetary mean motions. In 1786 he proved that the eccentricities and inclinations of planetary orbits to each

other always remain small, constant, and self-correcting. These results appear in his greatest work, ”Traité du

Mécanique Céleste” published in 5 volumes over 26 years (1799-1825). Laplace also worked on probability and

in particular derived the least squares rule. He also worked on differential equations and geodesy. In analysis

Laplace introduced the potential function and Laplace coefficients. He also put the theory of mathematical

probability on a sound footing. With Antoine Lavoisier he conducted experiments on capillary action and

specific heat. He also contributed to the foundations of the mathematical science of electricity and magnetism.

Definition 3.25 The Laplace-Beltrami operator on Ωp(M) is defined to be

∆ = dδ + δd : Ωp(M) // Ωp(M)

A p-form ω ∈ Ωp(M) is called harmonic provided that ∆(ω) = 0.
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Lemma 3.26 α ∈ Ωp(M) is harmonic if and only if

dα = 0 and δα = 0

Proof. Observe that

(∆α, α) = (dδα, α) + (δdα, α) =

= (δα, δα) + (dα, dα)

Both terms are positive and vanish only if dα = 0 resp. δα = 0. The other
implication is obvious. �

Exercise 3.27 Prove that ∆ is selfadjoint, that is,

(∆α, β) = (α,∆β)

for all α, β ∈ Ωp(M).

Eugenio Beltrami
Born : 16 november 1835 in Cremona (Italy)
Died : 4 june 1899 in Rome (Italy)

Eugenio Beltrami studied at Pavia (1853-56), then Milan, before being appointed to the University of Bologna

in 1862 as a visiting professor of algebra and analytic geometry. In 1866 he was appointed professor of rational

mechanics. Beltrami also worked at universities in Pisa, Rome, and Pavia. Influenced by Cremona, Lobachevsky,

Gauss and Riemann, Beltrami contributed to work in differential geometry on curves and surfaces. He is best

known, however, for his 1868 paper ”Essay on an interpretation of non-euclidean geometry” which gives a

concrete realization of the non-euclidean geometry of Lobachevsky and Bolyai and connects it with Riemann’s

geometry. The concrete realization uses the surface generated by the revolution of a tractrix about its asymptote.
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Beltrami also worked on optics, thermodynamics, elasticity, electricity and magnetism. His contributions to these

topics appeared in the four-volume work, ”Opere Matematiche” (1902-20).

We now turn to implications of the above to de Rham cohomology. Define a
bilinear map

Hp
dR(M,R)×Hd−p

dR (M,R) // R

by the formula

(ω, η) 7→
∫

M

ω ∧ η

for representatives ω, η in the cohomology classes. One can show that this defini-
tion is independent of these choices and that it defines a non-degenerate bilinear
form. Therefore,

Hp
dR(M,R) ' (Hd−p

dR (M,R))∗

and we obtain Poincaré-duality for a compact oriented differentiable manifold
of dimension d

bp(M) = bd−p(M)

Moreover, for such a manifold we have b0(M) = bd(M) = 1. This follows from the
fact that every cohomology class in Hp

dR(M,R) contains precisely one harmonic
form and we have seen before that harmonic functions are constant.

Jules Henri Poincaré
Born : 29 april 1854 in Nancy (France)
Died : 17 july 1912 in Paris (France)

Henri Poincaré entered the Ecole Polytechnique in 1873 and continued his studies at the Ecole des Mines, as a

student of Charles Hermite, from which he received his doctorate in mathematics in 1879. He was appointed to a
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chair of mathematical physics at the Sorbonne in 1881, a position he held until his death. Before the age of 30 he

developed the concept of automorphic functions which he used to solve second order linear differential equations

with algebraic coefficients. His ”Analysis situs” , published in 1895, is an early systematic treatment of topology.

Poincaré; can be said to have been the originator of algebraic topology and of the theory of analytic functions

of several complex variables. He also worked in algebraic geometry and made a major contribution to number

theory with work on Diophantine equations. In applied mathematics he studied optics, electricity, telegraphy,

capillarity, elasticity, thermodynamics, potential theory, quantum theory, theory of relativity and cosmology. He

is often described as the last universalist in mathematics. The Poincaré conjecture is as one of the most baffling

and challenging unsolved problems in algebraic topology. Homotopy theory reduces topological questions to

algebra by associating with topological spaces various groups which are algebraic invariants. Poincaré introduced

the fundamental group to distinguish different categories of two-dimensional surfaces. He was able to show that

any 2-dimensional surface having the same fundamental group as the two-dimensional surface of a sphere is

topologically equivalent to a sphere. He conjectured that the result held for 3-dimensional manifolds and

this was later extended to higher dimensions. Surprisingly proofs are known for the equivalent of Poincaré’s

conjecture for all dimensions strictly greater than 3. No complete classification scheme for 3-manifolds is known

so there is no list of possible manifolds that can be checked to verify that they all have different homotopy

groups.
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4 Lie groups

Rather than studying all vectorbundles on a differentiable manifold one restricts
attention to families having the same local symmetry or structure group. These
symmetry groups which are also very important in particle physics are Lie groups.

Marius Sophus Lie
Born : 17 december 1842 in Nordfjordeid (Norway)
Died : 18 february 1899 in Kristiania (Norway)

Lie was taught mathematics at school by Sylow and then attended Sylow’s lectures on group theory at the

University of Christiania from where he graduated in 1865 (not gaining a distinction). There followed a few

years when he could not decide what career to follow. A turning point came in 1868 when he read papers on

geometry by Poncelet and Plücker. In 1869 Lie went to Berlin where he met Felix Klein. They met again in Paris

and Lie started to work on transformation groups. He was to collaborate later with Klein in publishing several

papers. This joint work had as one of its outcomes Klein’s characterization of geometry (1872) as properties

invariant under a group action. While in Paris Lie discovered contact transformations. These transformations

allowed a 1-1 correspondence between lines and spheres in such a way that tangent spheres correspond to

intersecting lines. Because of the French-German war of 1870 both Klein and Lie left France, Lie deciding to go

to Italy. On the way however he was arrested as a German spy and his mathematics notes were assumed to be

coded messages. Only after the intervention of Darboux was Lie released and he decided to return to Christiania.

In 1871 Lie became an assistant at Christiania (which became Kristiania then Oslo in 1925) and obtained his

doctorate. Lie had started examining partial differential equations, hoping that he could find a theory which

was analogous to Galois theory of equations. He examined his contact transformations considering how they

affected a process due to Jacobi of generating further solutions from a given one. This led to combining the

transformations in a way that Lie called a group, but which is not a group with our definition, rather what is

today called a Lie algebra. At this point he left his original intention of examining partial differential equations

and examined Lie algebras. Killing was to examine Lie algebras quite independently of Lie, and Cartan was
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to publish the classification of semisimple Lie algebras in 1900. Lie collaborated for nine years with Engel

after which Lie and Engel jointly published ”Theorie der Transformationsgruppen” in three volumes in 1893.

This was Lie’s major work on continuous groups of transformations. Engel was a student of Klein’s sent by

him to study under Lie. In 1886 Lie succeeded Klein in the chair of mathematics at Leipzig with Engel as his

assistant. In 1892 the lifelong friendship between Lie and Klein broke down and the following year Lie publicly

attacked Klein saying ”I am no pupil of Klein, nor is the opposite the case, although this might be closer to the

truth.” Lie returned to Kristiania in 1898 to take up a post specially created for him but his health was already

deteriorating and he died soon after taking up the post.

4.1 Lie groups and Lie algebras.

Definition 4.1 A Lie group is a group G carrying the structure of a differen-
tiable manifold, or more generally, of a disjoint union of finitely many differen-
tiable manifolds for which the following maps are differentiable : the multiplica-
tion

G×G // G (g, h) 7→ g.h

and the inverse

G // G g 7→ g−1

Most of the Lie groups we will encounter are linear algebraic groups. We will
describe some of the easier ones here. Throughout, V will be a vectorspace
of dimension n. The general linear group GL(V ) is the group of all linear
isomorphisms of V . If we fix a basis V = Rn we will often write GLn(R).
If V is equipped with an inproduct 〈., .〉 we define the orthogonal group

O(V ) = {A ∈ GL(V ) | 〈Av,Av〉 = 〈v, v〉 for all v ∈ V }

If the inproduct is given by the symmetric matrix Q we see that O(V ) consists of
those A ∈ GL(V ) such that AτQA = Q. In particular, it follows that det A2 = 1
for all A ∈ O(V ). Hence, O(V ) is not a differentiable manifold because it is not
connected. It has two connected component (the matrices with determinant one
SO(V ) which form the special orthogonoal group and those with determinant
−1). If we fix V = Rn with the standard Euclidian product then we denote On(R)
resp. SOn(R).
Because the connected component G0 of the identity element e of G is a differ-
entiable manifold, we can look at the tangent space g = Te G0. This turns out
to be a Lie algebra.

Definition 4.2 A Lie algebra (over R) is a real vectorspace W equipped with
a bilinear map

[., .] : W ×W // W

the Lie bracket which is anti-symmetric and satisfies the Jacobi identity

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for all u, v, w ∈ W
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For the Lie groups considered above, we have that gl(V ) is Mn(R) (because
GL(V ) is an open subset of the affine space Mn(R) so the tangentspace coincides
with Mn(R)) and the Lie bracket is given by

[a, b] = a.b− b.a for all a, b ∈Mn(R)

The Lie algebra so(V ) of SO(V ) is given by

{a ∈ gl(V ) | 〈av, w〉+ 〈v, aw〉 = 0 for all v, w ∈ V }

the space of skew-symmetric endomorphisms of V . If we fix the Euclidian product
on V = Rn we will denote this Lie algebra with son(R).
The relation between the Lie algebra and its Lie group is given by the exponential
map which is

ea = Id+ a+
1

2!
a2 +

1

3!
a3 + . . .

and clearly we have eae−a = Id whence ea ∈ GL(V ) for every a ∈ gl(V ). Sim-
ilarly, as the inproduct on V in nondegenerate, for every a ∈ gl(V ) one has an
adjoint a∗ determined by

〈av, w〉 = 〈v, a∗w〉 for all v, w ∈ V

and we have that a ∈ so(V ) if and only if a = −a∗. But then, for a ∈ so(V ) we
have

(ea)∗ = id+ a∗ +
1

2!
(a∗)2 + . . . = id− a+

1

2!
a2 + . . . = (ea)−1

whence ea ∈ SO(V ).

Sometimes, we need complex vectorspaces. Let VC be a vectorspace over C
of dimension n and let GL(VC) be the group of all complex linear isomorphisms.
If we fix VC = Cn, then we write GLn(C). Clearly, GL(V ) is a manifold of
dimension 2n2.
If VC is equipped with an Hermitian inproduct 〈., .〉 we define the unitary group

U(VC) = {A ∈ GL(VC) | 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ VC}

and the special unitary group SU(V ) to be the subgroup of U(V ) of matrices
with determinant one. If we fix VC = Cn with the standard Hermitian product
we write Un(C) and SUn(C).

4.2 Structure groups and bundles.

Let us consider again a vectorbundle of rank n over M

(E, π,M)
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and let (Uα)α be an open covering of M over which the bundle is trivial and fix
corresponding local trivializations

π−1(Uα)
φα // Uα × Rn

then we obtain transition maps

Uα ∩ Uβ
φαβ // GLn(R)

defined by for p ∈M and v ∈ Rn

φβ ◦ φ−1
α (p, v) = (p, φαβ(p)v)

These transition maps satisfy the following properties

φαα(p) = idRn for p ∈ Uα

φαβ(p)φβα(p) = idRn for p ∈ Uα ∩ Uβ

φαγ(p)φγβ(p)φβα(p) = idRn for p ∈ Uα ∩ Uβ ∩ Uγ

Conversely, given transition maps satisfying these conditions we can (re)construct
a vectorbundle of rank n over M .

Proposition 4.3 Consider on the disjoint union
⋃

α Uα × Rn the equivalence
relation

(p, v) ∼ (q, w) iff p = q and w = φβα(v)

when p ∈ Uα, q ∈ Uβ and v, w ∈ Rn. Then, the set of equivalence relations

E =
⋃
α

Uα × Rn/ ∼

is a vectorbundle of rank n over M .

Proof. Exercise ! Check the properties required in the definition of a vector-
bundle. �

Definition 4.4 Let G be a subgroup of GLn(R). We say that a vectorbundle has
structure group G if there exists an atlas of bundle charts for which all the
transition maps have their values in G.

Proposition 4.5 The tangent bundle TM of a Riemannian manifold of dimen-
sion d has structure group Od(R).
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Proof. Let (f, U) be a bundle chart for TM

π−1(U)
f // U × Rd

Let e1, . . . , ed be the canonical basis vectors of Rd and consider sections v1, . . . , vd

of π−1(U) such that f(vi(p)) = (p, ei) for all i. Apply the Gramm-Schmidt
orthogonalization procedure to {v1(p), . . . , vd(p)} for all p ∈ U to obtain sections
{w1, . . . , wd} of π−1(U) such that {w1(p), . . . , wd(p)} are an orthonormal basis
with respect to the Riemannian metric on Tx M for every p ∈ U . We can now
construct a new bundlechart

π−1(U)
f ′ // U × Rd

by sending
∑
λiwi(p) to (p, λ1, . . . , λd). We then get a bundle chart which maps

for every p ∈ U an orthonormal basis for the Riemannian metric onto an Euclidian
orthonormal basis of Rd.
We apply this procedure to every bundle chart to obtain a new bundle atlas whose
transition maps always map an Euclidian orthonormal basis of Rd into another
such basis, whence the transition maps are in Od(R). �

Definition 4.6 A manifold is said to be oriented provided the tangent bundle
has a bundle atlas such that all the transition maps have positive determinant.

Proposition 4.7 The tangent bundle of an oriented Riemannian manifold of
dimension d has structure group SOn(R).

Proof. Combine the above proof with the definition of orientability. �

Analogous to the definition of a vectorbundle where the fibers are vectorspaces
we can define a principal bundle as one where the fibers are all a fixed Lie group.

Definition 4.8 Let G be a Lie group. A principal G-bundle consists of a base
M which is a differentiable manifold, a total space of the bundle P which is a
differentiable manifold and a differentiable projection

P
π // M

We have an action of G on P satisfying the following properties.

1. G acts freely on P from the right, that is, p.g 6= p if e 6= g ∈ G. The
G-action then defines an equivalence relation on P : p ∼ q iff there exists
g ∈ G such that p.g = q.
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2. M is the quotient of P under this equivalence relation and the bundle pro-
jection π maps p to its equivalence class. Each fiber π−1(x) can then be
identified to G.

3. For every x ∈M there is an open neighborhood U and a diffeomorphism

π−1(U)
φ // U ×G

which is G-equivariant, that is, if φ(p) = (π(p), ψ(p)) then φ(p.g) =
(π(p), ψ(p).g) for all g ∈ G.

A subgroup H is called the structure group of the principal bundle P if all
transition maps take their values in H. Here, the structure group operates on G
by left translations.

Principal bundles and vectorbundles are closely related. Given a principal G-
bundle P // M and a vectorspace V on which G acts from the left, we will
construct an associated vectorbundle E // M with fiber V .
There is an action of G on P × V by the rule

(p, v).g = (p.g, g−1.v)

which is clearly free. If we divide out this action, that is, if we identify (p, v) and
(p, v).g we obtain the situation

E = P ×G V = (P × V )/G
pr1 // P/G = M .

This is a vectorbundle with fibers isomorphic to V and with structure group G.
The transition functions for P also give transition functions for E via the left
action of G on V .
Conversely, given a vectorbundle E // M with structure group G, we can
construct the principal bundle P of admissible bases of E as the quotient
space

P =
⋃
α

Uα ×G/ ∼

where two points are equivalent (xα, gα) ∼ (xβ, gβ) if and only if x = xα = xβ

on Uα ∩ Uβ and gβ = φβα(x)gα. In a local trivializations Uα each fiber of E is
identified with Rn and each admissible basis is represented by a matrix contained
in G.

Example 4.9 If we have a vectorbundle E on M with structure group SOd(R)
(for example, the tangent bundle when M is an oriented manifold of dimension
d), then the associated principal SOd(R)-bundle is the frame bundle of E, that
is the bundle of oriented orthonormal bases for the fibres of E.
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4.3 Fundamental group and covers.

Let M be a connected manifold. A path in M is a continuous map

[0, a] c // M

for a ≥ 0. A path is called a loop if c(0) = c(a) ∈ M , this point is then called
the base point of the loop. The inverse of a path c is the path

[0, a] c−1
// M

where c−1(t) = c(a− t).

For two paths [0, ai]
ci // M with c2(0) = c1(a1) we define the product c =

c1.c2 (or concatenation) to be the path

[0, a1 + a2]
c // M

where

c(t) =

{
c1(t) for 0 ≤ t ≤ a1

c2(t− a1) for a1 ≤ t ≤ a1 + a2

We call two paths [0, ai]
ci // M with c1(0) = c2(0) and c1(a1) = c2(a2) homo-

topic if there exists a continuous function

[0, 1]× [0, 1]H // M

with

H(t, 0) = c1(
t

a1

)

H(t, 1) = c2(
t

a2

) for all t

H(0, s) = c1(0) = c2(0)

H(1, s) = c1(a1) = c2(a2) for all s

This defines an equivalence relation on the set of all paths and we will denote
the equivalence class of path c by | c |. One verifies that | c1.c2 | and | c−1 | are
independent of the choice of representative. Therefore, we can define

| c1.c2 | =| c1 | . | c2 |
| c−1 | =| c |−1

In particular, the homotopy classes of loops with fixed basepoint p ∈ M form a
group

π1(M, p)
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the fundamental group of M with basepoint p.

If p, q ∈ M and [0, 1]
γ // M is a path with γ(0) = p and γ(1) = q, then for

every loop c with basepoint q we have that γ−1.c.γ is a loop with basepoint p
and this induces an isomorphism between the groups π1(M,a) and π1(M, q). We
may thus speak of the fundamental group π1(M) of the manifold M .

Example 4.10 1. π1(Rn) = {1} for all n.

2. π1(S
1) = Z and a generator is given by the loop [0, 1] c // S1 where

c(t) = (cos 2πt, sin 2πt)

3. π1(S
n) = {1} for all n ≥ 2.

4. π1(SOn(R)) = Z/2Z for all n ≥ 3.

A manifold is said to be simply connected if π1(M) = {1}. Any continuous map

M
f // N induces a morphism π1(M)

f∗ // π1(N) between the fundamental
groups.

A continuous map X
π // M is called a cover if each p ∈M has an open neigh-

borhood U such that each connected component of π−1(U) is mapped homeomor-
phically onto U .

If p ∈M and H is a subgroup of π1(M, p), then there exists a cover X
π // M

with the property that for any x ∈ X lying over p we have π∗(π1(X, x)) = H. In
particular, if we choose H = {1}, we obtain a simply connected manifold M̃ and
a cover

M̃
π // M

M̃ is called the universal cover of M .

Example 4.11 The universal cover of S1 is R1 and the covering map π is given
by

π(t) = (cos 2πt, sin 2πt)

We will show in some detail that SU2(C) is the universal cover of SO3(R).
By definition SU2(C) is the group of 2 × 2 special unitary matrices with deter-
minant one. If

P =

[
a b
c d

]
with a, b, c, d ∈ C

then the requirements P−1 = P ∗ (P ∗ is the conjugate transpose) and det P = 1
translate into

a = d and b = −c
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That is,

P =

[
a b

−b a

]
and the condition that det P = 1 give the condition

aa+ bb = 1

or equivalently, P is fully determined by a vector (a, b) ∈ C2 of length one. If
we write a, b in terms of their real and imaginary parts, then the above condition
translates into

x2
1 + x2

2 + x2
3 + x2

4 = 1

that is the unit sphere in R4. Thus we have proved that

Proposition 4.12 SU2(C) is homeomorphic to S3 and is therefore a simply con-
nected manifold.

Recall that two elements g, h of a group G are said to be conjugated if there
exists an x ∈ G such that x−1gx = h. For SU2(C) we give a geometric inter-
pretation of the conjugacy classes. The matrices ±I2 correspond to the points
(±1, 0, 0, 0) ∈ S3 are can be viewed as the ’north and south poles’. Analogous to
the latitudes on S2 we have the sets

L(c) = {x1 = c and x2
2 + x2

3 + x2
4 = 1− c2}

for −1 < c < 1. Clearly each L(c) is a two-dimensional sphere S2 embedded in
R3.

Proposition 4.13 Apart from the classes ±I2, the conjugacy classes of SU2(C)
are the latitudes L(c).

Proof. The characteristic polynomial of the matrix P =

[
a b

−b a

]
is

X2 − (a+ a)X + 1 = X2 − 2x1X + 1

Two conjugated matrices have the same characteristic polynomial whence belong
to the same L(c). For c /∈ {1,−1} the polynomial has two distinct conjugate
roots {λ, λ} (the eigenvalues of the matrix).
For P ∈ SU2(C) we claim that P is conjugated to a matrix of the form[

λ 0

0 λ

]
From the theory of Hermitian forms we know that there is Q ∈ U2(C) such that
QPQ∗ is diagonal. Clearly, δ = det Q has absolute value one and if we take
ε =

√
δ then Q′ = εQ ∈ SU2(C) and also Q′PQ

′∗ is diagonal proving the claim.
�
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An element P ∈ SU2(C) acts on each of the conjugacy classes L(c) = S2 by
conjugation. One can show that these actions are given by rotations and that
this action gives a group epimorphism

SU2(C)
φ // SO3(R)

whose kernel is the center Z = {±I2} of SU2(C). This homomorphism is called
the orthogonal representation of SU2(C) and assigns to the complex matrix
P the real rotation matrix

φ(P ) =

 (aa− bb) i(ab− ab) (ab+ ab)

i(ab− ab) 1
2
(a2 + a2 + b2 + b

2
) i

2
(a2 − a2 − b2 + b

2
)

−(ab+ ab) i
2
(a2 − a2 + b

2 − b2) 1
2
(a2 + a2 − b2 − b

2
)


Proposition 4.14 SO3(R) is homeomorphic to P3(R) and has

π1(SO3(R)) = Z/2Z

whence the double cover SU2(C)
φ // SO3(R) is the universal cover.

Proof. Any rotation is fully determined by its axis of symmetry (determined
by a unit vector v ∈ R3) and by the rotation angle θ ∈ [0, π]. That is, a rotation
determines a point θv in the closed ball B3 in R3 with radius π. This correspon-
dence is not unique since a rotation about v through an angle π is the same as a
rotation through −v through an angle π. Thus, opposite points on the boundary
S2 of B3 must be identified giving a description of P3(R).
SO3(R) is not simply connected. The closed loops fall into two disjoint classes, I
and II, according as they have an odd or even number of ’intersections’ with the
boundary S2 of B3. An intersection occurs when a curve approaches S2 and then
by identification of points reappears diametrically opposite. Class I contains for
example all diameters of SO3(R) and class II contains all internal loops. No loop
of class I can be transformed continuously into a loop of class II since intersection
points with S2 can disappear in pairs only.
On the other hand, all class I loops can be deformed into each other because
intersections with S2 can be eliminated in pairs and the same holds for class II
loops. Finally, internal loops can be deformed into each other as can loops which
intersect the boundary once. �
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Now consider a continuous rotation of an object in R3 which takes that object
back to its original orientation. This corresponds to a closed loop in SO3(R)
which may be of class I or II. In the case of a single rotation through 2π we
evidently get a class I loop whereas for a rotation through 4π we get a class II
loop. Hence, a rotation through 2π (where the whole motion must be considered,
not just the initial and final orientations) cannot be continuously deformed into
no motion at all, whereas a rotation through 4π can.
In Dirac’s well known scissor problem a piece of string is passed through a
finger hole of the scissors, then around the back strut of a chair, then through the
other finger hole and around the other back strut, and then tied. The scissors are
rotated through 4π about their axis of symmetry and the problem is to disentangle
the string without rotating the scissors or moving the chair. The fact that this
problem can be solved for 4π but not for 2π is a consequence of the fact that
SO3(R) is not simply connected.

4.4 Spin structures.

The discussion above can be generalized to any n, that is, there exists a special
two-fold covering group of SOn(R) which is called the spin group Spinn and
which is important in the study of 3- and 4- dimensional manifolds. In this
subsection we will describe it briefly.

William Kingdom Clifford
Born : 4 may 1845 in Exeter (England)
Died : 3 march 1879 on the Madeira Islands (Portugal)
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William Clifford studied non-euclidean geometry arguing that energy and matter are simply different types of

curvature of space. He introduced what is now called a Clifford algebra which generalizes Grassmann’s exterior

algebra. William showed great promise at school where he won prizes in many different subjects. At age 15 he

was sent to King’s College, London where he excelled in mathematics and also in classics, English literature and

(perhaps unexpectedly) in gymnastics. When he was 18 years old William entered Trinity College, Cambridge.

He won not only prizes for mathematics but also a prize for a speech he delivered on Sir Walter Raleigh. He

was second wrangler in his final examinations (in common with many other famous mathematicians who were

second at Cambridge like Thomson and Maxwell). He was elected to a Fellowship at Trinity in 1868. In 1870 he

was part of an expedition to Italy to obtain scientific data from an eclipse. He had the unfortunate experience

of being shipwrecked near Sicily, but he was fortunate to survive. In 1871 Clifford was appointed to the chair of

Mathematics and Mechanics at University College London. In 1874 he was elected a Fellow of the Royal Society.

He was also an enthusiastic member of the London Mathematical Society which held its meetings at University

College. Influenced by the work of Riemann and Lobachevsky, Clifford studied non-euclidean geometry. In 1870

he wrote ”On the space theory of matter” in which he argued that energy and matter are simply different types

of curvature of space. In this work he presents ideas which were to form a fundamental role in Einstein’s general

theory of relativity. Clifford generalized the quaternions (introduced by Hamilton two years before Clifford’s

birth) to what he called the biquaternions and he used them to study motion in non-euclidean spaces and on

certain surfaces. These are now known as ’Clifford-Klein spaces’. He showed that spaces of constant curvature

could have several different topological structures. Clifford also proved that a Riemann surface is topologically

equivalent to a box with holes in it. He shared with Charles Dodgson the pleasure of entertaining children.

Although he never rivalled Dodgson’s Lewis Carroll books in success, Clifford wrote ”The Little People” , a

collection of fairy stories written to amuse children. In 1876 Clifford suffered a physical collapse. This was

certainly made worse by overwork if not completely caused by it. He would spend the day with teaching and

administrative duties, then spend all night at his research. Six months spent in Algeria and Spain allowed

him to recover sufficiently to resume his duties for 18 months but, perhaps inevitably, he again collapsed. A

period spent in Mediterranean countries did little for his health and after a couple of months back in England

in late 1878 he left for Madeira. The hoped for recovery never materialized and he died a few months later.
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Let V = Rn be Euclidian space with orthonormal basis {e1, . . . , en} then the
Clifford algebra Cl(V ) is the (non-commutative) algebra with generators ei

and defining relations

e2i = −1 and ejei = −eiej for i 6= j

One verifies that a basis of Cl(V ) as a real vector space is given by

e0 = 1 eα = eα1eα2 . . . eαk

with α = {α1, . . . , αk} ⊂ {1, . . . , n} and α1 < . . . < αk. For such an α we put
| α |= k and say that eα is an element of degree k.
Therefore, Cl(V ) has dimension 2n and declaring the above basis to be orthonor-
mal we obtain an inproduct on Cl(V ) extending the one on V . With Clk we
will denote the subspace of elements of degree k and with Clev and Clodd the
subspaces of even resp. odd degree.

Exercise 4.15 Show that Cl2 with the bracket

[a, b] = a.b− b.a multiplication in Cl(V )

is a Lie algebra of dimension

(
n
2

)
which will be denoted spinn.

Precisely as we obtained GLn(R) from Mn(R) by exponentiating the Lie algebra
gln, we can exponentiate spinn in the algebra Cl(V ) to obtain a Lie group Spinn.
To describe it concretely we first introduce an anti-automorphism a 7→ at of
Cl(V ) defined on the basis by

(eα1eα2 . . . eαk
)t = eαk

. . . eα2eα1

and extend it linearly, then one verifies that for all a, b ∈ Cl(V ) one has

(ab)t = btat

Definition 4.16 Spinn is the group of elements of Cl(V ) of the form

a = a1.a2. . . . .a2m with ai ∈ V and ‖ ai ‖= 1

for 1 ≤ i ≤ 2m with m ∈ N.

After a lot of computations one can prove the following result
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Theorem 4.17 There is an action of Spinn on V defined by

ρ(a)v = a.v.at

which defines a group epimorphism

Spinn
ρ // SOn(R)

with kernel {±1}. Moreover, Spinn is compact and connected and for dim V ≥ 3
it is also simply connected. Thus, for dim V ≥ 3, Spinn is the universal cover of
SOn(R).

Exercise 4.18 (not easy !) Prove the following isomorphisms

1. Spin2 ' U1(C) homeomorphic to S1.

2. Spin3 ' SU2(C) homeomorphic to S3.

3. Spin4 ' SU2(C)× SU2(C) homeomorphic to S3 × S3.

Sometimes we need the complex Clifford algebra

ClC(V ) = Cl(V )⊗R C

and the Lie group Spinc
n which is by definition the subgroup of the multiplicative

group of ClC(V ) generated by Spinn and the unit circle in C. There is an action
of Z/2Z on Spinc

n such that the quotient yields a double covering

Spinc
n

// SOn × S1

that is nontrivial on both factors.
This Lie group is no longer simply connected. In fact one can prove that

π1(Spin
c
n) = Z for n ≥ 3

and as above one has the following realizations in small dimensions

1. Spinc
2 ' U1(C)× U1(C) homeomorphic to the torus.

2. Spinc
3 ' U2(C).

3. Spinc
4 ' {(U, V ) ∈ U2(C)× U2(C) | det U = det V }.

For even dimensional V we can describe ClC(V ) as the full matrixalgebra of
linear endomorphisms of a certain complex vectorspace Sn, the spinor space.
To describe it let W be the (complex) subspace of V ⊗C spanned by the vectors

ηj =
1√
2
(e2j−1 − ie2j)
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for 1 ≤ j ≤ m where m = 2n. Then Sn is by definition the complex exterior
algebra of W . We have that

V ⊗ C = W +W

and an action of V ⊗ C on Sn defined by

ρ(w + w′)s =
√

2w ∧ s−
√

2i(w′)s

where v ∈ V ⊗ C is written as w + w′ and i(w′) is the interior product after
identifying W with the dual space W ∗. We extend ρ to an action of ClC(V ) on
Sn by the rule that ρ(ab) = ρ(a)ρ(b). Then one has

ClC(V ) ' EndC(Sn)

and the corresponding representation of Spinn ⊂ ClC(V ) is called the spinor
representation.

After these preliminaries, we can define spin structures on an oriented Rieman-
nian manifold M . Let TM be the tangent bundle of M which we have seen to
have structure group SOn(R). We let P be the associated principal bundle over
M , the so called frame bundle of M .

Definition 4.19 A spin structure on M is a principal bundle P̃ over M with
fiber Spinn for which the quotient of each fiber by the center ±1 is isomorphic to
the frame bundle P of M .
A Riemannian manifold with a fixed spin structure is called a spin manifold.

The existence of a spin structure depends on a topological condition, the vanishing
of the so called Stieffel-Whitney class. Moreover, if a spin structure exists it
need not be unique.
For a given spin structure P̃ // M , the fiber Spinn acts on the spinor space
n and hence we obtain the associated vector bundle

Sn = P̃ ×Spinn Sn

which is called the spinor bundle on M .
We can also ask for a lift of the frame bundle P to a principal Spinc

n-bundle P̃ c

where the requirement is that the map from a fiber of P̃ c to the corresponding
fiber of P is given by the homomorphism

Spinc
n

// SOn(R)

determined by the cover Spinc
n

// SOn(R)× S1 composed with projection on

the first factor.
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Definition 4.20 Such a principal Spinc
n-bundle P̃ c is called a spinc structure

on M . An oriented Riemannian manifold M equipped with a fixed spinc structure
is called a spinc manifold.

Again, the existence of a spinc structure is determined by a topological condition.
One has proved that this condition is satisfied for all oriented Riemannian man-
ifolds of dimension 4. Thus, each oriented differentiable four-manifold possesses
a spinc structure. Again, we have an associated spinor bundle Sc

n.
As SOn(R) acts on Cl(V ) and Clc(V ) by extending the action on Rn we also
have associated bundles

Cl(P ) = P ×SOn(R) Cl(Rn)

ClC(P ) = P ×SOn(R) Cl
C(Rn)

which are called the Clifford bundles on M .
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5 Connections.

Roughly speaking, a connection is a rule which allows us to take derivatives of
sections of vectorbundles. In order to understand the problem and its solution,
we will briefly consider the classical case.
Let X be a vectorfield on Rd, p ∈ Rd and V a vector at p. We want to analyze
how one takes a derivative of X at p in the direction V . The natural choice is

dX(V )(p) = lim
t→0

X(p+ tV )−X(p)

t

Recall that a vectorfield X is a section of the tangentbundle TRd. Thus,
X(p+ tV ) ∈ Tp+tV (Rd) while X(p) ∈ Tp(Rd) and the vectors hence lie in distinct
vectorspaces so in order for their difference to make sense we have to be able to
identify these spaces.
In Rd this is easy, and one can identify any Tx(Rd) with T0(Rd) ' Rd by identi-
fying the tangent vector ∂

∂xi
at x with ∂

∂xi
at O.

A geometric way to view this identification is to consider a curve

[0, 1] c // Rd

with c(t) = tx, that is, the straight line joining 0 and x. For any vector X1 at
x one forms a vector Xt at c(t) = tx having the same length and parallel to X1

that is making the same angle with c. X0 is then the vector which is identified
with X1.
On a differentiable manifold however there is no canonical way to identify tangent
spaces at different points, or more generally, fibers of vectorbundles at different
points. Thus we have to expect that a notion of derivative for sections of a
vectorbundle has to depend on certain choices.
Throughout, M will be a differentiable manifold and E will be a vectorbundle
over M . In analogy with the definition of p-forms on M we define p-forms on
M with values in E to be the space

Ωp(E) = Γ(∧p T ∗M ⊗ E)

That is, if φ ∈ Ωp(E), then for every p ∈M , φp is a p-linear alternating map

φp : TpM × . . .× TpM // Ep

Observe that Ω0(E) = Γ(E) and Ω1(E) = Γ(T ∗M ⊗ E).

Definition 5.1 A connection on E is a linear map

∇ : Ω0(E) // Ω1(E)
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satisfying the condition

∇(fφ) = df ⊗ φ+ f∇(φ)

for any f ∈ C∞(M) and any φ ∈ Ω0(E).

Given a section φ ∈ Ω0(E) = Γ(E), we have a linear map

∇(φ)p : TpM // Ep

Thus, for any tangent vector V at any point p ∈ M we are given the covariant
derivative ∇V (φ) ∈ Ep of φ in the direction V at p.
If V is a globally defined smooth vectorfield, that is V ∈ Γ(TM), then ∇V φ is
again a smooth section of E. That is, we have a linear map

∇V : Ω0(E) // Ω0(E)

The requirement can then be restated as

∇V (fφ) = (V f)φ+ f∇V (φ)

for all smooth vectorfields V and all φ, f as before.
Clearly, the differentiation of a vectorfield in Rd described before is a connection
if we take ∇V (X) = d(X)(V ).

Proposition 5.2 Let M be a differentiable manifold and E a vectorbundle on
M , then there exist connections on E.

Proof. Let p ∈M and choose an open neighborhood U admitting a chart of M
and a bundle chart of E, then we have an identification

E | U ' U × Rn

Sections on U are now just Rm valued functions and with respect to the coordinate
vectorfields

{ ∂

∂x1

, . . . ,
∂

∂x1

}

we can define a connection

∇U : Ω0(Rn) // Ω1(Rn)

which is just n copies of the de Rham exterior derivation, that is, for ∇ = ∇U

∇ ∂
∂xi

φ = dφ(
∂

∂xi

) =
∂φ

∂xi

for any Rn valued function φ.
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But, of course, this connection depends on the choice of the trivialization. Now,
if ∇1 and ∇2 are connections on E and f is a smooth real valued function, then
one verifies that the convex combination

f∇1 + (1− f)∇2

is again a connection on E.
Therefore, the connections on the local trivializations of E given above can be
spliced together by a partition of unity to give a connection on E. �

In a local trivialization as above the standard basis of Rn gives rise to linearly
independent sections {µ1, . . . , µn} in Γ(E | U). We can then define generalized
Christoffel symbols by

∇ ∂
∂xi

µj =
n∑

k=1

Γk
ijµk

The image of an arbitrary section over U is then

∇(
n∑

j=1

ajµj) =
n∑

j=1

d(aj)µj +
n∑

j=1

ajAµj

where A ∈ Γ(gln(R)⊗ T ∗M | U), that is, A is a matrix with values in T ∗M such
that

A(
∂

∂xi

) = (Γk
ij)j,k

Therefore, we can write formally

∇ = d+ A

The space of all connections on a given vectorbundle is an affine space and for
two connections ∇1 = d+ A1 and ∇2 = d+ A2, the difference

∇1 −∇2 = A1 − A2

is a gln(R)-valued 1-form, that is, an element of Ω1(End E) where End E is
the bundle of vectorbundle endomorphisms of E. End E is a vectorbundle with
fibers isomorphic to gln(R).
Given a connection ∇ on a vectorbundle E, there are naturally induced con-
nections on E∗, ⊗rE, ∧rE etc. in a canonical way. In particular, for the vec-
torbundle End(E) = E∗ ⊗ E we have the connection ∇̃ which maps a section
L ∈ Γ(End(E)), that is a smooth bundle map L : E // E , to

∇̃(L)(φ) = ∇(Lφ)− L(∇φ)

for any φ ∈ Ω0(E).
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Given connections∇ on E and∇′ on E ′, there exist naturally defined connections
∇⊕∇′ on E ⊕ E ′ and ∇⊗∇′ on E ⊗ E ′ where the latter is defined by

(∇⊗∇′)(φ⊗ φ′) = (∇φ)⊗ φ′ + φ⊗ (∇′φ′)

Finally, given a connection ∇ : Ω0(E) // Ω1(E) we can extend it to a gener-

alized de Rham sequence

Ω0(E)
d∇=∇// Ω1(E)

d∇ // Ω2(E)
d∇ // . . .

where we define d∇ on φ ∈ Ωp(E) by defining what it does on a p + 1-tuple of
tangent vectors V0, . . . , Vp ∈ TpM

d∇φ(V0, . . . , V1) =
∑p

j=0(−1)j∇Vj
(φ(V0, . . . , V̂j, . . . , Vp))

+
∑

i<j(−1)i+jφ([Vi, Vj], V0, . . . , V̂i, . . . , V̂j, . . . , Vp)

Here, we used the fact that vectorfields on M form a Lie algebra. For vector
fields X =

∑d
i=1Xi

∂
∂xi

and Y =
∑d

j=1 Yj
∂

∂xj
the Lie bracket is defined to be the

vectorfield

[X, Y ] =
d∑

i,j=1

Xj
∂Yi

∂xj

∂

∂xi

− Yj
∂Xi

∂xj

∂

∂xi

The classical de Rham sequence was shown to be a complex, that is, d ◦ d = 0.
A similar result does not hold in general for the de Rham sequence associated to
a connection. In fact, the composition

d∇ ◦ d∇ : Ω0(E) // Ω2(E)

deserves special attention.

Definition 5.3 The curvature of a connection ∇ is the 2-form

R∇ ∈ Ω2(End(E))

with values in End(E) is defined for V,W ∈ Γ(TM) by the rule

R∇
V,W = ∇V∇W −∇W∇V −∇[V,W ]

Exercise 5.4 Show that on Ω0(E) we have the equality

d∇ ◦ d∇ = R∇

We call a connection flat if its curvature R∇ = 0.
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5.1 Levi-Civita connection.

We will define suitable metrics on vectorbundles (E, π,M).

Definition 5.5 A bundle metric on (E, π,M) is given by a family of scalar
products on the fibers Ep, depending smoothly on p ∈M .

Exercise 5.6 Prove the following results completely analogous to the proofs given
for differentiable manifolds.

1. Every vectorbundle (E, π,M) can be equipped with a bundle metric.

2. Every vectorbundle (E, π,M) of rank n with bundle metric has structure
group On(R).

In particular, there exist bundle charts (f, U) with

f : π−1(U) // U × Rn

with the property that if {e1, . . . , en} is an orthonormal basis of Rn, then
{f−1(x, e1), . . . , f

−1(x, en)} is an orthonormal basis for Ex for all x ∈ U .
Such a bundle chart is called a metric bundle chart. We can use a bundle
metric to restrict connections.

Definition 5.7 Let E be a vectorbundle on a differentiable manifold M with
bundle metric 〈., .〉. A connection ∇ on E is called metric (or, Riemannian)
if

d〈φ1, φ2〉 = 〈∇φ1, φ2〉+ 〈φ1,∇φ2〉

By this we mean that if V ∈ TpM then

X〈φ1, φ2〉 = 〈∇Xφ1, φ2〉+ 〈φ1,∇Xφ2〉

Proposition 5.8 On every vectorbundle (E, π,M) one can construct metric con-
nections.

Proof. Again, this follows from a partition of unity argument using the fact
that convex combinations of metric connections are metric connections. �

The tangent bundle TM is a special vectorbundle. On the tangent bundle there
exists a canonical metric connection, the Levi-Civita connection.

Tullio Levi-Civita
Born : 29 march 1873 in Padua (Italy)
Died : 29 december 1941 in Rome (Italy)
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Tullio Levi-Civita is best known for his work on the absolute differential calculus with its applications to the

theory of relativity. Levi-Civita took his degree at the University of Padua where one of his teachers was Ricci

with whom Levi-Civita was to collaborate. Levi-Civita was appointed to the Chair of Mechanics at Padua in

1898, a post which he was to hold for 20 years. In 1918 he was appointed to the Chair of Mechanics at Rome

where he spent another 20 years until removed from office by the discrimination policies of the government (he

was of Jewish descent). Levi-Civita is best known for his work on the absolute differential calculus with its

applications to the theory of relativity. In 1887 he published a famous paper in which he developed the calculus

of tensors, following on the work of Christoffel, including covariant differentiation (connections). In 1900 he

published, jointly with Ricci, the theory of tensors ”Méthodes de calcul differential absolu et leurs applications”

in a form which was used by Einstein 15 years later. Weyl was to take up Levi-Civita’s ideas and make them

into a unified theory of gravitation and electromagnetism. Levi-Civita’s work was of extreme importance in the

theory of relativity, and he produced a series of papers treating elegantly the problem of a static gravitational

field. In 1933 he contributed to Dirac’s equations of quantum theory. Levi-Civita, like Volterra and many other

Italian scientists, were strongly and actively opposed to Fascism. After he was dismissed from his post the blow

soon told on his health and he developed severe heart problems. He died of a stroke.

Theorem 5.9 On a Riemannian manifold, there is precisely one metric connec-
tion ∇ on the tangentbundle TM such that for all vectorfield V,W we have

∇VW −∇WV = [V,W ]

This Levi-Civita connection of M is determined by the formula

〈∇XY, Z〉 = 1
2
(X〈Y, Z〉 − Z〈X, Y 〉+ Y 〈Z,X〉

−〈X, [Y, Z]〉+ 〈Z, [X, Y ]〉+ 〈Y, [Z,X]〉)
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Proof. If a connection ∇ is metric it has to satisfy

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉
Y 〈Z,X〉 = 〈∇YZ,X〉+ 〈Z,∇YX〉
Z〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉

If we assume moreover that ∇ satisfies the requirement that

∇VW −∇WV = [V,W ]

this implies that
X〈Y, Z〉 − Z〈X, Y 〉+ Y 〈Z,X〉 =

2(〈∇XY, Z〉 − 〈X, [Y, Z]〉 − 〈[X, Y ], Z〉 − 〈Y, [X,Z]〉)

which proves uniqueness of such a connection. Because 〈., .〉 is non-degenerate,
the formula defines ∇XY uniquely for every X, Y and some calculations then
show that this ∇ is indeed a metric connection. �

5.2 The Yang-Mills connections.

In this subsection we will describe special metric connections on an arbitrary vec-
torbundle (E, π,M) of rank n with bundle metric 〈., .〉. Recall that End E is the
vectorbundle of endomorphisms of E, it is a vectorbundle with fibers isomorphic
to gln(R). With Ad E we will denote the subbundle with fibers isomorphic to
on(R), that is, vectorbundle endomorphisms of E which are fiberwise given by
skew symmetric matrices.

Lemma 5.10 Write the metric connection ∇ as

∇ = d+ A with A ∈ Ω1(End E)

Then, actually A ∈ Ω1(Ad E). That is, for every X ∈ TM we have that A(X)
is a skew symmetric n× n matrix.

Proof. A metric bundle chart (f, U) gives sections {µ1, . . . , µn} on U that form
on orthonormal basis in every fiber Ex for x ∈ U , that is

〈µi(x), µj(x)〉 = δij

Moreover, in the bundle chart the µi are constant and hence for the exterior
derivative defined by the chart we have

dµi = 0
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Now let i 6= j and X ∈ TxM , then it follows that

0 = X〈µi, µj〉 = 〈A(X)µi, µj〉+ 〈µi, A(X)µj〉
= 〈

∑n
k=1A(X)ikµk, µj〉+ 〈µi,

∑n
k=1A(X)jkµk〉

= A(X)ij + A(X)ji

�

Lemma 5.11 Let ∇ = d + A a metric connection on E and R∇ the curvature
of ∇, then

R∇ ∈ Ω2(Ad E)

Proof. If we write A =
∑n

k=1Akdxk, then one computes that

R∇
∂i,∂j

=
1

2
(
∂Aj

∂xi

− ∂Ai

∂xj

+ [Ai, Aj])dxi ∧ dxj

which is clearly skew symmetric. �

Given metrics on M and E there are naturally induced metrics on all the as-
sociated bundles such as ∧pT ∗M ⊗ E. A metric connection on E give metric
connections on these bundles. In particular, if M is compact and oriented, the
pointwise inner product gives an inproduct on Ωp(E) by defining

(φ1, φ2) =

∫
M

〈φ1, φ2〉 ∗ (1)

The maps d∇ defined before then have formal adjoints

Ω0(E) Ω1(E)
δ∇

oo Ω2(E)
δ∇

oo . . .
δ∇
oo

with the property that
(d∇φ, ψ) = (φ, δ∇ψ)

for all φ ∈ Ωp(E) and ψ ∈ Ωp+1(E).
We want to make all this a bit more precise in the case of interest to us, that is
if we replace E in the above by the vectorbundle Ad E.
We now want to define a scalar product on Ωp(Ad E). If A,B ∈ on(R), then

A.B = −tr(AB)

defines a positive definite scalar product on on(R) called (the negative of) the
Killing form of the Lie algebra on(R).
On p-forms we already defined a pointwise scalar product. Recall that if ω1, ω2 ∈
∧pT ∗xM then

〈ω1, ω2〉 = ∗(ω1 ∧ ∗ω2〉
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By combining we then have a scalar product on on(R)⊗ ∧pT ∗xM by the rule

〈A⊗ ω1, B ⊗ ω2〉 = A.B〈ω1, ω2〉

which we can extend by linearity.
If M is now a compact and oriented manifold, this in turn yields a scalar product
on Ωp(Ad E)

(µ1ω1, µ2 ⊗ ω2) =

∫
M

〈µ1 ⊗ ω1, µ2 ⊗ ω2〉 ∗ (1)

Definition 5.12 Let M be a compact oriented Riemannian manifold and ∇ a
metric connection on a vectorbundle E of rank n.
The Yang-Mills functional applied to ∇ s then

YM(∇) = (R∇, R∇) =

∫
M

〈R∇, R∇〉 ∗ (1)

where R∇ ∈ Ω2(Ad E) is the curvature of ∇.

Recall that the space of all connections on E is an affine space, the difference of
two connections being an element of Ω1(End E). Likewise, the space of all metric
connections on E (which we will denote with C) is an affine space, the difference
of two metric connections being an element of Ω1(Ad E). We have a functional

YM : C // R+

and as always we are interested in the critical points of this functional. For this
we have to compute variations of the form for ∇+ tB where B ∈ Ω1(Ad E). One
can compute

d

dt
Y M(∇+ tB) |t=0= 2

∫
M

〈∇B,R∇〉 ∗ (1) = 2(B, δ∇R∇)

with δ∇ defined as before replacing E by Ad E.
Therefore, ∇ is a critical point of the Yang-Mills functional on metric connections
on E if and only if δ∇R∇ = 0.

Definition 5.13 Let M be a compact oriented manifold and ∇ a metric con-
nection on a vectorbundle E. Then, ∇ is said to be a Yang-Mills connection
iff

δ∇R∇ = 0

For ∇ = d + A with A ∈ Ω1(Ad E) we have for all µ ∈ Ωp−1(Ad E) and all
ν ∈ Ωp E) that

(ν, dµ+
∑

i

Aidxi ∧ µ) = (δν, µ)−
∑

i

(Aiν, dxi ∧ µ)
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since A is skew symmetric. If we specialize to the case p = 2 then we know
that the Hodge-star operator satisfies ∗∗ = id. Now, the generalized Hodge star
operator

∗ : Ω2(Ad E) // Ωd−2(Ad E)

operates on the differential form part as the Hodge star and leaves the on(R) part
invariant, that is,

∗(φ⊗ ω) = (φ⊗ ∗ω)

for φ ∈ Γ(Ad E) and ω ∈ Ω2(M). Now we have seen that δ = (−1)d+1 ∗ d∗.
Moreover, Ai and ∗ commute since Ai operates on the Ad E part and ∗ on the
form part whence ∗Ai∗ = Ai. But then we have the following expression for δ∇.

δ∇ = − ∗ (d+ A)∗ = − ∗ ∇∗

for even dimension of M .
Again, let E be a vectorbundle with bundle metric. With Aut(E) we denote the
fiber bundle with fiber over p ∈ M the group of orthogonal self transformations
of the fiber Ep.

Definition 5.14 A gauge transformation is a section of Aut(E). The group
G of gauge transformations is called the gauge group of the metric bundle E.

The groupstructure is given by fiberwise matrixmultiplication. An element s ∈ G
operates on the space of metric connections ∇ on E via

s∗(∇) = s−1 ◦ ∇ ◦ s

That is, for any φ ∈ Γ(E) we have

s∗(∇)φ = s−1∇(sφ)

and for ∇ = d+ A we obtain

s∗(A) = s−1ds+ s−1As

Further, the curvature R∇ of ∇ transforms via

s∗(R∇) = s−1 ◦R∇ ◦ s

and as an orthogonal map on E is an isometry of 〈., .〉 we have that

〈s∗R∇, s∗R∇〉 = 〈R∇, R∇〉

Using these facts we can prove
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Theorem 5.15 The Yang-Mills functional is invariant under the action of the
gauge group G. Therefore, if ∇ is a critical point, that is if ∇ is a Yang-Mills
connection, so is s∗∇ for s ∈ G. Therefore, the space of Yang-Mills connections
on a given vector bundle E of rank n ≥ 2 is ether empty or infinite dimensional.

Of course the above can be generalized to vectorbundles with different structure
groups. If the structure group of E is a Lie group G, we let Aut(E) be the bundle
with fiber given by G and operating on E by conjugation. The group of sections
of Aut(E) will again be called the gauge group.

For those of you who have already heard about gauge theories in physics, let s
briefly indicate the mathematical relationship with the above.
The prototype of all gauge theories is Maxwell’s theory of electro-magnetism.
From the geometrical point of view, the electromagnetic potential ai (1 ≤
i ≤ 4) defines a connection for a vectorbundle with structure group U1(C) over
Minkowski space-time M . This is a semi-Riemannian manifold, the difference be-
ing that the inproducts are not positive definite but have locally diagonal forms

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


and one can repeat much of the theory in this setting as again we have the
property that if 〈v, w〉 = 0 for all w then v = 0. Anyway, the electro-magnetic
field is the corresponding curvature

fij =
∂aj

∂xi

− ∂ai

∂xj

Maxwell’s equations in vacuum take the form

df = 0 and δf = 0

where f is viewed as a 2-form, d is the exterior derivative and δ is its formal
adjoint, this time with respect to the Minkowski metric.
Non-abelian gauge theories are obtained by replacing U1(C) with a compact non-
Abelian Lie group G such as SUn(C). A potential is then a connection ∇ over
Minkowski space, with components ∇i in the Lie algebra of G. The field is then
the corresponding curvature with components

R∇
ij =

∂∇i

∂xj

− ∂∇j

∂xi

+ [∇i,∇j]

The most straightforward generalizations of Maxwell’s equations are the Yang-
Mills equations

d∇R∇ = 0 and δ∇R∇ = 0
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We should recall that for the curvature of a connection we always have d∇R∇ = 0,
this is the so called Bianchi identity.
Gauge theories have an infinite-dimensional symmetry group given by functions
from M to G and all physical properties are invariant under this gauge group.
Moreover, to specify a physical theory the usual procedure is to define a La-
grangian or action. This is a functional of the various fields obtained by inte-
grating over M a Lagrangian density. For a scalar field theory where the only
field is a scalar function φ, the simplest Lagrangian is

L(φ) =

∫
M

‖ grad φ ‖2 dx

where the norm and volume form are those of Minkowski space M . For Yang-
Mills theory the Lagrangian is

L(∇) =

∫
M

‖ R∇ ‖2 dx

where the norm here also uses an invariant metric on G. Note that this is just
our Yang-Mills functional.

5.3 Four dimensional manifolds

In this subsection we give a short introduction to the results of Donaldson on the
classification of simply connected differentiable 4-manifolds. Clearly, we cannot
give too much details.
Let us begin by pointing out the special features of dimension 4 to Yang-Mills
connections. As always, we suppose that M is a compact oriented Riemann
manifold, then the Hodge star operator acts on ∧2T ∗pM for any p ∈M

∗ : ∧2T ∗pM // ∧2T ∗pM

and as ∗∗ = id we have a decomposition into eigenspaces corresponding to the
eigenvalues ±1.

∧2T ∗pM = Λ+ ⊕ Λ−

Both spaces are of dimension 3 and in normal coordinates Λ+ is generated by

dx1 ∧ dx2+ dx3 ∧ dx4

dx1 ∧ dx4+ dx2 ∧ dx3

dx1 ∧ dx3− dx2 ∧ dx4

and Λ− by

dx1 ∧ dx3+ dx2 ∧ dx4

dx1 ∧ dx2− dx3 ∧ dx4

dx1 ∧ dx4− dx2 ∧ dx3

The elements of Λ+ are called selfdual, those of Λ− anti-selfdual.
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Definition 5.16 A connection ∇ over an oriented four dimensional Riemannian
manifold is called an instanton (resp. anti-instanton) if its curvature R∇ is a
selfdual 2-form (resp. an anti-selfdual 2-form).

Theorem 5.17 Every (anti)-instanton connection is a Yang-Mills connection.

Proof. We have to prove that δ∇R∇ = 0. By the expression δ∇ = − ∗ d∇∗ in
even dimensions this is equivalent to

d∇ ∗R∇ = 0

Now assume that ∇ is an instanton or anti-instanton, then

R∇ = ± ∗R∇

but then the above equation becomes

d∇ ∗ ∗R∇ = 0

and as ∗∗ = id we obtain
d∇R∇ = 0

which is satisfied because it is the Bianchi identity. �

In the case of a vectorbundle with structure group SUn(C) one has a converse to
this result.

Theorem 5.18 Let E be a vectorbundle with structure group SUn(C) over a
compact oriented four manifold M . A connection ∇ on E gives an absolute min-
imum for the Yang-Mills functional precisely if ∇ is instanton or anti-instanton
(depending on a topological invariant of E).

If M is a compact differentiable four manifold, then there is a natural pairing,
which is called the intersection form of M

Γ : H2
dR(M,R)×H2

dR(M,R) // R

defined by

(α, β) 7→
∫

M

α ∧ β

Simon Kirwan Donaldson
Born : 20 august 1957 in Cambridge (England)
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Simon Donaldson’s secondary school education was at Sevenoaks School in Kent which he attended from 1970

to 1975. He then entered Pembroke College, Cambridge where he studied until 1980, receiving his B.A. in 1979.

One of his tutors at Cambridge described him as a very good student but certainly not the top student in

his year. Apparently he would always come to his tutorials carrying a violin case. In 1980 Donaldson began

postgraduate work at Worcester College, Oxford, first under Nigel Hitchen’s supervision and later under Atiyah’s

supervision. In 1982, when he was a second-year graduate student, Simon Donaldson proved a result that stunned

the mathematical world. Together with the important work of Michael Freedman, Donaldson’s result implied

that there are ”exotic” 4-spaces, i.e. 4-dimensional differentiable manifolds which are topologically but not

differentiably equivalent to the standard Euclidean 4-space R4. What makes this result so surprising is that

n = 4 is the only value for which such exotic n-spaces exist. These exotic 4-spaces have the remarkable property

that (unlike R4 they contain compact sets which cannot be contained inside any differentiably embedded 3-

sphere. After being awarded his doctorate from Oxford in 1983, Donaldson was appointed a Junior Research

Fellow at All Souls College, Oxford. He spent the academic year 1983-84 at the Institute for Advanced Study

at Princeton, After returning to Oxford he was appointed Wallis Professor of Mathematics in 1985, a position

he continues to hold. Donaldson has received many honours for his work. He received the Junior Whitehead

Prize from the London Mathematical Society in 1985. In the following year he was elected a Fellow of the

Royal Society and, also in 1986, he received a Fields Medal at the International Congress at Berkeley. Atiyah

describes the contribution which led to Donaldson’s award of a Fields Medal : ”When Donaldson produced his

first few results on 4-manifolds, the ideas were so new and foreign to geometers and topologists that they merely

gazed in bewildered admiration. Slowly the message has gotten across and now Donaldson’s ideas are beginning

to be used by others in a variety of ways. ... Donaldson has opened up an entirely new area; unexpected

and mysterious phenomena about the geometry of 4-dimensions have been discovered. Moreover the methods

are new and extremely subtle, using difficult nonlinear partial differential equations. On the other hand, this

theory is firmly in the mainstream of mathematics, having intimate links with the past, incorporating ideas

from theoretical physics, and tying in beautifully with algebraic geometry.”

A major result of Donaldson (the importance of which will become clear in the
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next subsection) is

Theorem 5.19 Let M be a compact oriented differentiable simply connected 4-
manifold with positive definite intersection form. Then, for a suitable basis of
H2

dR(M,R), the intersection form is represented by ± the identity matrix.

Proof. (scetch!)
The crucial ingredient in the proof of Donaldson’s theorem is the moduli space
M of instantons ∇ on a vectorbundle over M with structure group SU2(C) with
so-called topological charge

−1

8π

∫
M

tr(R∇ ∧∇) = 1

for the curvature R∇ of the connection.
The topological charge is a topological invariant of the bundle (it is the negative
of the second Chern class of the bundle) and does not depend on the choice of
the SU2(C)-connection.
In order to construct the moduli space of instantons, one identifies instantons
that are gauge equivalent, that is, differ only by a gauge transformation.
Donaldson then showed that under the stated assumptions on M , the moduli
space M is an oriented five dimensional manifold with a finite number of point
singularities, at least for generic Riemannian metrics on M .
Neighborhoods of these singular points are cones over the complex projective
space P2(C) (which is a differentiable 4-manifold) and M is the boundary of M.
Deleting neighborhoods of these singular points, one obtains a differentiable ori-
ented five dimensional manifold with a boundary consisting of M and some copies
of P2(C). In the terminology of algebraic topology, this says that M is ’cobor-
dant’ to a union of P2(C) and hence has the same intersection form as this union
of P2(C).
Finally, one computes that H2

dR(P2(C),R) = R with intersection form 1, which
then implies the result.
Clearly, the main part of the proof goes into deriving the stated properties of the
moduli space M. �

Donaldson then went on to use the topology and geometry of these moduli spaces
to define new invariants for differentiable four dimensional manifolds, the so-called
Donaldson polynomials. These polynomials greatly enhanced the understand-
ing of the topology of four dimensional differentiable manifolds.

5.4 Exotic structures on R4.

In dimension ≤ 3 we have seen that every manifold admits a unique differen-
tiable structure. In this subsection we will see that Donaldson’s result combined
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with Freedman’s classification of simply connected topological four dimensional
manifolds shows that this is no longer the case in dimension 4. Neither does ev-
ery topological manifold admit a differentiable structure nor is such a structure
uniquely determined when it exists. First we recall the important topological
results of Freedman

Michael Hartley Freedman
Born : 21 april 1951 in Los Angeles (USA)

Michael Freedman entered the University of California at Berkeley in 1968 and continued his studies at Princeton

University in 1969. He was awarded a doctorate by Princeton in 1973. Freedman was promoted to associate

professor at San Diego in 1979. He spent the year 1980/81 at the Institute for Advanced Study at Princeton

returning to the University of California at San Diego where he was promoted to professor on 1982. He holds this

post in addition to the Charles Lee Powell Chair of Mathematics which he was appointed to in 1985. Freedman

was awarded a Fields Medal in 1986 for his work on the Poincaré conjecture. The Poincaré conjecture, one

of the famous problems of 20th-century mathematics, asserts that a simply connected closed 3-dimensional

manifold is a 3-dimensional sphere. The higher dimensional Poincaré conjecture claims that any closed n-

manifold which is homotopy equivalent to the n-sphere must be the n-sphere. When n = 3 this is equivalent

to the Poincaré conjecture. Smale proved the higher dimensional Poincaré conjecture in 1961 for n at least 5.

Freedman proved the conjecture for n = 4 in 1982 but the original conjecture remains open. Michael Freedman

has not only proved the Poincaré conjecture for 4-dimensional topological manifolds, thus characterizing the

sphere S4, but has also given us classification theorems, easy to state and to use but difficult to prove, for much

more general 4-manifolds. The simple nature of his results in the topological case must be contrasted with

the extreme complications which are now known to occur in the study of differentiable and piecewise linear 4-

manifolds. Freedman’s 1982 proof of the 4-dimensional Poincaré conjecture was an extraordinary tour de force.

His methods were so sharp as to actually provide a complete classification of all compact simply connected

topological 4-manifolds, yielding many previously unknown examples of such manifolds, and many previously

unknown homeomorphisms between known manifolds.
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To begin, a simply connected four dimensional manifold can be oriented. Using
this orientation one can define, analogous to the intersection form on the middle
de Rham cohomology for a differentiable 4-manifold, an intersection form on the
middle homology group H2(M,Z) in such a way that the intersection of two
transversal, oriented surfaces can be counted as an integer.
This gives a symmetric bilinear form µ on H2(M,Z) and Poincaré duality states
that this form is unimodular. That is, if µ is written as a matrix in Mr(Z) then
the determinant of this matrix is ±1. If the determinant is one we call µ definite,
when it is −1 we call µ indefinite.
A classical result, proved by Whitehead in 1949 says that µ determines M up to
homotopy type.

John Henry Constantine Whitehead
Born : 11 november 1904 in Madras (India)
Died : 8 may 1960 in Princeton (USA)

Henry Whitehead was born in India but lived in England from the age of two. While at Oxford Whitehead

met Veblen who arranged a scholarship which enabled him to study for a Ph.D. at Princeton. Whitehead

was awarded his doctorate from Princeton in 1930 for a dissertation entitled ’The Representation of Projective

Spaces.’ Whitehead’s joint work with his doctoral supervisor Veblen led to ’The Foundations of Differential

Geometry’ (1932), now considered a classic. It contains the first proper definition of a differentiable manifold.

Whitehead returned to England, worked at the Admiralty during the War, then he was appointed to a chair at

Oxford. Soon after his return to England he wrote another major work on differential geometry ’On the Covering

of a Complete Space by the Geodesics Through a Point’ (1935). Whitehead’s interests turned more towards

topology and he collaborated with Lefschetz. In this area he is best remembered for his work on homotopy

equivalence. He also studied Stiefel manifolds and set up a school of topology at Oxford.
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Theorem 5.20 Two compact simply connected 4-manifolds are homotopy equiv-
alent if and only if their intersection forms are equivalent.

Recall that two symmetric bilinear forms on Zr are equivalent if there is a matrix
A ∈ GLr(Z) such that Atrµ1A = µ2. Important invariants of integral quadratic
forms are the rank r and the signature which is e − 2q where q is the maximal
dimension of a subspace of Rr on which µ is negative definite. We say that a
form µ is of type II if µ(x, x) is even for all x ∈ Zr and is of type I otherwise.
One can show that the signature of a type II form must be a multiple of 8.
Indefinite unimodular symmetric forms are completely determined up to equiva-
lence by their rank and signature.

type I : µ ≡< 1 > ⊕ . . .⊕ < 1 > ⊕ < −1 > ⊕ . . .⊕ < −1 >
type II : µ ≡ H ⊕ . . .⊕H ⊕ E8 ⊕ . . .⊕ E8

where < 1 > and < −1 > are the two possible rank one forms, H =

[
0 1
1 0

]
and

E8 =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 1 0
0 0 0 0 1 2 0 0
0 0 0 0 1 0 2 1
0 0 0 0 0 0 1 2


which is the matrix describing the root system for the exceptional Lie group E8.
Clearly, the form being indefinite forces that in for type I both < 1 > and < −1 >
appear and for type II that at least one copy of H appears.
Definite unimodular symmetric forms are a different matter altogether and form
one of the difficult classical fields of mathematics. Let N(r) be the number of
inequivalent unimodular type II positive definite forms of rank r, then one has
proved that

r 8 16 24 32 40
N(r) 1 2 24 ≥ 107 ≥ 1051

In view of Whitehead’s theorem we can ask whether an unimodular form appears
as the intersection form of a simply connected 4-dimensional topological manifold
and if a form occurs how many homeomorphism classes of manifolds carry the
same form.
For the trivial form, the last question is the four dimensional Poincaré conjecture.
Recall that the Poincaré conjecture asserts that there is no n-dimensional

79



manifold homotopic but not homeomorphic to Sn. Recall that the Poincaré
conjecture for n ≥ 5 was proved by Smale in 1961.

Stephen Smale
Born : 15 july 1930 in Flint, Michigan (USA)

Stephen Smale worked for his doctorate at the University of Michigan, Ann Arbor under R Bott’s supervision

and he was awarded his Ph D in 1957 for the thesis ’Regular Curves on Riemannian Manifolds.’ In his thesis

he generalized results proved by Whitney in 1937 for curves in the plane to curves on an n-manifold. In 1958

Smale learned about Pontryagin’s work on structurally stable vector fields and he began to apply topological

methods to study the these problems. In 1960 Smale was appointed an associate professor of mathematics at

the University of California at Berkeley, moving to a professorship at the University of Columbia the following

year. In 1964 he returned to a professorship at the University of California at Berkeley where he has spent the

main part of his career. He retired from Berkeley in 1995 and took up a post as professor at the City University

of Hong Kong. Smale was awarded a Fields Medal at the International Congress at Moscow in 1966. The work

which led to this award was his prove of the Poincaré conjecture for dimension n ≥ 5. Another area in which

Smale has made a very substantial contribution is in Morse theory which he has applied to multiple integral

problems. In fact Smale attacked the generalized Poincaré conjecture using Morse theory. Another discovery

of Smale’s related to strange attractors. An attractor in classical mechanics is a geometrical way of describing

the behavior of a dynamical system. There are three classical attractors, a point which characterizes a steady

state system, a closed loop which characterizes a periodic system, and a torus which combines several cycles.

Smale discovered strange attractors which lead to chaotic dynamical systems. Strange attractors have detailed

structure on all scales of magnification and were one of the early fractals to be studied.

Simply connected four dimensional manifolds divide into two classes : those which
have no spin structure and have intersection forms of type I, the homeomorphism
classes of which we will denote by MANI , and those which do have a spin structure
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and an intersection form of type II, the homeomorphism classes of which we
denote by MANII .
With FI we denote the equivalence classes of unimodular symmetric forms of type
I and with FII those of type II. The important result which Freedman proved in
1982 can now be stated as.

Theorem 5.21 Taking the intersection form of a manifold gives a map

MANII
// FII

which is a bijection and a map

MANI
// FI

which is exactly two-to-one and surjective.

Thus, every unimodular form is the intersection form of a simply connected topo-
logical 4-dimensional manifold. This manifold is unique up to homeomorphism
in the type II case and there are exactly two homeomorphism classes with the
same intersection form in the type I case.
This result immediately implies that there exist 4-dimensional manifolds having
no differential structure. This follows either from Donaldson’s result or from a
much older result which Rochlin proved in 1952.

Theorem 5.22 Let M be a compact simply connected 4-dimensional differen-
tiable manifold of type II. Then, the signature of its intersection form is a multiple
of 16.

If we combine this restriction with the results of Freedman and Donaldson (the
theorem of Donaldson removes the impenetrable jungle of positive definite sym-
metric forms from the study of differentiable manifolds !) we get the follow-
ing simple list of homeomorphism classes of simply connected differentiable 4-
manifolds. As in the case of surfaces we can define the connected sum of two
4-dimensional manifolds by cutting a ball B3 out of each and gluing smoothly
along the boundary S3.

Theorem 5.23 If M is a simply connected differentiable 4-dimensional mani-
fold, then M is homeomorphic to either

1. the sphere S4, or

2. a connected sum of the form

P2(C)# . . .#P2(C)#P2(C)# . . .#P2(C)

81



where P2(C) denotes P2(C) with the opposite orientation. In this case M
does not have a spin structure and its intersection form has matrix

µ =



1
. . .

1
−1

. . .

−1


with the 1 (resp. −1) corresponding to factors P2(C) (resp. to P2(C)). Or
to

3. a connected sum of the form

(S2 × S2)# . . .#(S2 × S2)#E8# . . .#E8.

In this case M does have a spin structure, there must be at least one factor
S2 × S2 and an even number of E8 factors by Rochlin. The intersection
form has matrix

µ =



0 1
1 0

. . .

0 1
1 0

E8

. . .

E8


Observe the remarkable similarity between this classification and the classification
of compact twodimensional manifolds.
Note that at this moment the uniqueness of differentiable structures on 4-
dimensional manifolds remains an open question. However, we do have the fol-
lowing rather startling fact, first observed by M. Freedman and R. Kirby.

Theorem 5.24 There exists an exotic R4, that is, a manifold homeomorphic but
not diffeomorphic to R4.

We will present a very crude scetch of the proof. To begin with, recall that
P2(C) is obtained by adding a line P1(C) at infinity to C2 = R4. In particular, if
S2 = P1(C) is any line embedded in P2(C) then the difference

P2(C)− S2 = R4
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Now take any homeomorphism

h : P2(C) // P2(C)

Then the set P2(C) − h(S2) is h(R4) and hence clearly homeomorphic to R4.
Moreover, h(R4) inherits a differentiable structure, being an open subset of the
differentiable manifold P2(C).
Start with a 4-manifold for which a certain topological invariant (the Kirby-
Siebenmann invariant) vanishes but such that M cannot carry a differentiable
structure by Donaldson’s result. For example, the manifold

M = E8#P2(C)

satisfies these requirements.
F. Quinn has proved in 1982 that if M is a compact topological 4-manifold with
vanishing Kirby-Siebenmann invariant, then M admits a differentiable structure
defined outside a finite set of points and each of these singular points is ’resolv-
able’.
We say that a singular point p ∈M is resolvable if there is an open neighborhood
U of p such that

U − {p} is diffeomorphic to V − h(S2)

where h : P2(C) // P2(C) is an homeomorphism and V is an open neigh-

borhood of h(S2) in P2(C). If you know some algebraic geometry of (complex)
surfaces, then this process is very much like the process of blowing up a point.
Let {p1, . . . , pn} be the resolvable singularities of M . For each j we have neigh-
borhoods Uj of pj and diffeomorphisms between

Uj − {pj} and Vj − hj(S
2)

for homeo-endomorphisms hj on P2(C). Observe that Vj − hj(S
2) is a neighbor-

hood of infinity for some differentiable structure on R4 = P2(C)− hj(S
2).

We claim that at least one of the

R4
j = Vj − hj(S

2)

is not diffeomorphic to R4. For, consider the closed compact set

Kj = R4
j − (Vj − hj(S

2)).

If R4
j is diffeomorphic to R4, then Kj can be surrounded by a smoothly embedded

S3 lying in Vj − hj(S
2).

But then we can use the diffeomorphism to obtain a smoothly embedded S3 in
Uj − {p}. Then we can cut the interior of this S3 out of M and attach a D4. If
we can do this for every j, we would get a differentiable structure on M which is
impossible by the result of Donaldson, finishing the proof of the claim.
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5.5 Three dimensional manifolds

We have seen that the Yang-Mills functional exhibits special features in dimen-
sion four. There is also a functional that is well adapted to the study of three
dimensional manifolds, namely the Chern-Simons functional.
Let M be a compact oriented three dimensional differentiable manifold. Recall
that any three dimensional topological manifold is homeomorphic to a differen-
tiable manifold and that the differentiable structure is uniquely determined.
Let G be a compact Lie group with Lie algebra g and let E be a vectorbundle
over M with structure group G. We will consider G-connections ∇, that is,
connections that can be locally written as

∇ = d+ A where A ∈ Ω1(g)

We will assume that E is a trivialG-bundle, that is, E is isomorphic toM×Rn (for
some n-dimensional representation Rn of G) and we assume that the connection
given by the exterior derivative d preserves the G-structure. In this case, any
other G-connection on E is globally of the form

∇ = d+ A

where A is a globally defined 1-form with values in g. Hence, the set C of all G-
connections is an affine space Ω1(g). Let G be the corresponding gauge group,
that is

G = Map(M,G)

the set of all smooth maps from M to G with pointwise multiplication as the
group operation. Then G acts on the space of connections C.
Precisely as in the case of the Yang-Mills functional we would like to construct
a G-invariant scalar-valued function f on C. Such an f would be determined up
to a constant which we can fix by taking the value of f at the trivial connection
to be zero.
The main problem is that the quotient-space C/G can be shown to be not simply
connected. Hence, f can only be expected to be well defined locally and globally
it will be multi-valued. It will turn out that f is well defined only up to integral
multiples of a constant.

Definition 5.25 For a connection ∇ = d + A with A ∈ Ω1(g), the Chern-
Simons functional is defined to be

CS(∇) =

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A)

where Tr is the trace in g, that is, the negative of the Killing form.
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This CS(A) is a multiple of the f(A) we want to construct. Observe that because
A is a 1-form, the expressions A ∧ dA and A ∧ A ∧ A are 3-forms and hence the
integral makes sense on a three dimensional manifold and we do not have to
specify a Riemannian metric on M for the definition to make sense. Thus, any
invariants we will construct from the Chern-Simons functional will automatically
be topological invariants of M . This leads to the definition of Witten invariants.

Edward Witten
Born : 26 august 1951 in Baltimore (USA)

Edward Witten studied at Brandeis University and received his B.A. in 1971. From there he went to Princeton

receiving his M.A. in 1974 and his Ph.D. in 1976. After completing his doctorate, Witten went to Harvard where

he was postdoctoral fellow during session 1976-77 and then a Junior Fellow from 1977 to 1980. In September

1980 Witten was appointed professor of Physics at Princeton. He was awarded a MacArthur Fellowship in

1982 and remained as professor of Physics at Princeton until 1987 when he was appointed as a Professor in

the School of Natural Sciences at the Institute for Advanced Study. Speaking at the American Mathematical

Society Centennial Symposium in 1988, Witten explained the relation between geometry and theoretical physics

”It used to be that when one thought of geometry in physics, one thought chiefly of classical physics - and in

particular general relativity - rather than quantum physics. ... Of course, quantum physics had from the

beginning a marked influence in many areas of mathematics - functional analysis and representation theory,

to mention just two. ... Several important influences have brought about a change in this situation. One

of the principal influences was the recognition - clearly established by the middle 1970s - of the central role of

nonabelian gauge theory in elementary particle physics. The other main influence came from the emerging study

of supersymmetry and string theory.” In his study of these areas of theoretical physics, Witten has achieved a

level of mathematics which has led him to be awarded the highest honour that a mathematician can receive,

namely a Fields Medal. He received the medal at the International Congress of Mathematicians which was held

in Kyoto, Japan in 1990. The first major contribution which led to Witten’s Fields Medal was his simpler proof

of the positive mass conjecture which had led to a Fields Medal for Yau in 1982. In recent years, Witten focused
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his attention on topological quantum field theories. These correspond to Lagrangians, formally giving manifold

invariants. Witten described these in terms of the invariants of Donaldson and Floer (extending the earlier ideas

of Atiyah) and generalized the Jones knot polynomial.

Let G0 be the connected component of G containing the identity. One can show
that CS is invariant under G. However, CS is not invariant under a generator of
G/G0 ' Z, it picks up a multiple of 2π.
Hence, for every k ∈ Z, the expression

eikCS(A)

is a well defined function of A. Witten’s invariant of three dimensional mani-
folds can defined formally as the ’partition function’

Z(M) =

∫
C/G

eikCS(A)dA

provided one believes that the integral makes sense.
More generally, suppose we have an oriented curve C contained in M . A connec-
tion ∇ = d+A on M defines a connection on C by restriction. Running around
the curve C then gives a monodromy element MonC(A). Then,

TrV MonC(A) = WC(A)

is known as a Wilson line where TrV is taking the trace in an irreducible
representation V of G. Then, one can define an invariant for the embedding of
C in M by

Z(M,C) =

∫
C/G

eikCS(A)WC(A)dA

which leads to new knot invariants.
In the easiest case, that is when M = S3 the three sphere, G = SU2(C) and
V is the 2-dimensional representation of SU2(C) one recovers the famous Jones
polynomial of the knot C embedded in S3 (which can be seen as a one point
compactification of R3 thereby giving a new knot invariant).
The Jones polynomial VK(t) is an element of Z[t, t−1] assigned to a knot K in
R3. It is normalized so that it assigns 1 to the unknot, the standard unknotted
circle in R3. Moreover, it has the key property

VK∗(t) = VK(t−1

where K∗ is the mirror image of K.
Simple examples show that VK(t) need not be invariant under t 7→ t−1, so that
the Jones polynomial can sometimes distinguish knots from their mirror images.
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The Alexander polynomial (which was basically the only knot invariant known
before 1984!) on the other hand always takes the same value for a knot and its
mirror image.
For example, the right handed trefoil knot T

has Jones polynomial
VT (t) = t+ t3 − t4

and so distinguishes from its mirror image T ∗

Vaughan Frederick Randal Jones
Born : 31 december 1952 in Gisborne (New Zealand)

In 1970 Vaughan Jones entered the University of Auckland graduating with a B.Sc. in 1972 and an M.Sc. with

First Class Honours in 1973. After teaching for a while as an assistant lecturer at Auckland, he entered the

Ecole de Physique in Geneva in 1974, moving in 1976 to the Ecoles Mathematiques. In Geneva his research

was supervised by A Haefliger and he also taught as an assistant. In 1979 Jones was awarded his Docteur es

Sciences (Mathematique), and the following year he was awarded the Vacheron Constantin Prize for his doctoral
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thesis. Jones worked on the Index Theorem for von Neumann algebras, continuing work begun by Connes and

others. His most remarkable contribution, however, was that in the course of this work he discovered a new

polynomial invariant for knots which led to surprising connections between apparently quite different areas of

mathematics. Jones was awarded a Fields Medal at the 1990 International Congress in Kyoto, Japan for his

remarkable and beautiful mathematical achievements. Jones gave a lecture to the 1990 Congress dressed in a

rather unusual way for a mathematics lecture. He was wearing the ”All Blacks” rugby strip! In 1984 Jones

discovered an astonishing relationship between von Neumann algebras and geometric topology. As a result, he

found a new polynomial invariant for knots and links in 3-space. His invariant had been missed completely

by topologists, in spite of intense activity in closely related areas during the preceding 60 years, and it was a

complete surprise. As time went on, it became clear that his discovery had to do in a bewildering variety of ways

with widely separated areas of mathematics and physics. These included (in addition to knots and links) that

part of statistical mechanics having to do with exactly solvable models, the very new area of quantum groups,

and also Dynkin diagrams and the representation theory of simple Lie algebras. The central connecting link in

all this mathematics was a tower of nested algebras which Jones had discovered some years earlier in the course

of proving a theorem which is known as the ”Index Theorem”.

If we represent a knot (or more generally a link) by a general plane projection
with over- and undercrossings, the Jones polynomial can be characterized and
computed by a skein relation.
Given any oriented link diagram L and a crossing point, we can alter the crossing
to produce three different diagrams as indicated

��

??

��

?? ??

��

which we denote resp. with L+, L− and L0. Let V+, V− and V0 denote the Jones
polynomials of these links. Then the skein relation is

t−1V+ − tV− = (t
1
2 − t−

1
2 )V0

There is no obvious reason why this relation should define a link invariant, it
might depend on the plane presentation. However, one can show that it is invari-
ant by verifying that it is invariant under each of the Reidemeister moves.

There is a reason why invariants of knots (and links) and invariants of three di-
mensional compact manifolds are related. A classical theorem due to Lickorish
and Wallace asserts that any closed connected oriented 3-manifold can be ob-
tained by surgery on the three sphere S3 along a certain link. We will briefly
outline the surgery operation.
Let L be a link in S3 with m components L1, . . . , Lm. Let U be the closed regular
neighborhood of L in S3 consisting of m disjoint solid tori U1, . . . , Um whose cores
are the corresponding components of L.
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Observe that a solid torus is a topological space homeomorphic to

S1 ×B2

where B2 is the closed 2-disk. Identify each Uj with S1 × B2 such that Lj is
identified to S1 × {0} where 0 is the center of B2.
Let B4 be a closed 4-ball, which is a four dimensional manifold with bound-
ary ∂B4 = S3. We have U ⊂ S3 = ∂B4. A 2-handle is a topological space
homeomorphic to

B2 ×B2

Now, glue m copies of the 2-handle to B4 along the identification

Uj = S1 ×B2 = ∂B2 ×B2

This gluing results in a compact connected four dimensional manifold (with
boundary !) which we will denote by ML. The closed connected three dimen-
sional manifold ∂ML is formed by S3 − Int(U) and m copies of B2 × ∂B2 glued
to S3 − Int(U) along the boundary.

Definition 5.26 With notations as above, we say that the three dimensional
manifold ∂ML is obtained by surgery on S3 along the link L.

To combine surgery with knot invariants to obtain topological invariants of three
dimensional manifolds we have to pass from links in S3 = R3 ∪ {∞} to links in
R3. Fortunately, any link in S3 may be deformed into R3 and isotopic links in S3

give rise to isotopic links in R3.

In order to understand three dimensional manifolds (for example, to (dis)prove
the three dimensional Poincaré conjecture) we therefore need to find many new
knot invariants. Witten’s geometrical approach has the potential for doing this
but we have seen that the definition is not entirely mathematical rigorous (as the
quotient space C/G is not nice).
Still, Reshitikhin and Turaev have shown that one can make a mathematical
sound construction following Witten’s suggestion. Their construction uses prop-
erties of the representation theory of quantum groups introduced by Drinfeld.
These quantum groups are deformations of the enveloping algebras of semi-simple
Lie algebras.
Let us describe the easiest case, that of Uq(sl2), leading to the Jones invariant.
The Lie algebra of SU2(C) is sl2. It is a three dimensional vectorspace with basis
{X,Y,H} and brackets

[X, Y ] = H, [H,X] = 2X, [H, Y ] = −2Y

The (complex) enveloping algebra U(sl2) of sl2 is the non-commutative algebra
over C generated by three (noncommuting) variables, {X, Y,H} satisfying the
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commutation relations

XY − Y X = H,HX −XH = 2X and HY − Y H = −2Y

The quantum group Uq(sl2) is the non-commutative algebra over C generated by
indeterminates E,F,K,K−1 and L satisfying the commutation relations

EF − FE = L,LE − EL = q(EK +K−1E), LF − FL = −q−1(FK +K−1F )

KK−1 = K−1K = 1, KE = q2EK,KF = q−2FK,K −K−1 = (q − q−1L

where q ∈ C∗. One verifies that if q → 1 and if K = 1 then we recover the
enveloping algebra U(sl2).
The representation theory of these quantum groups is similar to those of envelop-
ing algebras for generic values of q but is particularly rich when q is a root of
unity. This case leads to knot invariants and the appearance of roots of unity
should be compared to the appearance of k ∈ Z in the Witten invariants.

Vladimir Gerschonovich Drinfeld
Born : 1954 in Kharkov (Ukraine)

Vladimir Drinfeld studied at Moscow University from 1969 until 1974. He graduated in 1974 and remained at

Moscow University to undertake research under Yuri Ivanovich Manin’s supervision. Drinfeld completed his

postgraduate studies in 1977 and he defended his thesis in 1978. On 21 August 1990 Drinfeld was awarded a

Fields medal at the International Congress of Mathematicians in Kyoto, Japan for his work on quantum groups

and for his work in number theory. Drinfeld defies any easy classification. His breakthroughs have the magic that

one would expect of a revolutionary mathematical discovery: they have seemingly inexhaustible consequences.

On the other hand, they seem deeply personal pieces of mathematics: ”only Drinfeld could have thought of

them!” But contradictorily they seem transparently natural; once understood, ”everyone should have thought

of them!” Drinfeld’s main achievements are his proof of the Langlands conjecture for GL(2) over a function
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field; and his work in quantum group theory. The interactions between mathematics and mathematical physics

studied by Atiyah led to the introduction of instantons - solutions, that is, of a certain nonlinear system of

partial differential equations, the self-dual Yang-Mills equations, which were originally introduced by physicists

in the context of quantum field theory. Drinfeld and Manin worked on the construction of instantons using ideas

from algebraic geometry.
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6 Noncommutative manifolds

The notion of a differentiable manifold is only as natural as it resembles physical
space(time). However, there are indications that this cannot be the full story. For
example, there is an asymmetry in elementary particles. There are left handed
and right handed particles which behave different with respect to the weak force.
It has been suggested that physical space-time should therefore really look like
two sheets of Minkowski space, extremely close together and interacting. More
generally, one would like to define a workable geometry on products of manifolds
with discrete spaces.
Noncommutative geometry, as developed by A. Connes, may very well be such a
theory. The basic idea is easy to state : one replaces a manifold by an algebra
C(M) of complex valued smooth functions on M . Then, one can recover the
topological space M back from the algebra. However, in order to do physics we
would also like to recover the differential and Riemannian structure. In particular,
we would like to recover the notion of geodesics. In order to achieve this one looks
at a particular representation of the algebra C(M) corresponding to the Dirac
operator D. The couple (C(M), D) contains enough information to recover the
metric structure of M (and much more).
Having reduced everything to algebra, we can then consider the same data where
we replace the commutative algebra C(M) by a non-commutative algebra A (with
suitable extra conditions).
In particular one can study finite point geometries as noncommutative manifolds.
Connes studied the ’eigenschaften’ algebra

A = C⊕H⊕M3(C)

where H are the Hamilton quaternions, and considered the product of this finite
geometry with usual space-time. It turned out that the natural way to do physics
on this noncommutative variety (by studying Yang-Mills connections) led to the
standard model in particle physics.
It is also believed that the underlying ’symmetry’ of this noncommutative mani-
fold is no longer determined by a Lie group but instead by a quantum group.

6.1 C∗-algebras and topology.

We will consider a complex algebra A, that is, A is a complex vectorspace
equipped with an addition and multiplication satisfying the usual properties (al-
though we do not demand that the multiplication should be commutative).
The algebra A is called a ∗-algebra provided there s an antilinear involution

∗ : A // A

satisfying the following properties

(a∗)∗ = a, (ab)∗ = b∗a∗, (αa+ βb)∗ = αa∗ + βb
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for all a, b ∈ A, α, β ∈ C and where . is complex conjugation.
A normed algebra A is an algebra admitting a norm

‖ . ‖: A // R

such that for all a, b ∈ A and α ∈ C we have

‖ a ‖≥ 0, ‖ a ‖= 0 ⇔ a = 0, ‖ αa ‖=| α |‖ a ‖

‖ a+ b ‖≤‖ a ‖ + ‖ b ‖, ‖ ab ‖≤‖ a ‖‖ b ‖

The topology on A defined by this norm is called the norm topology.
A Banach algebra is a normed algebra which is complete with respect to the
norm topology and a C∗-algebra is a Banach ∗-algebra such that for all a ∈ A
one has

‖ a∗ ‖=‖ a ‖ and ‖ a∗a ‖=‖ a ‖2

Example 6.1 Let M be a compact manifold and consider C(M) the algebra of
continuous complex-valued functions on M . C(M) is a ∗-algebra by taking point-
wise complex-conjugation and s normed by the supremum norm

‖ f ‖∞= sup
p∈M

| f(p) |

C(M) is a C∗-algebra.

Example 6.2 Let H be a Hilbert space. The noncommutative algebra B(H) of
bounded linear operators has an involution ∗ given by the adjoint and a norm
given by the operator norm

‖ B ‖= sup{‖ B(h) ‖: h ∈ H, ‖ h ‖≤ 1}

In particular, if H = Cn, then B(H) = Mn(C), the involution T ∗ of a matrix T
is the Hermitian conjugate, that is,

T ∗ = (tji)i,j when T = (tij)i,j

and the norm can be written as

‖ T ‖=
√
λ where λ is the largest eigenvalue of T ∗T

The norm on a C∗-algebra A is uniquely determined by the algebraic structure,

‖ x ‖= sup{| λ |: xx∗ − λ /∈ A∗}

where A∗ is the group of invertible elements of A, the right hand side is called
the spectral radius of x.
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For a ∗-algebra A to be a C∗-algebra it is necessary and sufficient that it admits a
faithful ∗-representation π on a Hilbert space H, that is an involution preserving
algebra morphism

π : A // B(H)

such that if π(a) = 0 then a = 0 and π(A) s norm closed.

If A is a commutative C∗-algebra, we denote by Sp A the spectrum of A the
set of all ∗-representations A // C equipped with the topology of pointwise
convergenge on A. That is, a sequence χi in Sp A converges iff the sequence χi(a)
converges in C for all a ∈ A. It can be shown that Sp A is a compact Hausdorff
space. Moreover, we have the celebrated Gel’fand-Naimark theorem.

Theorem 6.3 Let A be a commutative C∗-algebra and X = Sp A its spectrum.
Then A is isomorphic to the C∗-algebra C(X) of continuous complex functions
on X. The isomorphism is given by sending a ∈ A to the function â which is
evaluation at a.

Thus, the contravariant functor C that associates to a compact space X the
C∗-algebra C(X) effects an equivalence between the category of compact spaces
with continuous mappings and the opposite of the category of commutative C∗-

algebras. To a continuous map X
f

// Y there corresponds a homomorphism

C(f) : C(Y ) // C(X)

given by composition. In particular, two commutative C∗-algebras are isomorphic
if and only if their spectra are homeomorphic.
Returning to our problem of reconstructing the manifold M from algebraic data,
we have already reconstructed the topology on M from the C∗-algebra C(M) of
continuous complex functions on M .

6.2 The Dirac operator

In this section we will recover the metric structure on suitable Riemannian man-
ifolds from algebraic data.
Let M be a compact oriented manifold of dimension n. Consider the Levi-Civita
connection on M and write it as

∇ = d+ A

with A ∈ Ω1(Ad TM), that is, a one form with values in the Lie algebra son.
Now, consider a vectorbundle E on M with a bundle metric 〈., .〉 on which the
Lie group SOn(R) acts by isometries. If A is a one form with values in son, then
we can define a metric connection ∇ = d+ A on E.
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Hence, for any such vectorbundle E on which SOn(R) acts with the same transi-
tion functions as for TM , the Levi-Civita connection induces a metric connection
on E.
Now apply this to the Clifford bundles

Cl(P ) = P ×SOn(R) Cl(Rn) and ClC(P ) = P ×SOn(R) Cl
c(Rn)

where P is the frame bundle of M . Then, the Levi-Civita connection induces a
connection on each of these Clifford bundles which we again denote by ∇. One
can prove that this connection acts as a derivation on sections.

Lemma 6.4 For smooth sections µ, ν of the Clifford bundles we have

∇(µ.ν) = ∇(µ)ν + µ∇(µ)

Suppose now that M has a spin structure P̃ , then we can repeat the same pro-
cedure to obtain an induced connection ∇ on the associated spinor bundle Sn.
There is an action of ClC(P ) on the spinor bundle Sn via fiberwise Clifford mul-
tiplication and this action is compatible with these Levi-Civita connections.

Lemma 6.5 For sections µ of ClC(P ) and σ of Sn we have

∇(µ.σ) = ∇(µ).σ + µ.∇(σ)

Suppose that in a local trivialization of TM we can write

A =
∑
i<j

Ωijei ∧ ej

for skew symmetric matrices Ωij and where ei ∧ ej is the matrix m with mij =
−1,mji = 1 and zeroes elsewhere. Now, ei∧ej ∈ son corresponds to 1

2
eiej ∈ spinn

and hence the connection on the spinor bundle with respect to the induced local
trivialization is given by

∇ = d+
1

2

∑
i<j

Ωijeiej

where eiej acts by Clifford multiplication on spinors.

Now we are in a position to define the Dirac operator. Consider the extended
Levi-Civita connection

∇ : Γ(Sn) // Γ(T ∗M ⊗ Sn )

Further we have the Clifford multiplication

m : TM ⊗ Sn
// Sn

given by v⊗σ = v.σ. Finally, we can use the Riemannian metric to identify TM
with T ∗M using the non-degenerate quadratic form (gij)i,j.
We can combine all these maps to define
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Definition 6.6 The Dirac operator of M is the composition

Γ(Sn) ∇ // Γ(T ∗ ⊗ Sn) ' Γ(TM ⊗ Sn) m // Γ(Sn)

Paul Adrien Maurice Dirac
Born : 8 august 1902 in Bristol (England)
Died : 20 october 1984 in Talahassee, Florida (USA)

Paul Dirac is famous as the creator of the complete theoretical formulation of quantum mechanics. He studied

electrical engineering at the University of Bristol before doing research in mathematics at St John’s College

Cambridge. His first major contribution to quantum theory was a paper written in 1925. He published ”The

principles of Quantum Mechanics” in 1930 and for this work he was awarded the Nobel Prize for Physics in 1933.

Dirac was appointed Lucasian professor of mathematics at the University of Cambridge in 1932, a post he held

for 37 years. He was made a fellow of the Royal Society in 1930, was awarded the Royal Society’s Royal Medal in

1939 and the Society awarded him the Copley Medal in 1952 ”... in recognition of his remarkable contributions

to relativistic dynamics of a particle in quantum mechanics.” In 1971 Dirac was appointed professor of physics

at Florida State University and was appointed to the Order of Merit in 1973.

We will now use the Dirac operator to define a ∗-representation of C(M). As Sn

is a vectorbundle over M having complex vectorspaces as fibers, its sections Γ(Sn)
is clearly a complex vectorspace. With H = L2(M,Sn) we denote the subspace
of Γ(Sn) of square integrable sections of Sn.
H is a Hilbert space with norm induced by the inproduct

(φ, ψ) =

∫
M

〈φ(p), ψ(p)〉dp
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where 〈., .〉 is the natural inproduct on the spinor space. One can show that the
Dirac operator maps H into itself, that D is a self-adjoint operator on H.
Further, C(M) act as bounded operators on H by the rule

(fφ)(p) = f(p)φ(p)

for all f ∈ C(M), φ ∈ H ⊂ Γ(Sn) and all p ∈ M . This gives rise to a ∗-
representation

C(M) π // B(H)

which is faithful, that is, we can view C(M) as a subspace of H.
The Dirac operator itself is not a bounded operator on H but the important
property one can prove is that the operator

[D, f ] = D ◦ f − f ◦D : H // H

is a bounded operator for all f ∈ C(M).
The reconstruction of the metric structure on M from the triple (C(M),H, D)
follows from the following result.

Theorem 6.7 The geodesic distance between any two points p, q ∈ M is given
by the formula

d(p, q) = sup
f∈C(M)

{| f(p)− f(q) |:‖ [D, f ] ‖≤ 1}

6.3 Connes’ standard model.

Having recovered the compact oriented manifold M with spinstructure from al-
gebraic data, we can use this algebraic data to generalize the notion of manifolds
to the noncommutative case.

Definition 6.8 A noncommutative manifold is a triple

(A,H, D)

where A is a C∗-algebra (or more generally, a ∗-algebra), H is a Hilbert space
such that there is a faithful ∗-representation

A
π // B(H) .

D is a self adjoint operator on H with the property that for all a ∈ A

[D, π(a)]

is a bounded operator on H.
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Actually, in this generality one has to put further technical restrictions on the
triple. However, all noncommutative manifolds we will encounter here are prod-
ucts of usual manifolds with finite noncommutative spaces and then these extra
assumptions are automatically satisfied.
Let us begin by giving some manifold structures on finite sets.

Example 6.9 Consider two points M = {a, b}. Then, A = C(M) = C × C the
correspondence being given by f 7→ (f(a), f(b)). The Hilbert space H = C2 and
the ∗-representation is given by

π : A // M2(C) f 7→
[
f(a) 0

0 f(b)

]
Finally, we take as a Dirac operator

D =

[
0 µ
µ 0

]
with µ ∈ R>0

Then, D is a self adjoint operator and we have for all f ∈ A

[D, f ] =

[
0 µ
µ 0

] [
f(a) 0

0 f(b)

]
−

[
f(a) 0

0 f(b)

] [
0 µ
µ 0

]
=

[
0 −µ(f(a)− f(b))

µ(f(a)− f(b)) 0

]
And therefore we have for the operator norm that

‖ [D, f ] ‖= µ | f(a)− f(b) |

and therefore if this norm is ≤ 1 then | f(a) − f(b) |≤ 1
µ
. Generalizing the

distance function to this context we then have

d(a, b) =
1

µ

Recall that at this moment physics recognizes four fundamental forces : gravita-
tion, electromagnetism, the weak force (responsible for radiactive decay) and the
strong force (holds the kernel of atoms together). Each of these forces is carried
by ’bosons’. Present boson-knowledge is summarized in

name symb mass charge #
spin 0 Higgs H0 ≥≥ 50000 0 1
spin 1 foton γ 0 0 1

vectorb. Z0 91177 0 1
W+ 80600 + 1
W− 80600 − 1

gluons As 0 0 8
spin 2 graviton g 0 0 1
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The fact that there are three vectorbosons and 8 gluons is a consequence of
the fact that the underlying symmetry groups are SU2(C) (dimension 3) and
SU3(C) (dimension 8). Bosons have integral spin and satisfy Bose statistics
(many identical particles possible).
On the other hand, matter is made up of fermions, which have half integral spin
and satisfy Fermi statistics (no identical particles possible).
Surprisingly, nature seems to repeat itself and so there are thought to be three
generations of elementary particles, each having their leptons and quarks.
Present knowledge about the spin 1

2
leptons is summarized in the table below

name symb mass charge #
gen I e− neutrino νe ∼ 0 0 1

electron e 0.511003 − 1
gen II µ− neutrino νµ ∼ 0 0 1

muon µ 105.6593 − 1
gen III τ − neutrino ντ ∼ 0 0 1

tau τ 1784 − 1

Present knowledge about the spin 1
2

quarks is summarized in

name symb mass charge #
gen I up u 5 2

3
3

down d 10 −1
3

3
gen II charm c 1600 2

3
3

strange s 180 −1
3

3
gen III top t 170000 2

3
3

bottom b 5000 −1
3

3

The underlying symmetry of the standard model (that is, a unified theory for all
forces except gravitation) is believed to be the Lie group

U(1)× SU2(C)× SU3(C)

To see how it acts on the elementary particles it is best to represent each gen-
eration in a table (below we do it for the first generation, others behave the
same)
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Here the subindices L and R indicate left- resp. righthanded particles, the upper
indices r, y, b indicate the three flavours of quarks (red, yellow and blue). The
color group SU3(C) interchanges the last three coloms and the electroweak group
U(1)× SU2(C) acts on the rows.
Using these physical facts, A. Connes proposed the following finite noncommu-
tative manifold

(C⊕H⊕M3(C),C90, D)

where the ’eigenschaften’ algebra is involutive (but not a C-algebra) where H =
Cl(R2) is the subalgebra of M2(C) consisting of matrices of the form

H = {
[
α β

−β α

]
| α, β ∈ C}

The involutions are the standard involutions on Mn(C) (which preserves H).
The Hilbert space is of dimension 90. Observe that each generation has 15 distinct
elementary particles, we let E be the vectorspace spanned by these 45 elementary
particles. With the complex conjugate space E we denote the vectorspace spanned
by the 45 antiparticles. Elements of E are of the form ζ with ζ ∈ E . Action of

λ ∈ C on E is given by λ.ζ = λ.ζ. The physical Hilbert space

H = E ⊕ E ' C90

In order to define a ∗-representation

C⊕H⊕M3(C) // M90(C)

we have to define an action of the algebra on E and its conjugate. The action of
(λ, q,m) is given on the basevectors of E by the following rules

uR 7→ λuR, dR 7→ λdR, eR 7→ λeR(
νL uL

eL dL

)
7→ q.

(
νL uL

eL dL

)
and similarly for the other generations. The action of (λ, q,m) on E is given by
the rules (

ν eL eR

)
7→ λ.

(
ν eL eR

)
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Finally, the Dirac operator has the following form in the decomposition E ⊕ E

D =

[
Y 0
0 Y

]
where Y is the so called Yukawa coupling matrix which has the following form
for one generation. Here, we use the ordered basis

{ur
L, u

y
L, u

b
L, d

r
L, d

y
L, d

b
L, u

r
R, u

y
R, u

b
R, d

r
R, d

y
R, d

b
R, eL, νL, eR}

Y =

0 0 0 0 0 0 Mu 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Mu 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Mu 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Md 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Md 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 Md 0 0 0
M∗

u 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 M∗

u 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 M∗

u 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 M∗

d 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 M∗

d 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 M∗

d 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Me

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 M∗

e 0 0

For three generations, Mu,Md and Me are 3 × 3 matrices which encode masses
of the fermions and their mixing properties.
The final ingredient of Connes’ construction is the notion of a product of non-
commutative manifolds. Suppose we have two noncommutative manifolds

(A1,H1, D1) and (A2,H2, D2)

then one can define the product manifold to be determined by the triple

(A1 ⊗C A2,H1 ⊗C H2, D1 ⊗ id2 + id1 ⊗D2)

and one verifies that this triple satisfies all the requirements.
The noncommutative standard model of Connes is then given by taking the
product of a four dimensional compact oriented spin manifold M (space time) as
described by the triple

(C(M), L2(M,S4), DM)
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with the finite noncommutative manifold introduced above.
One can then generalize connections in this setting and compute Lagrangians
etc. It turns out that the resulting Lagrangian has the same form as given by the
standard model but with several appealing extra properties. For example, at this
moment there is no experimental fact supporting the existence of the Higgs boson
(without which the standard model would fail because all vectorbosons should
have zero mass, quod non). In Connes model, the Higgs field appears naturally
as the part of the connection determined by the finite geometry.
A major open problem is to determine the symmetry groups underlying this
noncommutative manifold. Connes has proposed an algebra closely related to
the quantum group Uq(sl2) with q a third root of unity as a possible symmetry.

Alain Connes
Born : 1 april 1947 in Draguignan (France)

Alain Connes became a researcher at the Centre National de la Recherche Scientifique. His thesis ”A classification

of factors of type III” was on operator algebras, in particular on von Neumann algebras, and the work was

supervised by Jacque Dixmier. The thesis was presented to the Ecole Normale Supérieure in 1973. In 1981

Connes returned to the Centre National de la Recherche Scientifique, this time as its director of research. He held

this post for eight years. Another position he was appointed to was professor at the Collège de France at Rue

d’Ulm in Paris in 1984. To place Alain Connes’s fundamental and pioneering contributions to operator algebras

in context, recall that von Neumann and Murray in the 1930s and 1940s were led by, among other things, the

spectral theory of operators on Hilbert space, and by considerations of constructing mathematical models for

quantum mechanical systems, to introduce what they called rings of operators - since renamed von Neumann

algebras. One of the main problems has been and remains the classification of these algebras as intrinsic algebraic

and topological objects. Connes’ thesis is a major, stunning breakthrough in the classification problem. One

of the first major international distinctions for Connes was an invitation to give one of the invited lectures at

the International Congress in Helsinki in 1978. Four years later the award of a Fields Medals to Connes was
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announced at a meeting of the General Assembly of the International Mathematical Union in Warsaw in early

August 1982. Connes’ most remarkable contributions are (1) general classification and a structure theorem for

factors of type III, obtained in his thesis (2) classification of automorphisms of the hyperfinite factor, which

served as a preparation for the next contribution (3) classification of injective factors, and (4) application of

the theory of C∗-algebras to foliations and differential geometry in general. Connes’ recent work has been on

noncommutative geometry and he published a major text on the topic in 1994. He has studied applications to

theoretical physics and his work is of major importance.
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