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Abstract

The Fano plane embedding in Klein’s Riemann surface is constructed by an embedding of the 2-
biplane in that surface. We show how an an embedding of the 3-biplane in a particular Riemann
surface of genus 70, related to the Hecke group H5, corresponds to embedding Buckyballs in
that surface.

We also show that there is a 2-biplane structure on the cusps of the principal congruence
subgroup Γ(7), and a 3-biplane structure on the cusps of the principal congruence subgroup
H5(4−

√
5) of the Hecke group H5.

1 Introduction

In 1995, Bertram Kostant [K] wrote a beautiful account that relates the truncated icosahedron to
some ideas in the last letter of Galois that was written on the night before his fatal duel. Galois’
result is that the group PSL(2, p) which acts transitively on the p + 1 points of GF(p) ∪ {∞}
only acts transitively on p points if p = 2, 3, 5, 7, 11. Geometrically the most interesting case are
p = 7 and p = 11. In this paper we discuss the many similarities between these two cases, giving
links with the biplanes of orders 2 and 3 and embeddings of these planes into Riemann surfaces.
We now briefly describe the connections with Riemann surfaces. The case p = 7 follows work
in Klein’s classic paper reprinted in [L1]. In Klein’s quartic surface there are two classes of 7
embedded truncated cubes. We call the truncated cubes in one class vertices and the other class
lines. If we consider their intersection pattern we get an embedding of the Fano plane in Klein’s
surface. This is a different method of obtaining the emdedding than found in [S2]. For p = 11, we
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find a Riemann surface of genus 70 that contains two classes of embedded truncated icosahedra
(buckyballs.) In a similar way, we find an intersection pattern that defines a 3-biplane. We also
discuss how the 2-biplane and 3-biplane can be constructed from the cusps of Fuchsian groups
that define these surfaces. The following table presents some of the similarities that we have
found for the two cases p = 7 and p = 11.

Property p = 7 p = 11
Riemann surface Klein’s quartic of genus 3 A Riemann surface of genus 70

Automorphism group PSL(2,7) PSL(2,11)
Combinatorial structure Fano plane and order 2- biplane order 3-biplane

Platonic solids Contains 7 imbedded cubes contains 11 imbedded icosahedra
Truncations truncated cubes Buckyballs

Fuchsian group Modular group Γ Hecke group H5

Triangle group (2,3,7) (2,5,11)
Modular interpretation H/Γ(7) H/H5(4−

√
5)

Cusps 24 cusps of Γ(7) 60 cusps of H/H5(4−
√

5)

table 1.1

Here, H is the upper half-plane. The Hecke group H5 is the Fuchsian group generated by
z 7→ −1/z and z 7→ z+λ, where λ is the golden ratio 1+

√
5

2 . By (4−
√

5) we mean the principal
ideal of Z[λ] generated by 4−

√
5.

The buckyball is just a truncated icosahedron. It is named after the architect Buckminster-
Fuller, after some geodesic domes that he constructed. It has achieved fame because it is the
shape of the carbon molecule C60, which has been called the world’s most beautiful molecule.
[AW] It is also the most common shape of a football! A picture of the buckyball is given in Fig.
3 in section 8.

Part 1. p = 7.

2 The Klein quartic

The Klein quartic is the Riemann surface of the projective curve with equation x3y+y3z+z3x =
0. This surface has genus 3. It has a special importance in Mathematics. In particular, it is
the least genus surface S3 for which the Hurwitz 84(g − 1) bound is attained for the size of its
automorphism group. [L1] In this case, AutS3

∼= PSL(2,7).
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Identification
Table:
1–6
3–8
5–10
7–12
9–14
11–2
13–4

Figure 1: The Klein quartic

3 Finite planes and biplanes

The material in this section is taken from [P]. A finite (projective) plane is a finite collection of
points and lines that satisfy the following conditions:

• Two distinct points lie on a unique line,

• There exist four points of which no three are incident with the same line.

It is well-known that that there is an integer n > 1 such that every line contains n points and
every point is contained in n lines. Such a projective plane is said to have order n. A projective
plane of order n has n2+n+1 points and n2+n+1 lines. The smallest example is the well-known
Fano plane of order 2. This has seven points and seven lines and is just the projective plane
over the field F2 with two elements. If the seven points are 1, 2, . . . , 7 the lines are given by the
rows of the following table
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1 2 4
2 3 5
3 4 6
4 5 7
5 6 1
6 7 2
7 1 3

table 3.1

Thus the first row are the quadratic residues mod 7, while the others are obtained by adding
1, 2, · · · , 6

The collineation group of the Fano plane is PGL(3,2)∼= PSL(2,7).

Biplanes A biplane is a system of points and lines obeying the axioms:

B1 Two distinct points are contained in two distinct lines,

B2 Two distinct lines intersect in two distinct points.

If a biplane has k points on each line then we say that its order is k − 2.

The biplane of order 2 is the complement of the Fano plane. This is the biplane whose points
are the points of the Fano plane and whose lines are the complement of the lines of the Fano
plane. For example a line in this biplane is 3, 5, 6, 7, which is complementary to the line 1,
2, 4 of the Fano plane. We will return to this idea later when we discuss the imbedding of the
Fano plane in Klein’s surface. The biplane of order 3 occurs in the discussion of the Buckyball,
as noticed by Kostant. [K]. It is constructed in an analogous way as we constructed the Fano
plane. Our points are 1, 2, . . . , 11 and our first line contains the quadratic residues mod 11,
namely 1, 3, 4, 5, 9. The other lines are found by adding 1, 2, . . . , 11. We thus get the lines
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1 3 4 5 9
2 4 5 6 10
3 5 6 7 11
4 6 7 8 1
5 7 8 9 2
6 8 9 10 3
7 9 10 11 4
8 10 11 1 5
9 11 1 2 6
10 1 2 3 7
11 2 3 4 8

table 3.2

4 Imbedding graphs and hypergraphs into Riemann surfaces,

We now discuss the imbedding of the Fano plane into Klein’s surface. This will be as a hypermap.
We now briefly discuss the theory of maps and hypermaps.

There is a well-established theory of graph and hypergraph imbeddings into Riemann surfaces
to form maps and hypermaps. A map is an imbedding of a graph G into a surface X such
that the components of X \ G are polygonal 2-cells. It was observed in [JS1] that this makes X
into a Riemann surface. In this way a map defines a complex algebraic curve and Grothendieck
[G] noticed that Belyi’s Theorem implies that this curve is defined over the field of algebraic
numbers. If m is the lcm of the vertex valencies and n is the lcm of the face valencies then
the map is said to be of type (m,n). The way of describing maps in [JS1] is to consider the
universal tessellation M̂(m,n) of type (m,n), that is the tessellation of a simply connected
Riemann surface U (usually the hyperbolic plane) by triangles with angles (π/2, π/m, π/n). We
consider the group Γ∗ generated by reflections in the sides of a triangle and let Γ denote the
subgroup of index 2 consisting of sense preserving transformations. Now let M be a subgroup of
finite index in Γ. Then M is a Fuchsian group that maps M̂(m,n) to itself and thus M̂(m,n)/M
is a map on the Riemann surface U/M . All maps of type (m.n) can be constructed in this way.

Basically, a hypergraph is rather like a graph, except that an edge may contain any number of
vertices. A precise definition is as follows: A hypergraph H is a pair consisting of a vertex set
V (H) together with a subset of edges E(H) whose elements are subsets of V (H). Thus we can
speak of a vertex lying on an edge. The valency of an edge e is the number of vertices lying on e
and the valency of a vertex v is the number of edges in which v lies. If every vertex has valency
1 or 2 then the hypergraph is a graph. A hypermap is an imbedding of a hypergraph H in a
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surface such that the components of X \H are polygonal 2-cells. A hypermap has type (l,m, n)
if l is the lcm of the edge valencies, m is the lcm of the vertex valencies and n is the lcm of
the face valencies, The theory of hypermaps follows almost word by word the theory of maps,
except that we now use triangles with angles (π/l, π/m, π/n). [C], [CS], [JS2]. A hypermap is
basically what Grothendieck [G], calls a dessin d’enfant (or just dessin) and then maps are the
so called clean dessins.

There are many ways of drawing pictures of hypermaps, each with its own advantages. For our
main application, we shall use the Cori representation.

The Cori representation. [C], [CS] Let X be a compact orientable surface. A hypermap H on
X is a triple (X , S,A), where S,A are closed subsets of X such that:

1. B = S ∩A is a non-empty finite set;

2. S ∪A is connected;

3. Each component of S and each component of A is homeomorphic to a closed disc;

4. Each component of X \ (S ∪A) is homeomorphic to an open disc.

The elements of S are called hypervertices the elements of A are called hyperedges and the
elements of B are called hypervertices.

In this paper a crucial example of a hypermap is the embedding of the Fano plane in Klein’s
surface. The Fano plane is the projective plane defined over a field of order 2. Thus each
point has homogeneous coordinates of the form (a, b, c) with a, b, c ∈ GF(2) except that we do
not allow (0, 0, 0). Thus the Fano plane has 7 points and 7 lines, and its collineation group is
PGL(3,2)∼= PSL(2, 7), the simple group of order 168.

The Cori representation of the Fano plane imbedded in Klein’s surface was found in [S2] in 1985.
and is pictured here as Fig.2 in section 8.

Another way of embedding the Fano plane is to consider the order two-biplane as the complement
of the Fano plane as described in section 3, as we now show.

5 Imbedding the biplane of order 2 in Klein’s surface.

We first find an imbedding of S4 in PSL(2,7). A presentation of S4 is
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〈x, y|x2 = y3 = (xy)4 = 1〉

We use the well-known facts that elements of order 2 have trace 0, elements of order 3 have
trace ±1, and elements of order 4 have trace whose square is equal to 2. One solution is

x =

(
0 1
−1 0

)
y =

(
5 0
3 3

)

and then

xy =

(
3 3
2 0

)

which has order 4 as required. We now list the conjugacy classes of cyclic groups of order 3
in S4 . It is easily seen that these are given by the cyclic groups generated by y, xyx, xyxy−1

and y−1xyx. Each of these act on the projective line GF7 ∪ {∞}. Each of these cyclic groups
is the stabilizer of two points on when acting on GF7 ∪ {∞}. These are {0, 3}, {2,∞}, {1, 6},
{4, 5}. We can also see that two fixed points determine the element of order 3 in S4 and so the
four pairs of elements of GF7 ∪ {∞}determine an embedding of S4 in PSL(2, 7). Thus we can
determine all the embeddings of S4 in PSL(2, 7) by listing the fixed points of the 4 elements of
order 3. There are two conjugacy classes of subgroups isomorphic to S4 in PSL(2, 7). We call
these two classes, P and L.

SUBGROUPS OF PSL(2, 7) OF ORDER 24
IN TWO CONJUGACY CLASSES

Class P Class L{
{4, 5}{6, 1}{0, 3}{2,∞}

} {
{4, 5}{6, 2}{0,∞}{1, 3}

}
{
{5, 6}{0, 2}{1, 4}{3,∞}

} {
{5, 6}{0, 3}{1,∞}{2, 4}

}
{
{6, 0}{1, 3}{2, 5}{4,∞}

} {
{6, 0}{1, 4}{2,∞}{3, 5}

}
{
{0, 1}{2, 4}{3, 6}{5,∞}

} {
{0, 1}{2, 5}{3,∞}{4, 6}

}
{
{1, 2}{3, 5}{4, 0}{6,∞}

} {
{1, 2}{3, 6}{4,∞}{5, 0}

}
{
{2, 3}{4, 6}{5, 1}{0,∞}

} {
{2, 3}{4, 0}{5,∞}{6, 1}

}
{
{3, 4}{5, 0}{6, 2}{1,∞}

} {
{3, 4}{5, 1}{6,∞}{0, 2}

}
Here the class P consists of one conjugacy class of subgroups of PSL(2, 7) isomorphic to S4

and and the class L consists of the other conjugacy class, We denote the elements of P as
P1, P2 . . . , P7 and the elements of L as as L1, L2 . . . , L7.
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We shall now show how the biplane of order 2 can be constructed from the two conjugacy classes
of subgroups isomorphic to S4 in PSL(2,7), given in 4.1 above. Regard the first set of conjugacy
classes as the points and the second set as the lines. giving 7 points and 7 lines. If a pair of
fixed points of Pi coincides with a pair of fixed points of Lj then we write Pi ∩ Lj 6= ∅ and we
regard this as defining an incidence and so we can form a 7× 7 incidence table.



1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1


We see that any two lines intersect in two points and as there are 4 1’s in each column, and
row, we have a biplane of order 2. Note also that the ”complementary” geometry [P] obtained
by considering the 3 zeros in each row and column gives us a Fano plane structure. (For the
lines are 4,5,7; 1,5,6; 2,6,7; 1,3,7, 1,2,4; 2,3,5; 3,4,6, that is the lines of the Fano plane.) This is
a different way of embedding the Fano plane in Klein’s quartic to that described in [S2].

6 The imbeddings of the truncated cubes in Klein’s surface

A subgroup of PSL(2, 7) isomorphic to S4 acts regularly (freely and transitively) on the 24 points
stabilized by a C7 on K, Klein’s surface. These 24 points are well-known to be the Weierstrass
points of K. As PSL(2, 7) contains 28 cyclic subgroups of order 3 and there are 168/3=56
points of the Klein map of valency 3, each cyclic group of order 3 fixes 2 points of K. As each
S4 contains 4 C3’s this gives 8 fixed points. An example, the points A,A

′
, B,B

′
, C, C

′
, D,D

′
in

Klein’s main figure in [L1], p320 are 8 such points, where A,A
′

etc. are two of the fixed points
of one of the C3s in S4. These 8 points can be thought of topologically as the vertices of an
inscribed cube, (or more precisely as Klein puts it the surface K can be stretched symmetrically
onto a sphere so that the 8 points A,A

′
, etc coincide with the vertices of an inscribed cube,)

Now from Klein’s main figure in [L1], each point fixed by an element of order 3 is the centre
of a hyperbolic equilateral whose vertices have valency 7. This gives us our 3× 8 = 24 vertices
of valency 7 which form the vertices of the truncation of the cube A,A

′
, B,B

′
, C, C

′
, D,D

′
.

(Labelling in Klein’s main figure.)

Finally, we want to represent the biplane geometrically on K. First notice that each truncated
cube corresponds to the S4 in PSL(2, 7) which stablilizes it. Now there are 14 S4’s in PSL(2,
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7) in two conjugacy classes of 7. Thus there are 2 classes of truncated cubes each containing 7
elements, Let us call the 7 truncated cubes in one class, points and the 7 truncated cubes of the
other class lines. Each cube is determined by the 8 fixed points of the 4C3s which form the 8
vertices of the cube. The incidence pattern is then determined by the incidence matrix in the
last section. Thus we get the biplane structure back again.

We summarise in

Theorem 1

(a) We consider the two conjugacy classes of 7 subgroups represented by points P1, P2 . . . , P7

and lines L1, L2 . . . L7 as described, With incidence as above we get a 2-biplane or Fano plane
structure.

(b) (Geometric interpretation.) The Klein surface contains two classes of embedded truncated
cubes. Their incidence pattern gives a 2-biplane or Fano plane structure on the Klein surface.

Klein’s surface and triangle groups, Consider the (2,3,7) triangle group with presentation

< A,B,C|A2 = B3 = C7 = ABC = 1 > .

There is a epimorphism Φ : (2, 3, 7)→PSL(2, 7) defined by

Φ(A) =
(

0 1
−1 0

)
, Φ(B) =

(
−1 1
1 0

)
, Φ(C) =

(
1 0
−1 1

)
and by the Riemann-Hurwitz formula, KerΦ is a surface group of genus 3 which uniformizes the
Klein surface K. There is also an obvious homomorphism Ψ : Γ→ PSL(2,7) defined by reduction
mod 7, where Γ =PSL(2,Z) is the modular group and a homomorphism σ : Γ → (2, 3, 7) such
that Φ ◦ σ = Ψ.

Γ σ−−−−−−−→ [2, 3, 7] Φ−−−−−−−→ PSL(2, 7)x8
x8

x8
Γ0(7) −−−−−−−→ (0; 3, 3, 7) −−−−−−−→ Aff(1, 7)x3

x3
x3

Γ1(7) −−−−−−−→ (0; 7, 7, 7) −−−−−−−→ C∞7x7
x7

x7
Γ(7) −−−−−−−→ K −−−−−−−→ {1}

Where U
Γ(7) is a Riemann surface of genus g = 3 with 24 punctures. This is because an element

of order 7 in PSL(2, 7) has 168/7=24 fixed points.

In the above diagram the groups Γ0(7) and Γ1(7) are the usual congruence subgroups of Γ, i.e.

Γ0(7) = {
(
a b
c d

)
,∈ Γ, c ≡ 0mod7}, Γ1(7) = {

(
a b
c d

)
∈ Γ, a ≡ d ≡ 1mod7, c ≡ 0mod7}.
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7 The cusps of Γ(7)

The cusps of Γ, i.e.the parabolic fixed ponts of Γ is the set Q ∪ {∞}. It is convenient to write
a
c as (a, c) so that ∞ = (1, 0).

The cusps are of the form {(a, c)|a, c ∈ Zn such that (a, c, n) = 1}/ ∼, where (a, c) ∼ (n−a, n−
c). We can then show that the number of cusps of Γ(n) is

n2

2

∏
p|n

(1− 1
p2

)

where the product is taken over all positive divisors p of n In particular, Γ(7) has 24 cusps.
These correspond to the 24 points of valency 7 on the Klein surface.

By choosing representatives of the cusps, we can show that the cusps of Γ(7) are (0, 1), (1, 1) . . . , (6, 1)
(1, 3), (4, 3) . . . , (19, 3), (1, 2), (3, 2), . . . .(13, 2). The other 3 cusps are ∞, (2, 7) and (3, 7) As
(k, 7) is equivalent to (k, 0) for k = 2, 3) we can regard these last 3 cusps as the infinite cusps,
while the other 21 cusps are the finite cusps, As z 7→ z + 1 fixes the 3 infinite cusps, we can
regard them as the hypervertex centre, the hyperedge centre and the hyperface centre.

We now want to give a model of the Fano plane using the 21 finite cusps above. If we refer to
the drawing of the Fano plane (Fig. 2, in section 8), we note the cusps are at the intersection
points (which are hypervertices) of hyperfaces (lighly colured triangles) and hypereges (dark
triangles). These points are called brins by Cori, [C]. We define two cusps a

b and c
d to be

adjacent if ad− bc ≡ ±1 mod 7. From the picture in section 4 we see that every cusp should be
a 4-valent vertex. Let’s see what is joined to 0=0

1 . The hyperfaces and hyperedges are triangles.
We note that all triangles have the form (a, b) (c, d), (a + c, b + d) or we can replace the last
vertex by (a− c, b− d). We now note that we cannot have (0, 1) adjacent to (1, 1) for then one
of the triangles would have ∞ as a cusp which is impossible as ∞ is not one of the 21 cusps
of the Fano hypermap. As every flag is a 4-valent vertex the only flags adjacent to 0=(0,1) are
(1,2),(1,3) (-1,2) and (-1,3) Note that (-1,2)=(13,2) and (-1,3)=(13,3). By continuing in this
way we can label all the flags by rationals as illustrated in Fig. 2) We summarise in

Theorem 2. We can build a model of the Fano plane with the 21 finite cusps represented by
brins. Two flags a

b and c
d are adjacent if and only if ad− bc ≡ ±1 mod 7.

A picture of the Fano plane together with the cusps is given in Fig. 2.
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Figure 2: The fano plane.
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Figure 3: The buckyball.

Part 2, p = 11

8 H5 and PSL(2,11)

In part 1 we constructed Klein’s quartic by considering a homomorphism α : (2, 3, 7)→ PSL(2,7)
whose kernel is K where H/K is the Riemann surface of Klein’s quartic. We now consider a
homomorphism φ : (2, 5, 11) → PSL(2,11). If (2,5,11) =< A,B,C|A2 = B5 = C11 = I >, then
φ is defined by

φ(A) =
(

0 −1
1 0

)
, φ(B) =

(
0 1
−1 8

)
, φ(C) =

(
1 8
0 1

)
where the matrices represent the corresponding Möbius transformations and we reduce the
elements of the matrices mod 11. This homomorphism is smooth (it preserves the orders of
elements of finite order) and so the kernel is a surface group. As |PSL(2,11)| = 660, we can use
the Riemann-Hurwitz formula to compute the genus of the kernel.
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2g − 2 = 660(1− 1
2
− 1

5
− 1

11
)

giving g = 70

Let H5 denote the Hecke group with generators

Â =
(

0 −1
1 0

)
, B̂ =

(
0 −1
1 λ

)
where λ is the golden ratio as defined in the introduction. Group theoretically, we have

H5 ≡ C2 ∗ C5.

(Note that B̂ has order 5.)

Now for an ideal I ⊆ Z[λ] we let H5
0 (I) = {

(
a b
c d

)
∈ H5 such that c ≡ 0 mod I} and

H5
1 (I) = {

(
a b
c d

)
∈ H5 such that a ≡ d ≡ 0 mod I, c ≡ 0 mod I}.

We clearly have a homomorphism ψ : H5 → (2, 5, 11). Let Λ denote the kernel of ψ. Now
by [LLT] H5

H5(4−
√

5)
is isomorphic to PSL(2, 11). Now from the character table for PSL(2, 11)

given in the ‘atlas’ on page 7 and from the formula given in [S1] we find that there are precisely
2 epimorphisms from H5 to PSL(2, 11). (I would like to thank Gareth Jones for showing
me this argument,) As H5

H5(4−
√

5)
and H5

H5(4+
√

5)
are images of H5 so we have constructed these

homomorphisms. We might as well use the epimorphism above induced from the epimorphism
H5 → H5

H5(4−
√

5)
. Note that both the ideals (4±

√
5) have norm 11. We can express everything

above using the diagram

H5 ψ−−−−−−−→ [2, 5, 11]
φ−−−−−−−→ PSL(2, 11)x12

x12
x12

H5
0 (4−

√
5) −−−−−−−→ (1; 5, 5, 11) −−−−−−−→ Aff(1, 11)x5

x5
x5

H5
1 (4−

√
5) −−−−−−−→ (5; 115) −−−−−−−→ C∞11x11

x11
x11

H5(4−
√

5) −−−−−−−→ Λ −−−−−−−→ {1}
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Definition: We shall sometimes call U/Λ the Buckyball surface.

The Buckyball surface is also the compactification of U∗/H5(4−
√

5) where U∗ is the union of
U with the cusps of Z(λ).

Lemma 1 There are 60 points on U/Λ whose stabilizer is isomorphic to C11. Each element of
order 11 fixes 5 points of U/Λ.

Proof. We can decompose U/Λ into triangles with angles π
2 .
π
5 ,

π
11 . By the Gauss-Bonnet Theorem

the hyperbolic area of such a triangle is 23π
110 . The hyperbolic area of U/Λ is 2π(2×70−2) = 276π.

Thus the number of such triangles is 276π/(23π
110 ) = 1320. Now draw another triangle obtained

by reflecting one of our triangles through the line from the π
2 angle to the π

11 angle to get 660
triangles with angles π

5 ,
π
5 , and 2π

11 . The points of U/Λ fixed by a cyclic group of order 11 are
at the vertices of these triangles with an angle 2π

11 , and so there number is 60. By the Sylow
Theorems the number of C11’s in PSL(2,11) is 12 so that each C11 fixes 5 points.

9 A5 and PSL(2,11)

The group PSL(2, 11) contains as its largest subgroups two conjugacy classes of subgroups
isomorphic to A5. Each class contains 11 subgroups. The other large subgroup is the stabilizer
of a point of GF11∪{∞}. This has order 55, and there is just one conjugacy class containing 12
subgroups. Now each subgroup isomorphic to A5 contains, by the Sylow Theorems 6 subgroups
of order 5. Now each C5 <PSL(2,11) can be labelled with its pair of fixed points in GF11. and
so (following the same idea as for PSL(2, 7)) we can characterize every A5 < PSL(2, 11) by a
sextuplet of pairs of points.

Example. Consider the subgroup of PSL(2, 11) generated by the matrices

a =
(

9 0
6 5

)
and b =

(
9 10
0 5

)
These matrices, having the same eigenvalues can be shown to be conjugate in PSL(2,11), (or
perform a direct calculation.)

The fixed points of a when acting on GF11 are 0 and 8 while the fixed points of b are 3 and ∞
and so we can label < a >= C0,8

5 = {0, 8} and b = C3,∞
5 = {3,∞}.
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Now by direct calculation ab2 has order 2 and ab has order 3. Also (ab)−1ab2 has order 5. Thus
the group generated by a and b is the (2,3,5) triangle group which is isomorphic to A5.

By the Sylow Theorems there is one conjugacy class of C5’s in PSL(2,11) containing 6 subgroups.
Generators for these subgroups are b, a, bab−1, b2ab−2, b3ab−3, b4ab−4. As gbg−1 fixes g(3) and
g(∞), we find that the pairs of fixed points of the conjugates of b are {3,∞}, {8, 0}, {1, 2},
{6, 10}, {4, 9}, {5, 7}.

As in section 5, for the seven imbeddings of S4 in PSL(2, 7) we can use all the pairs of fixed
points to determine the eleven imbeddings of A5 in PSL(2, 11). The pairs of points in the eleven
conjugacy classes are given in the following table.
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SUBGROUPS OF PSL(2, 11) OF ORDER 60
IN TWO CONJUGACY CLASSES

Class P Class L{
{0, 1}{4, 6}{7, 10}{5, 9}{3, 8}{2,∞}

} {
{0, 1}{6, 8}{2, 5}{3, 7}{4, 9}{10,∞}

}
{
{1, 2}{5, 7}{8, 0}{6, 10}{4, 9}{3,∞}

} {
{1, 2}{7, 9}{3, 6}{4, 8}{5, 10}{0,∞}

}
{
{2, 3}{6, 8}{9, 1}{7, 0}{5, 10}{4,∞}

} {
{2, 3}{8, 10}{4, 7}{5, 9}{6, 0}{1,∞}

}
{
{3, 4}{7, 9}{10, 2}{8, 1}{6, 0}{5,∞}

} {
{3, 4}{9, 0}{5, 8}{6, 10}{7, 1}{2,∞}

}
{
{4, 5}{8, 10}{0, 3}{9, 2}{7, 1}{6,∞}

} {
{4, 5}{10, 1}{6, 9}{7, 0}{8, 2}{3,∞}

}
{
{5, 6}{9, 0}{1, 4}{10, 3}{8, 2}{7,∞}

} {
{5, 6}{0, 2}{7, 10}{8, 1}{9, 3}{4,∞}

}
{
{6, 7}{10, 1}{2, 5}{0, 4}{9, 3}{8,∞}

} {
{6, 7}{1, 3}{8, 0}{9, 2}{10, 4}{5,∞}

}
{
{7, 8}{0, 2}{3, 6}{1, 5}{10, 4}{9,∞}

} {
{7, 8}{2, 4}{9, 1}{10, 3}{0, 5}{6,∞}

}
{
{8, 9}{1, 3}{4, 7}{2, 6}{0, 5}{10,∞}

} {
{8, 9}{3, 5}{10, 2}{0, 4}{1, 6}{7,∞}

}
{
{9, 10}{2, 4}{5, 8}{3, 7}{1, 6}{0,∞}

} {
{9, 10}{4, 6}{0, 3}{1, 5}{2, 7}{8,∞}

}
{
{10, 0}{3, 5}{6, 9}{4, 8}{2, 7}{1,∞}

} {
{10, 0}{5, 7}{1, 4}{2, 6}{3, 8}{9,∞}

}
Again, we regard the set P to be the set of points and the set L to be the set of lines. To
understand the geometry that we obtain we set up an incidence table as in section 5.



1 0 1 1 0 1 0 0 0 1 1
1 1 0 1 1 0 1 0 0 0 1
1 1 1 0 1 1 0 1 0 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 1 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1
1 0 1 0 0 0 1 1 1 0 1
1 1 0 1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1 1 1



This matrix is interesting in that we can find a model of the order 3 biplane by examining the
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positions of the zeros. These are in positions 2,5,7,8,9 in the first row. If we regard this as a
line then all lines are



2 5 7 8 9
3 6 8 9 10
4 7 9 10 11
1 5 8 10 11
1 2 6 9 11
1 2 3 7 10
2 3 4 8 11
1 3 4 5 9
2 4 5 6 10
3 5 6 7 11
1 4 6 7 8


Notice that the 8th row is 1,3,4,5,9. These are just the quadratic residues mod 11. Regarding
the points as elements of the finite field on 11 points, (with 11=0) we see that the other lines
are just translations of the 8th row by 1, 2, . . . , 10.

10 The embedding of the Buckyballs in U/ L.

By Lemma 1, there are 60 points on the surface U/Λ.whose stabilizer is isomorphic to C11 and
each such element fixes 5 points of the surface, (By a result of Lewittes[L2], all these points are
Weierstrass points but there must be other Weierstrass points as a Riemann surface of genus
g contains at least 2g + 2 Weierstrass points.) Now by [D], PSL(2, 11) contains 66 subgroups
of order 5, and as there are 660/5 points of valency 5 on the corresponding map each of the
subgroup of order 5 fixes 2 points on the surface U/Λ. As each A5 < PSL(2, 11) contains 6
subgroups of order 5, we have 12 fixed points of the of U/Λ which are fixed by the A5. As
each C5 has two fixed points, these fixed points are naturally paired. We can think of these
points as forming a diagonal of an embedded icosahedron. By considering the tessellation formed
by π

2 .
π
5 ,

π
11 triangles on these triangles each point fixed by a C5 lies at the centre of a regular

pentagon whose vertices lie in the set of 60 points stabilized by a C5. These 60 points then form
the truncation of the icosahedron and so they form a buckyball. .

As there are two conjugacy classes of A5s in PSL(2, 11) we can build a geometry, where one
class comes from the fixed points of the conjugates of elements of one conjugacy class and the
other from the other conjugacy class as we did in section 5. We get the same structure as in
section 9, so that the embeddings of the Buckyballs in U/Λ give rise to a 3- biplane structure. .
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We can now generalize Theorems 1 and 2 to the case p = 11.

Theorem 3(a). We consider the two conjugacy classes of 11 subgroups represented by the
classes P and L above. With incidence as defined we get a 3-biplane structure.

3(b) The Buckyball surface contains two classes of embedded buckyballs. Their incidence pattern
gives a 3-biplane structure.

We note that unlike the Fano plane (or 2-biplane) structure on Kleins surface, the 3-biplane
structure does not give a hypermap, What we have is a conformal embedding in that a vertex
of valency v gives v rays intersecting at angle 2π/v.

11 The 3-biplane structure on the cusps of H5.

Note that the cusps of H5 are the same as the cusps of H5(4−
√

5), as the latter has finite index
in H5. However, the number of equivalence classes of cusps is different. For H5 all cusps are
real numbers of the form a+ b

√
5, (a,b rational), and there is just one class of cusps. However

we have seen that for H5(4 −
√

5) there are 60 classes of cusps. In section 7, we showed that
the 24 cusps of Γ(7) could be written as 21 cusps +3 cusps. (The 21 corresponding to the
cusps of the Fano plane.) Here, we will write 60=55+5, the 55 corresponding to the points of
the 3-biplane, and 5 corresponding to the ”infinite cusps” ∞, 2

11 ,
3
11 ,

4
11 ,

5
11 . For Γ(7) we had a

triangular structure. For H5(4−
√

5), our guess is that we have a pentagonal structure. So we
look for all solutions of (a+ b

√
5)5 ≡ 1 mod 11, We find all solutions by MAPLE and they are

listed as follows. The value of a is listed in the first column on the left and the 5 values of b are
in columns 2 to 6. Thus, for example, if a = 1 then b = 9, 0, 1, 2 or 6.

0 1 3 4 5 9
7 2 4 5 6 10
3 3 5 6 7 0
10 4 6 7 8 1
6 5 7 8 9 2
2 6 8 9 10 3
9 7 9 10 0 4
5 8 10 0 1 5
1 9 0 1 2 6
8 10 1 2 3 7
4 0 2 3 4 8

We write the table in this way because it then becomes apparent that the solutions form the
3-biplane with 55 points. In this way we see that the cusps of H5(4 −

√
5) can be given the
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structure of a 3-biplane. The next result which follows from the above calculation generalizes
Theorem 2 and is stated here for convenience.

Theorem 4. There is a 3-biplane structure on the cusps of H5(4−
√

5).

We would like to thank Martin Fluch for his valuable help in incorporating the diagrams.
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